Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 433
Filter
Add more filters

Publication year range
1.
Cell ; 180(1): 18-20, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31951517

ABSTRACT

Victora and colleagues challenge current perceptions that memory B cells readily participate in secondary germinal center reactions, allowing further modification of specificity upon reactivation. Rather, naïve B cells are the predominant B cell type that populate secondary germinal centers. This work has important basic immunological and translational implications.


Subject(s)
Germinal Center , Immunologic Memory , B-Lymphocytes
2.
Cell ; 178(6): 1313-1328.e13, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31491384

ABSTRACT

Emerging evidence indicates a central role for the microbiome in immunity. However, causal evidence in humans is sparse. Here, we administered broad-spectrum antibiotics to healthy adults prior and subsequent to seasonal influenza vaccination. Despite a 10,000-fold reduction in gut bacterial load and long-lasting diminution in bacterial diversity, antibody responses were not significantly affected. However, in a second trial of subjects with low pre-existing antibody titers, there was significant impairment in H1N1-specific neutralization and binding IgG1 and IgA responses. In addition, in both studies antibiotics treatment resulted in (1) enhanced inflammatory signatures (including AP-1/NR4A expression), observed previously in the elderly, and increased dendritic cell activation; (2) divergent metabolic trajectories, with a 1,000-fold reduction in serum secondary bile acids, which was highly correlated with AP-1/NR4A signaling and inflammasome activation. Multi-omics integration revealed significant associations between bacterial species and metabolic phenotypes, highlighting a key role for the microbiome in modulating human immunity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antibodies, Viral/immunology , Gastrointestinal Microbiome/physiology , Immunity/drug effects , Influenza Vaccines/immunology , Influenza, Human/immunology , Adolescent , Adult , Antibody Formation , Female , Gastrointestinal Microbiome/drug effects , Healthy Volunteers , Humans , Immunogenicity, Vaccine/immunology , Influenza A Virus, H1N1 Subtype/immunology , Male , Young Adult
3.
Nat Immunol ; 22(1): 67-73, 2021 01.
Article in English | MEDLINE | ID: mdl-33169014

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 infections can cause coronavirus disease 2019 (COVID-19), which manifests with a range of severities from mild illness to life-threatening pneumonia and multi-organ failure. Severe COVID-19 is characterized by an inflammatory signature, including high levels of inflammatory cytokines, alveolar inflammatory infiltrates and vascular microthrombi. Here we show that patients with severe COVID-19 produced a unique serologic signature, including an increased likelihood of IgG1 with afucosylated Fc glycans. This Fc modification on severe acute respiratory syndrome coronavirus 2 IgGs enhanced interactions with the activating Fcγ receptor FcγRIIIa; when incorporated into immune complexes, Fc afucosylation enhanced production of inflammatory cytokines by monocytes, including interleukin-6 and tumor necrosis factor. These results show that disease severity in COVID-19 correlates with the presence of proinflammatory IgG Fc structures, including afucosylated IgG1.


Subject(s)
COVID-19/immunology , Cytokines/immunology , Immunoglobulin G/immunology , Receptors, IgG/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , COVID-19/metabolism , COVID-19/virology , Child , Cytokines/metabolism , Female , Glycosylation , Humans , Immunoglobulin G/metabolism , Interleukin-6 , Male , Middle Aged , Receptors, IgG/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Severity of Illness Index , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
4.
Cell ; 173(2): 417-429.e10, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29625056

ABSTRACT

Antibodies to the hemagglutinin (HA) and neuraminidase (NA) glycoproteins are the major mediators of protection against influenza virus infection. Here, we report that current influenza vaccines poorly display key NA epitopes and rarely induce NA-reactive B cells. Conversely, influenza virus infection induces NA-reactive B cells at a frequency that approaches (H1N1) or exceeds (H3N2) that of HA-reactive B cells. NA-reactive antibodies display broad binding activity spanning the entire history of influenza A virus circulation in humans, including the original pandemic strains of both H1N1 and H3N2 subtypes. The antibodies robustly inhibit the enzymatic activity of NA, including oseltamivir-resistant variants, and provide robust prophylactic protection, including against avian H5N1 viruses, in vivo. When used therapeutically, NA-reactive antibodies protected mice from lethal influenza virus challenge even 48 hr post infection. These findings strongly suggest that influenza vaccines should be optimized to improve targeting of NA for durable and broad protection against divergent influenza strains.


Subject(s)
Antibodies, Monoclonal/immunology , Influenza, Human/pathology , Neuraminidase/immunology , Viral Proteins/immunology , Animals , Birds , Cross Reactions , Epitopes/immunology , Female , HEK293 Cells , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Influenza A Virus, H1N1 Subtype/enzymology , Influenza A Virus, H3N2 Subtype/enzymology , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza, Human/immunology , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/prevention & control
5.
Nat Immunol ; 24(4): 570-572, 2023 04.
Article in English | MEDLINE | ID: mdl-36959294

Subject(s)
Antibodies
6.
Immunity ; 54(6): 1290-1303.e7, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34022127

ABSTRACT

Dissecting the evolution of memory B cells (MBCs) against SARS-CoV-2 is critical for understanding antibody recall upon secondary exposure. Here, we used single-cell sequencing to profile SARS-CoV-2-reactive B cells in 38 COVID-19 patients. Using oligo-tagged antigen baits, we isolated B cells specific to the SARS-CoV-2 spike, nucleoprotein (NP), open reading frame 8 (ORF8), and endemic human coronavirus (HCoV) spike proteins. SARS-CoV-2 spike-specific cells were enriched in the memory compartment of acutely infected and convalescent patients several months post symptom onset. With severe acute infection, substantial populations of endemic HCoV-reactive antibody-secreting cells were identified and possessed highly mutated variable genes, signifying preexisting immunity. Finally, MBCs exhibited pronounced maturation to NP and ORF8 over time, especially in older patients. Monoclonal antibodies against these targets were non-neutralizing and non-protective in vivo. These findings reveal antibody adaptation to non-neutralizing intracellular antigens during infection, emphasizing the importance of vaccination for inducing neutralizing spike-specific MBCs.


Subject(s)
Antibodies, Viral/immunology , Antibody Formation/immunology , B-Lymphocytes/immunology , COVID-19/immunology , Host-Pathogen Interactions/immunology , Immunodominant Epitopes/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibody Formation/genetics , B-Lymphocytes/metabolism , Computational Biology/methods , Cross Reactions/immunology , Epitope Mapping , Female , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions/genetics , Humans , Immunodominant Epitopes/genetics , Immunologic Memory , Male , Neutralization Tests , Single-Cell Analysis/methods , Spike Glycoprotein, Coronavirus/immunology , Transcriptome
7.
Cell ; 163(3): 545-8, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26496601

ABSTRACT

In this Minireview, we discuss basic aspects of germinal center biology in the context of immunity to influenza infection and speculate on how the simultaneous evolutionary races of virus and antibody may impact our efforts to design a universal influenza vaccine.


Subject(s)
Germinal Center/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Animals , Antibody Formation , Humans , Influenza, Human/prevention & control
8.
Nat Immunol ; 23(10): 1403-1404, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36168064
9.
Immunity ; 53(6): 1230-1244.e5, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33096040

ABSTRACT

Polyreactivity is the ability of a single antibody to bind to multiple molecularly distinct antigens and is a common feature of antibodies induced upon pathogen exposure. However, little is known about the role of polyreactivity during anti-influenza virus antibody responses. By analyzing more than 500 monoclonal antibodies (mAbs) derived from B cells induced by numerous influenza virus vaccines and infections, we found mAbs targeting conserved neutralizing influenza virus hemagglutinin epitopes were polyreactive. Polyreactive mAbs were preferentially induced by novel viral exposures due to their broad viral binding breadth. Polyreactivity augmented mAb viral binding strength by increasing antibody flexibility, allowing for adaption to imperfectly conserved epitopes. Lastly, we found affinity-matured polyreactive B cells were typically derived from germline polyreactive B cells that were preferentially selected to participate in B cell responses over time. Together, our data reveal that polyreactivity is a beneficial feature of antibodies targeting conserved epitopes.


Subject(s)
B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/immunology , Orthomyxoviridae/immunology , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibody Affinity , Broadly Neutralizing Antibodies/genetics , Cross Reactions , Epitopes, B-Lymphocyte/immunology , Genes, Immunoglobulin , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Orthomyxoviridae/classification , Protein Domains , Somatic Hypermutation, Immunoglobulin
10.
Nature ; 602(7896): 314-320, 2022 02.
Article in English | MEDLINE | ID: mdl-34942633

ABSTRACT

Broadly neutralizing antibodies that target epitopes of haemagglutinin on the influenza virus have the potential to provide near universal protection against influenza virus infection1. However, viral mutants that escape broadly neutralizing antibodies have been reported2,3. The identification of broadly neutralizing antibody classes that can neutralize viral escape mutants is critical for universal influenza virus vaccine design. Here we report a distinct class of broadly neutralizing antibodies that target a discrete membrane-proximal anchor epitope of the haemagglutinin stalk domain. Anchor epitope-targeting antibodies are broadly neutralizing across H1 viruses and can cross-react with H2 and H5 viruses that are a pandemic threat. Antibodies that target this anchor epitope utilize a highly restricted repertoire, which encodes two public binding motifs that make extensive contacts with conserved residues in the fusion peptide. Moreover, anchor epitope-targeting B cells are common in the human memory B cell repertoire and were recalled in humans by an oil-in-water adjuvanted chimeric haemagglutinin vaccine4,5, which is a potential universal influenza virus vaccine. To maximize protection against seasonal and pandemic influenza viruses, vaccines should aim to boost this previously untapped source of broadly neutralizing antibodies that are widespread in the human memory B cell pool.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , Epitopes , Hemagglutinin Glycoproteins, Influenza Virus , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , Epitopes/chemistry , Epitopes/immunology , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Memory B Cells/immunology
11.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38828640

ABSTRACT

Cell hashing, a nucleotide barcode-based method that allows users to pool multiple samples and demultiplex in downstream analysis, has gained widespread popularity in single-cell sequencing due to its compatibility, simplicity, and cost-effectiveness. Despite these advantages, the performance of this method remains unsatisfactory under certain circumstances, especially in experiments that have imbalanced sample sizes or use many hashtag antibodies. Here, we introduce a hybrid demultiplexing strategy that increases accuracy and cell recovery in multi-sample single-cell experiments. This approach correlates the results of cell hashing and genetic variant clustering, enabling precise and efficient cell identity determination without additional experimental costs or efforts. In addition, we developed HTOreader, a demultiplexing tool for cell hashing that improves the accuracy of cut-off calling by avoiding the dominance of negative signals in experiments with many hashtags or imbalanced sample sizes. When compared to existing methods using real-world datasets, this hybrid approach and HTOreader consistently generate reliable results with increased accuracy and cell recovery.


Subject(s)
Single-Cell Analysis , Single-Cell Analysis/methods , Humans , Algorithms , Software , High-Throughput Nucleotide Sequencing/methods , Computational Biology/methods
12.
Proc Natl Acad Sci U S A ; 120(35): e2216521120, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37603748

ABSTRACT

The constant domains of antibodies are important for effector functions, but less is known about how they can affect binding and neutralization of viruses. Here, we evaluated a panel of human influenza virus monoclonal antibodies (mAbs) expressed as IgG1, IgG2, or IgG3. We found that many influenza virus-specific mAbs have altered binding and neutralization capacity depending on the IgG subclass encoded and that these differences result from unique bivalency capacities of the subclasses. Importantly, subclass differences in antibody binding and neutralization were greatest when the affinity for the target antigen was reduced through antigenic mismatch. We found that antibodies expressed as IgG3 bound and neutralized antigenically drifted influenza viruses more effectively. We obtained similar results using a panel of SARS-CoV-2-specific mAbs and the antigenically advanced B.1.351 and BA.1 strains of SARS-CoV-2. We found that a licensed therapeutic mAb retained neutralization breadth against SARS-CoV-2 variants when expressed as IgG3, but not IgG1. These data highlight that IgG subclasses are not only important for fine-tuning effector functionality but also for binding and neutralization of antigenically drifted viruses.


Subject(s)
Antibodies, Viral , COVID-19 , Immunoglobulin G , Influenza, Human , Immunoglobulin G/immunology , Antibodies, Viral/immunology , Immunoglobulin Fab Fragments/immunology , Antibody Formation , Influenza, Human/immunology , Influenza, Human/virology , COVID-19/immunology , COVID-19/virology , Immunoglobulin Class Switching , SARS-CoV-2/physiology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Humans , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A virus/physiology
13.
PLoS Pathog ; 19(8): e1011603, 2023 08.
Article in English | MEDLINE | ID: mdl-37624867

ABSTRACT

Antibodies result from the competition of B cell lineages evolving under selection for improved antigen recognition, a process known as affinity maturation. High-affinity antibodies to pathogens such as HIV, influenza, and SARS-CoV-2 are frequently reported to arise from B cells whose receptors, the precursors to antibodies, are encoded by particular immunoglobulin alleles. This raises the possibility that the presence of particular germline alleles in the B cell repertoire is a major determinant of the quality of the antibody response. Alternatively, initial differences in germline alleles' propensities to form high-affinity receptors might be overcome by chance events during affinity maturation. We first investigate these scenarios in simulations: when germline-encoded fitness differences are large relative to the rate and effect size variation of somatic mutations, the same germline alleles persistently dominate the response of different individuals. In contrast, if germline-encoded advantages can be easily overcome by subsequent mutations, allele usage becomes increasingly divergent over time, a pattern we then observe in mice experimentally infected with influenza virus. We investigated whether affinity maturation might nonetheless strongly select for particular amino acid motifs across diverse genetic backgrounds, but we found no evidence of convergence to similar CDR3 sequences or amino acid substitutions. These results suggest that although germline-encoded specificities can lead to similar immune responses between individuals, diverse evolutionary routes to high affinity limit the genetic predictability of responses to infection and vaccination.


Subject(s)
COVID-19 , Animals , Mice , COVID-19/genetics , SARS-CoV-2/genetics , Antibodies , Alleles , Germ Cells
14.
Trends Immunol ; 43(5): 343-354, 2022 05.
Article in English | MEDLINE | ID: mdl-35393268

ABSTRACT

The overarching logos of mammalian memory B cells (MBCs) is to cache the potential for enhanced antibody production upon secondary exposure to cognate antigenic determinants. However, substantial phenotypic diversity has been identified across MBCs, hinting at the existence of unique origins or subfunctions within this compartment. Herein, we discuss recent advancements in human circulatory MBC subphenotyping as driven by high-throughput cell surface marker analysis and other approaches, as well as speculated and substantiated subfunctions. With this in mind, we hypothesize that the relative induction of specific circulatory MBC subsets might be used as a biomarker for optimally durable vaccines and inform vaccination strategies to subvert antigenic imprinting in the context of highly mutable pathogens such as influenza virus or SARS-CoV-2.


Subject(s)
COVID-19 , Vaccines , Animals , Antibodies, Viral , B-Lymphocytes , Humans , Immunologic Memory , Mammals , Memory B Cells , SARS-CoV-2 , Vaccination
15.
Immunity ; 44(3): 518-520, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26982359

ABSTRACT

Germinal center (GC) responses are required for the generation of high-affinity antigen-specific B cells. Kuraoka et al. (2016) explore the importance of inter-clonal competition in GC affinity maturation through the use of complex immunizing antigens and discover an unexpected increase in clonal diversity over the course of the response.


Subject(s)
B-Lymphocytes/physiology , Clonal Selection, Antigen-Mediated , Germinal Center/immunology , Receptors, Antigen, B-Cell/metabolism , Animals , Female , Humans
16.
Brief Bioinform ; 23(2)2022 03 10.
Article in English | MEDLINE | ID: mdl-35183062

ABSTRACT

Artificial mutagenesis and protein engineering have laid the foundation for antigenic characterization and universal vaccine design for influenza viruses. However, many methods used in this process require manual sequence editing and protein expression, limiting their efficiency and utility in high-throughput applications. More streamlined in silico tools allowing researchers to properly analyze and visualize influenza viral protein sequences with accurate nomenclature are necessary to improve antigen design and productivity. To address this need, we developed Librator, a system for analyzing and designing custom protein sequences of influenza virus hemagglutinin (HA) and neuraminidase (NA) glycoproteins. Within Librator's graphical interface, users can easily interrogate viral sequences and phylogenies, visualize antigen structures and conservation, mutate target residues and design custom antigens. Librator also provides optimized fragment design for Gibson Assembly of HA and NA expression constructs based on peptide conservation of all historical HA and NA sequences, ensuring fragments are reusable and compatible across related subtypes, thereby promoting reagent savings. Finally, the program facilitates single-cell immune profiling, epitope mapping of monoclonal antibodies and mosaic protein design. Using Librator-based antigen construction, we demonstrate that antigenicity can be readily transferred between HA molecules of H3, but not H1, lineage viruses. Altogether, Librator is a valuable tool for analyzing influenza virus HA and NA proteins and provides an efficient resource for optimizing recombinant influenza antigen synthesis.


Subject(s)
Influenza Vaccines , Influenza, Human , Orthomyxoviridae , Antibodies, Viral , Antigens, Viral/genetics , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Neuraminidase/genetics , Orthomyxoviridae/genetics
17.
Immunity ; 43(3): 541-53, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26320660

ABSTRACT

Immunoglobulin A (IgA) is prominently secreted at mucosal surfaces and coats a fraction of the intestinal microbiota. However, the commensal bacteria bound by IgA are poorly characterized and the type of humoral immunity they elicit remains elusive. We used bacterial flow cytometry coupled with 16S rRNA gene sequencing (IgA-Seq) in murine models of immunodeficiency to identify IgA-bound bacteria and elucidate mechanisms of commensal IgA targeting. We found that residence in the small intestine, rather than bacterial identity, dictated induction of specific IgA. Most commensals elicited strong T-independent (TI) responses that originated from the orphan B1b lineage and from B2 cells, but excluded natural antibacterial B1a specificities. Atypical commensals including segmented filamentous bacteria and Mucispirillum evaded TI responses but elicited T-dependent IgA. These data demonstrate exquisite targeting of distinct commensal bacteria by multiple layers of humoral immunity and reveal a specialized function of the B1b lineage in TI mucosal IgA responses.


Subject(s)
Adaptive Immunity/immunology , Bacteria/immunology , Immunity, Humoral/immunology , Immunity, Innate/immunology , Immunoglobulin A/immunology , Intestine, Small/immunology , Adaptive Immunity/genetics , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Bacteria/classification , Bacteria/genetics , Colon/immunology , Colon/metabolism , Colon/microbiology , Flow Cytometry , Genetic Variation/immunology , Humans , Immunity, Humoral/genetics , Immunity, Innate/genetics , Immunoglobulin A/metabolism , Intestine, Small/metabolism , Intestine, Small/microbiology , Mice, Inbred C57BL , Mice, Knockout , RNA, Ribosomal, 16S/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
18.
Eur J Appl Physiol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831140

ABSTRACT

PURPOSE: Chewing duration can affect food particle size, gastric processing, and postprandial glycemia, but these effects have not been investigated with exercise. This study examined how the chewing duration of a food bar impacts glycemic and metabolic responses, gastrointestinal (GI) symptoms, psychological affect, and performance during endurance running. METHODS: This randomized, unblinded, crossover study had 15 males (35.2 ± 7.4 years, VO2peak: 56.1 ± 5.2 ml/kg/min) attend three laboratory visits. Visit 1 required a VO2peak test, 10 min familiarization run at 60% VO2peak, and familiarization time-to-exhaustion (TTE) test (10 min at 90% VO2peak, followed by TTE at 100% VO2peak). Visits 2 and 3 consisted of a 60 min run at 60% VO2peak, followed by TTE testing. Participants were fed 45 g of a bar (180 kcal, 4 g fat, 33 g carbohydrate, 3 g protein, 1 g fiber) in 9 g servings 30 min before running, and 27 g of bar in 9 g servings at three timepoints during the 60 min run. Participants consumed the servings in 20 (20CHEW) or 40 (40CHEW) masticatory cycles, at 1 chew/second. Outcomes included blood glucose, substrate use, GI symptoms, perceived exertion (RPE), overall feeling, and TTE. RESULTS: Post-prandial blood glucose, GI symptoms, and RPE increased over time, but there were no significant between-condition or condition-by-time effects. TTE showed no significant between-condition effect (20CHEW: 288 ± 133 s; 40CHEW: 335 ± 299 s; p = 0.240). Overall feeling demonstrated a time-by-condition effect (p = 0.006), suggesting possible better maintenance over time with 40CHEW. CONCLUSION: Cumulatively, the results suggest that extended chewing minimally impacts physiology, perceptions, and performance during 60 min moderate-intensity running.

19.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Article in English | MEDLINE | ID: mdl-33593910

ABSTRACT

In this study, we utilized a panel of human immunoglobulin (Ig) IgA monoclonal antibodies isolated from the plasmablasts of eight donors after 2014/2015 influenza virus vaccination (Fluarix) to study the binding and functional specificities of this isotype. In this cohort, isolated IgA monoclonal antibodies were primarily elicited against the hemagglutinin protein of the H1N1 component of the vaccine. To compare effector functionalities, an H1-specific subset of antibodies targeting distinct epitopes were expressed as monomeric, dimeric, or secretory IgA, as well as in an IgG1 backbone. When expressed with an IgG Fc domain, all antibodies elicited Fc-effector activity in a primary polymorphonuclear cell-based assay which differs from previous observations that found only stalk-specific antibodies activate the low-affinity FcγRIIIa. However, when expressed with IgA Fc domains, only antibodies targeting the stalk domain showed Fc-effector activity in line with these previous findings. To identify the cause of this discrepancy, we then confirmed that IgG signaling through the high-affinity FcγI receptor was not restricted to stalk epitopes. Since no corresponding high-affinity Fcα receptor exists, the IgA repertoire may therefore be limited to stalk-specific epitopes in the context of Fc receptor signaling.


Subject(s)
Epitopes/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Immunoglobulin A/immunology , Immunoglobulin Fc Fragments/immunology , Influenza A Virus, H1N1 Subtype/immunology , Adult , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antibody Affinity , Binding Sites, Antibody , Chick Embryo , Cryoelectron Microscopy , Female , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Influenza Vaccines/immunology , Male , Neutrophils/immunology , Neutrophils/virology
20.
J Community Psychol ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733600

ABSTRACT

This study examined the experiences returning citizens (RCs) have in participating in different reentry programs and how these experiences may lead to improved well-being and quality of life (QOL). We conducted 14 semi-structured interviews with RCs participating in employment-oriented reentry programs. The interviews focused on participants' reentry programming experience and areas affecting their well-being (e.g., housing, education, financial stability). QOL was enhanced for RCs when they were able to access stable housing, develop supportive relationships, have a job that permitted them the resources needed to live independently, and increase their perceptions of self-efficacy and social capital. While reentry programs maintain a focus on employment for RCs, housing, healthy relationships, and opportunities for increasing self-efficacy and social capital are tied to well-being and QOL among RCs. Reentry programs have the potential to influence a variety of factors at multiple levels that shape well-being and QOL, and in turn employment and recidivism, among RCs.

SELECTION OF CITATIONS
SEARCH DETAIL