Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int J Comput Assist Radiol Surg ; 19(5): 841-849, 2024 May.
Article in English | MEDLINE | ID: mdl-38704793

ABSTRACT

PURPOSE: Deep learning-based analysis of micro-ultrasound images to detect cancerous lesions is a promising tool for improving prostate cancer (PCa) diagnosis. An ideal model should confidently identify cancer while responding with appropriate uncertainty when presented with out-of-distribution inputs that arise during deployment due to imaging artifacts and the biological heterogeneity of patients and prostatic tissue. METHODS: Using micro-ultrasound data from 693 patients across 5 clinical centers who underwent micro-ultrasound guided prostate biopsy, we train and evaluate convolutional neural network models for PCa detection. To improve robustness to out-of-distribution inputs, we employ and comprehensively benchmark several state-of-the-art uncertainty estimation methods. RESULTS: PCa detection models achieve performance scores up to 76 % average AUROC with a 10-fold cross validation setup. Models with uncertainty estimation obtain expected calibration error scores as low as 2 % , indicating that confident predictions are very likely to be correct. Visualizations of the model output demonstrate that the model correctly identifies healthy versus malignant tissue. CONCLUSION: Deep learning models have been developed to confidently detect PCa lesions from micro-ultrasound. The performance of these models, determined from a large and diverse dataset, is competitive with visual analysis of magnetic resonance imaging, the clinical benchmark to identify PCa lesions for targeted biopsy. Deep learning with micro-ultrasound should be further studied as an avenue for targeted prostate biopsy.


Subject(s)
Deep Learning , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Prostatic Neoplasms/diagnosis , Image-Guided Biopsy/methods , Ultrasonography/methods , Neural Networks, Computer , Ultrasonography, Interventional/methods
2.
Article in English | MEDLINE | ID: mdl-37478033

ABSTRACT

Deep learning-based analysis of high-frequency, high-resolution micro-ultrasound data shows great promise for prostate cancer (PCa) detection. Previous approaches to analysis of ultrasound data largely follow a supervised learning (SL) paradigm. Ground truth labels for ultrasound images used for training deep networks often include coarse annotations generated from the histopathological analysis of tissue samples obtained via biopsy. This creates inherent limitations on the availability and quality of labeled data, posing major challenges to the success of SL methods. However, unlabeled prostate ultrasound data are more abundant. In this work, we successfully apply self-supervised representation learning to micro-ultrasound data. Using ultrasound data from 1028 biopsy cores of 391 subjects obtained in two clinical centers, we demonstrate that feature representations learned with this method can be used to classify cancer from noncancer tissue, obtaining an AUROC score of 91% on an independent test set. To the best of our knowledge, this is the first successful end-to-end self-SL (SSL) approach for PCa detection using ultrasound data. Our method outperforms baseline SL approaches, generalizes well between different data centers, and scales well in performance as more unlabeled data are added, making it a promising approach for future research using large volumes of unlabeled data. Our code is publicly available at https://www.github.com/MahdiGilany/SSL_micro_ultrasound.


Subject(s)
Prostate , Prostatic Neoplasms , Male , Humans , Prostate/diagnostic imaging , Prostatic Neoplasms/diagnostic imaging , Ultrasonography/methods , Supervised Machine Learning
3.
Article in English | MEDLINE | ID: mdl-38741937

ABSTRACT

Introduction: Missions beyond low Earth orbit (LEO) will expose astronauts to ionizing radiation (IR) in the form of solar energetic particles (SEP) and galactic cosmic rays (GCR) including high atomic number and energy (HZE) nuclei. The gastrointestinal (GI) system is documented to be highly radiosensitive with even relatively low dose IR exposures capable of inducing mucosal lesions and disrupting epithelial barrier function. IR is also an established risk factor for colorectal cancer (CRC) with several studies examining long-term GI effects of SEP/GCR exposure using tumor-prone APC mouse models. Studies of acute short-term effects of modeled space radiation exposures in wildtype mouse models are more limited and necessary to better define charged particle-induced GI pathologies and test novel medical countermeasures (MCMs) to promote astronaut safety. Methods: In this study, we performed ground-based studies where male and female C57BL/6J mice were exposed to γ-rays, 50 MeV protons, or 1 GeV/n Fe-56 ions at the NASA Space Radiation Laboratory (NSRL) with histology and immunohistochemistry endpoints measured in the first 24 h post-irradiation to define immediate SEP/GCR-induced GI alterations. Results: Our data show that unlike matched γ-ray controls, acute exposures to protons and iron ions disrupts intestinal function and induces mucosal lesions, vascular congestion, epithelial barrier breakdown, and marked enlargement of mucosa-associated lymphoid tissue. We also measured kinetics of DNA double-strand break (DSB) repair using gamma-H2AX- specific antibodies and apoptosis via TUNEL labeling, noting the induction and disappearance of extranuclear cytoplasmic DNA marked by gamma-H2AX only in the charged particle-irradiated samples. We show that 18 h pre-treatment with curcumin-loaded nanolipoprotein particles (cNLPs) delivered via IV injection reduces DSB-associated foci levels and apoptosis and restore crypt villi lengths. Discussion: These data improve our understanding of physiological alterations in the GI tract immediately following exposures to modeled space radiations and demonstrates effectiveness of a promising space radiation MCM.

4.
Radiat Res ; 197(3): 298-313, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34910217

ABSTRACT

We report on effects of low-dose exposures of accelerated protons delivered at high-dose rate (HDR) or a simulated solar-particle event (SPE) like low-dose rate (LDR) on immediate DNA damage induction and processing, survival and in vitro transformation of low passage NFF28 apparently normal primary human fibroblasts. Cultures were exposed to 50, 100 and 1,000 MeV monoenergetic protons in the Bragg entrance/plateau region and cesium-137 γ rays at 20 Gy/h (HDR) or 1 Gy/h (LDR). DNA double-strand breaks (DSB) and clustered DNA damages (containing oxypurines and abasic sites) were measured using transverse alternating gel electrophoresis (TAFE) and immunocytochemical detection/scoring of colocalized γ-H2AX pS139/53BP1 foci, with their induction being linear energy transfer (LET) dependent and dose-rate sparing observed for the different damage classes. Relative biological effectiveness (RBE) values for cell survival after proton irradiation at both dose-rates ranged from 0.61-0.73. Transformation RBE values were dose-rate dependent, ranging from ∼1.8-3.1 and ∼0.6-1.0 at low doses (≤30 cGy) for HDR and LDR irradiations, respectively. However peak transformation frequencies were significantly higher (1.3-7.3-fold) for higher doses of 0.5-1 Gy delivered at SPE-like LDR. Cell survival and transformation frequencies measured after low-dose 500 MeV/n He-4, 290 MeV/n C-12 and 600 MeV/n Si-28 ion irradiations also showed an inverse dose-rate effect for transformation at SPE-like LDR. This work demonstrates the existence of inverse dose-rate effects for proton and light-ion-induced postirradiation cell survival and in vitro transformation for space mission-relevant doses and dose rates.


Subject(s)
DNA Damage , Protons , Cell Survival/radiation effects , Dose-Response Relationship, Radiation , Fibroblasts/radiation effects , Humans , Ions , Relative Biological Effectiveness
5.
Radiat Res ; 197(2): 101-112, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34673986

ABSTRACT

131I-metaiodobenzylguanidine (131I-mIBG) is a targeted radiation therapy developed for the treatment of advanced neuroblastoma. We have previously shown that this patient cohort can be used to predict absorbed dose associated with early 131I exposure, 72 h after treatment. We now expand these studies to identify gene expression differences associated with 131I-mIBG exposure 15 days after treatment. Total RNA from peripheral blood lymphocytes was isolated from 288 whole blood samples representing 59 relapsed or refractory neuroblastoma patients before and after 131I-mIBG treatment. We found that several transcripts predictive of early exposure returned to baseline levels by day 15, however, selected transcripts did not return to baseline. At 72 h, all 17 selected pathway-specific transcripts were differentially expressed. Transcripts CDKN1A (P < 0.000001), FDXR (P < 0.000001), DDB2 (P < 0.000001), and BBC3 (P < 0.000001) showed the highest up-regulation at 72 h after 131I-mIBG exposure, with mean log2 fold changes of 2.55, 2.93, 1.86 and 1.85, respectively. At day 15 after 131I-mIBG, 11 of the 17 selected transcripts were differentially expressed, with XPC, STAT5B, PRKDC, MDM2, POLH, IGF1R, and SGK1 displaying significant up-regulation at 72 h and significant down-regulation at day 15. Interestingly, transcripts FDXR (P = 0.01), DDB2 (P = 0.03), BCL2 (P = 0.003), and SESN1 (P < 0.0003) maintained differential expression 15 days after 131I-mIBG treatment. These results suggest that transcript levels for DNA repair, apoptosis, and ionizing radiation-induced cellular stress are still changing by 15 days after 131I-mIBG treatment. Our studies showcase the use of biodosimetry gene expression panels as predictive biomarkers following early (72 h) and late (15 days) internal 131I exposure. Our findings also demonstrate the utility of our transcript panel to differentiate exposed from non-exposed individuals up to 15 days after exposure from internal 131I.


Subject(s)
3-Iodobenzylguanidine
6.
Nanomaterials (Basel) ; 12(20)2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36296810

ABSTRACT

Curcumin, a natural polyphenol derived from the spice turmeric (Curcuma longa), contains antioxidant, anti-inflammatory, and anti-cancer properties. However, curcumin bioavailability is inherently low due to poor water solubility and rapid metabolism. Here, we further refined for use curcumin incorporated into "biomimetic" nanolipoprotein particles (cNLPs) consisting of a phospholipid bilayer surrounded by apolipoprotein A1 and amphipathic polymer scaffolding moieties. Our cNLP formulation improves the water solubility of curcumin over 30-fold and produces nanoparticles with ~350 µg/mL total loading capacity for downstream in vitro and in vivo applications. We found that cNLPs were well tolerated in AG05965/MRC-5 human primary lung fibroblasts compared to cultures treated with curcumin solubilized in DMSO (curDMSO). Pre-treatment with cNLPs of quiescent G0/G1-phase MRC-5 cultures improved cell survival following 137Cs gamma ray irradiations, although this finding was reversed in asynchronously cycling log-phase cell cultures. These findings may be useful for establishing cNLPs as a method to improve curcumin bioavailability for administration as a radioprotective and/or radiomitigative agent against ionizing radiation (IR) exposures in non-cycling cells or as a radiosensitizing agent for actively dividing cell populations, such as tumors.

7.
iScience ; 25(12): 105546, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36465103

ABSTRACT

During evolution, humans are acclimatized to the stresses of natural radiation and circadian rhythmicity. Radiosensitivity of mammalian cells varies in the circadian period and adaptive radioprotection can be induced by pre-exposure to low-level radiation (LDR). It is unclear, however, if clock proteins participate in signaling LDR radioprotection. Herein, we demonstrate that radiosensitivity is increased in mice with the deficient Period 2 gene (Per2def) due to impaired DNA repair and mitochondrial function in progenitor bone marrow hematopoietic stem cells and monocytes. Per2 induction and radioprotection are also identified in LDR-treated Per2wt mouse cells and in human skin (HK18) and breast (MCF-10A) epithelial cells. LDR-boosted PER2 interacts with pGSK3ß(S9) which activates ß-catenin and the LEF/TCF mediated gene transcription including Per2 and genes involved in DNA repair and mitochondrial functions. This study demonstrates that PER2 plays an active role in LDR adaptive radioprotection via PER2/pGSK3ß/ß-catenin/Per2 loop, a potential target for protecting normal cells from radiation injury.

8.
Nat Commun ; 13(1): 1511, 2022 03 21.
Article in English | MEDLINE | ID: mdl-35314680

ABSTRACT

Glioblastoma multiforme (GBM) remains the top challenge to radiotherapy with only 25% one-year survival after diagnosis. Here, we reveal that co-enhancement of mitochondrial fatty acid oxidation (FAO) enzymes (CPT1A, CPT2 and ACAD9) and immune checkpoint CD47 is dominant in recurrent GBM patients with poor prognosis. A glycolysis-to-FAO metabolic rewiring is associated with CD47 anti-phagocytosis in radioresistant GBM cells and regrown GBM after radiation in syngeneic mice. Inhibition of FAO by CPT1 inhibitor etomoxir or CRISPR-generated CPT1A-/-, CPT2-/-, ACAD9-/- cells demonstrate that FAO-derived acetyl-CoA upregulates CD47 transcription via NF-κB/RelA acetylation. Blocking FAO impairs tumor growth and reduces CD47 anti-phagocytosis. Etomoxir combined with anti-CD47 antibody synergizes radiation control of regrown tumors with boosted macrophage phagocytosis. These results demonstrate that enhanced fat acid metabolism promotes aggressive growth of GBM with CD47-mediated immune evasion. The FAO-CD47 axis may be targeted to improve GBM control by eliminating the radioresistant phagocytosis-proofing tumor cells in GBM radioimmunotherapy.


Subject(s)
CD47 Antigen , Glioblastoma , Animals , CD47 Antigen/metabolism , Cell Line, Tumor , Fatty Acids , Glioblastoma/genetics , Glioblastoma/radiotherapy , Humans , Immune Evasion , Mice , Phagocytosis
9.
Curator (N Y) ; 64(3): 487-504, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34230675

ABSTRACT

The impact of the COVID-19 Crisis on museums and galleries has been paramount, with the sector taking on long-term recovery plans. This paper examines this crisis in the context of temporary exhibition programmes of UK museums, studying online content for 21 museums with exhibitions due to open between March and June 2020. Analysis was conducted, noting how COVID was considered, how content was presented, and discussing the emerging themes of access, embodiment, and human connection. In considering these results in the context of wider digital heritage literature, several questions are raised in terms of how digital content is conceptualised, presented, and valued. At a crucial turning point in the sector, these aspects will need to be considered as museums and galleries continue to adapt in light of a post-COVID world where practices, both digital and physical, will undoubtedly shift.

10.
Front Oncol ; 11: 735940, 2021.
Article in English | MEDLINE | ID: mdl-34513712

ABSTRACT

Significant opportunities remain for pharmacologically enhancing the clinical effectiveness of proton and carbon ion-based radiotherapies to achieve both tumor cell radiosensitization and normal tissue radioprotection. We investigated whether pretreatment with the hydroxamate-based histone deacetylase inhibitors (HDACi) SAHA (vorinostat), M344, and PTACH impacts radiation-induced DNA double-strand break (DSB) induction and repair, cell killing, and transformation (acquisition of anchorage-independent growth in soft agar) in human normal and tumor cell lines following gamma ray and light ion irradiation. Treatment of normal NFF28 primary fibroblasts and U2OS osteosarcoma, A549 lung carcinoma, and U87MG glioma cells with 5-10 µM HDACi concentrations 18 h prior to cesium-137 gamma irradiation resulted in radiosensitization measured by clonogenic survival assays and increased levels of colocalized gamma-H2AX/53BP1 foci induction. We similarly tested these HDACi following irradiation with 200 MeV protons, 290 MeV/n carbon ions, and 350 MeV/n oxygen ions delivered in the Bragg plateau region. Unlike uniform gamma ray radiosensitization, effects of HDACi pretreatment were unexpectedly cell type and ion species-dependent with C-12 and O-16 ion irradiations showing enhanced G0/G1-phase fibroblast survival (radioprotection) and in some cases reduced or absent tumor cell radiosensitization. DSB-associated foci levels were similar for proton-irradiated DMSO control and SAHA-treated fibroblast cultures, while lower levels of induced foci were observed in SAHA-pretreated C-12 ion-irradiated fibroblasts. Fibroblast transformation frequencies measured for all radiation types were generally LET-dependent and lowest following proton irradiation; however, both gamma and proton exposures showed hyperlinear transformation induction at low doses (≤25 cGy). HDACi pretreatments led to overall lower transformation frequencies at low doses for all radiation types except O-16 ions but generally led to higher transformation frequencies at higher doses (>50 cGy). The results of these in vitro studies cast doubt on the clinical efficacy of using HDACi as radiosensitizers for light ion-based hadron radiotherapy given the mixed results on their radiosensitization effectiveness and related possibility of increased second cancer induction.

11.
Mutat Res ; 683(1-2): 91-7, 2010 Jan 05.
Article in English | MEDLINE | ID: mdl-19896956

ABSTRACT

DNA double-strand breaks (DSB) are generally considered the most critical lesion induced by ionizing radiation (IR) and may initiate carcinogenesis and other disease. Using an immunofluorescence assay to simultaneously detect nuclear foci of the phosphorylated forms of histone H2AX and ATM kinase at sites of DSBs, we examined the response of 25 apparently normal and 10 DNA repair-deficient (ATM, ATR, NBN, LIG1, LIG4, and FANCG) primary fibroblast strains irradiated with low doses of (137)Cs gamma-rays. Quiescent G(0)/G(1)-phase cultures were exposed to 5, 10, and 25 cGy and allowed to repair for 24h. The maximum level of IR-induced foci (0.15 foci per cGy, at 10 or 30 min) in the normal strains showed much less inter-individual variation (CV approximately 0.2) than the level of spontaneous foci, which ranged from 0.2-2.6 foci/cell (CV approximately 0.6; mean+/-SD of 1.00+/-0.57). Significantly slower focus formation post-irradiation was observed in seven normal strains, similar to most mutant strains examined. There was variation in repair efficiency measured by the fraction of IR-induced foci remaining 24h post-irradiation, curiously with the strains having slower focus formation showing more efficient repair after 25 cGy. Interestingly, the ranges of spontaneous and residual induced foci levels at 24h in the normal strains were as least as large as those observed for the repair-defective mutant strains. The inter-individual variation in DSB foci parameters observed in cells exposed to low doses of ionizing radiation in this small survey of apparently normal people suggests that hypomorphic genetic variants in genomic maintenance and/or DNA damage signaling and repair genes may contribute to differential susceptibility to cancer induced by environmental mutagens.


Subject(s)
DNA Breaks, Double-Stranded/radiation effects , DNA Repair , Fibroblasts/radiation effects , Ataxia Telangiectasia Mutated Proteins , Cell Cycle Proteins/metabolism , Cell Nucleus/radiation effects , DNA-Binding Proteins/metabolism , Dose-Response Relationship, Radiation , Fibroblasts/metabolism , Fluorescent Antibody Technique , Histones/metabolism , Humans , Protein Serine-Threonine Kinases/metabolism , Radiation, Ionizing , Tumor Suppressor Proteins/metabolism
12.
DNA Repair (Amst) ; 7(3): 515-22, 2008 Mar 01.
Article in English | MEDLINE | ID: mdl-18182331

ABSTRACT

We reported previously that the homologous recombinational repair (HRR)-deficient Chinese hamster mutant cell line irs3 (deficient in the Rad51 paralog Rad51C) showed only a 50% spontaneous frequency of sister chromatid exchange (SCE) as compared to parental wild-type V79 cells. Furthermore, when irradiated with very low doses of alpha particles, SCEs were not induced in irs3 cells, as compared to a prominent bystander effect observed in V79 cells [H. Nagasawa, Y. Peng, P.F. Wilson, Y.C. Lio, D.J. Chen, J.S. Bedford, J.B. Little, Role of homologous recombination in the alpha-particle-induced bystander effect for sister chromatid exchanges and chromosomal aberrations, Radiat. Res. 164 (2005) 141-147]. In the present study, we examined additional Chinese hamster cell lines deficient in the Rad51 paralogs Rad51C, Rad51D, Xrcc2, and Xrcc3 as well as another essential HRR protein, Brca2. Spontaneous SCE frequencies in non-irradiated wild-type cell lines CHO, AA8 and V79 were 0.33SCE/chromosome, whereas two Rad51C-deficient cell lines showed only 0.16SCE/chromosome. Spontaneous SCE frequencies in cell lines defective in Rad51D, Xrcc2, Xrcc3, and Brca2 ranged from 0.23 to 0.33SCE/chromosome, 0-30% lower than wild-type cells. SCEs were induced significantly 20-50% above spontaneous levels in wild-type cells exposed to a mean dose of 1.3mGy of alpha particles (<1% of nuclei traversed by an alpha particle). However, induction of SCEs above spontaneous levels was minimal or absent after alpha-particle irradiation in all of the HRR-deficient cell lines. These data suggest that Brca2 and the Rad51 paralogs contribute to DNA damage repair processes induced in bystander cells (presumably oxidative damage repair in S-phase cells) following irradiation with very low doses of alpha particles.


Subject(s)
Alpha Particles , Bystander Effect , DNA Repair , Recombination, Genetic/radiation effects , Sister Chromatid Exchange/radiation effects , Animals , BRCA2 Protein/physiology , CHO Cells , Cricetinae , Cricetulus , DNA-Binding Proteins/physiology , Dose-Response Relationship, Radiation , Rad51 Recombinase/physiology , S Phase/physiology
13.
DNA Repair (Amst) ; 6(6): 818-29, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17339135

ABSTRACT

Cells from unaffected parents of retinoblastoma (RB) patients were previously shown to be hypersensitive to radiation induced G(1) arrest and cell killing [1]. The hypersensitivity was similar to that reported for cells from ATM heterozygotes. The latter was consistent with a mild DNA DSB rejoining defect which we demonstrated using a gamma-H2AX focus assay after low dose-rate (LDR) irradiation of non-cycling G(0) cells [2,3]. Since neither parent carried the mutant RB allele of the RB heterozygous probands, these results suggested the possibility of an enhanced germline mutation rate, perhaps resulting from some mild defect in genome maintenance. We therefore examined levels of gamma-H2AX foci for cells from these RB parents in this G(0) LDR assay, which reflects the non-homologous end joining (NHEJ) capacity of cells and in a G(2)/M assay, which reflects additional contributions from other G(2)-related damage processing systems. For several of the cell strains parallel radiosensitivity comparisons were made for cell killing and for G(2) chromosomal radiosensitivities. G(0) cells from the RB parents were clearly hypersensitive both in the LDR gamma-H2AX assay, and for cell killing. In addition, cultured fibroblasts from 6 of 15 apparently normal individuals in this study (and one of six in a previous study) were also hypersensitive in the same assays. In the G(2)/M gamma-H2AX assay, the relative sensitivities were similar to those seen in the low dose-rate G(0) assay and tracked with chromosomal radiosensitivity, but some differences were observed.


Subject(s)
DNA Damage , Retinoblastoma/genetics , Cell Cycle , Cell Division , DNA Breaks, Double-Stranded , DNA Repair , Family Health , G2 Phase , Germ-Line Mutation , Histones/metabolism , Humans , Immunohistochemistry , Recombination, Genetic , Resting Phase, Cell Cycle , Time Factors
14.
Radiat Res ; 169(5): 483-94, 2008 May.
Article in English | MEDLINE | ID: mdl-18439048

ABSTRACT

We previously described an enhanced sensitivity for cell killing and G(1)-phase cell cycle arrest after acute gamma irradiation in primary fibroblast strains derived from 14 hereditary-type retinoblastoma family members (both affected RB1(+/-) probands and unaffected RB1(+/+) parents) as well as distinctive gene expression profiles in unirradiated cultures by microarray analyses. In the present study, we measured the colony formation ability of these cells after exposure to continuous low-dose-rate (0.5-8.4 cGy/h) (137)Cs gamma radiation for a 2-week growth period. Fibroblasts from all RB family members (irrespective of RB1 genotype) and from 5 of 18 apparently normal Coriell cell bank controls were significantly more radiosensitive than the remaining apparently normal controls. The average dose rates required to reduce relative survival to 10% and 1% were approximately 3.1 and 4.7 cGy/h for the Coriell control strains with normal radiosensitivity and approximately 1.4 and 2.5 cGy/h for the radiosensitive RB family member and remaining apparently normal Coriell control strains. The finding that a significant proportion of fibroblast strains derived from apparently normal individuals are sensitive to chronic low-dose-rate irradiation indicates such individuals may harbor hypomorphic genetic variants in genomic maintenance and/or DNA repair genes that may likewise predispose them or their children to cancer.


Subject(s)
Health , Radiation Tolerance , Retinoblastoma/pathology , Adult , Cell Proliferation/radiation effects , Cells, Cultured , Child , Child, Preschool , Female , Fibroblasts , Humans , Infant , Infant, Newborn , Male , Middle Aged
15.
Nucleic Acids Res ; 34(5): 1358-68, 2006.
Article in English | MEDLINE | ID: mdl-16522646

ABSTRACT

Homologous recombinational repair (HRR) restores chromatid breaks arising during DNA replication and prevents chromosomal rearrangements that can occur from the misrepair of such breaks. In vertebrates, five Rad51 paralogs are identified that contribute in a nonessential but critical manner to HRR proficiency. We constructed and characterized a knockout of the paralog Rad51D in widely studied CHO cells. The rad51d mutant (clone 51D1) displays sensitivity to a diverse spectrum of induced DNA damage including gamma-rays, ultraviolet (UV)-C radiation, and methyl methanesulfonate (MMS), indicating the broad relevance of HRR to genotoxicity. Spontaneous chromatid breaks/gaps and isochromatid breaks are elevated 3- to 12-fold, but the chromosome number distribution remains unchanged. Most importantly, 51D1 cells exhibit a 12-fold-increased rate of hprt mutation, as well as 4- to 10-fold increased rates of gene amplification at the dhfr and CAD loci, respectively. Xrcc3 irs1SF cells from the same parental CHO line show similarly elevated mutagenesis at these three loci. Collectively, these results confirm the a priori expectation that HRR acts in an error-free manner to repress three classes of genetic alterations (chromosomal aberrations, loss of gene function and increased gene expression), all of which are associated with carcinogenesis.


Subject(s)
Mutagenesis , Rad51 Recombinase/physiology , Recombination, Genetic , Animals , CHO Cells , Cell Survival , Chromosome Aberrations , Cricetinae , Cricetulus , DNA Damage , Gamma Rays , Gene Amplification , Gene Targeting , Hypoxanthine Phosphoribosyltransferase/genetics , Rad51 Recombinase/analysis , Rad51 Recombinase/genetics
16.
Cancer Res ; 66(7): 3428-33, 2006 Apr 01.
Article in English | MEDLINE | ID: mdl-16585164

ABSTRACT

The hereditary form of retinoblastoma (Rb) is associated with a germ line mutation in one RB allele and is characterized by the occurrence of multiple, bilateral Rb tumors and a predisposition to the development of second cancers. In an earlier study, we observed an unexpected hypersensitivity to ionizing radiation in skin fibroblasts derived from unaffected parents of children with hereditary Rb. In at least four of these five families, there was no family history of Rb, indicating a new germ line mutation. We hypothesize that the increased parental cell sensitivity to radiation may reflect the presence of an as yet unrecognized genetic abnormality occurring in one or both parents of children with Rb. In the present study, we use DNA microarray technology to determine whether differences in gene expression profiles occurred in the unaffected parents of patients with hereditary Rb relative to normal individuals. Microarray analyses were validated by quantitative reverse transcription-PCR measurements. A distinct difference was observed in the patterns of gene expression between unaffected Rb parents and normal controls. By use of the prediction analysis for microarrays and principal component analysis methodologies, significant differences between the two groups were identified when as few as nine genes were analyzed. Further study of this phenomenon may offer a new insight into the genetic mechanisms of Rb and perhaps more broadly in cancer biology.


Subject(s)
Parents , Retinal Neoplasms/genetics , Retinoblastoma/genetics , Adult , Child , Fibroblasts/radiation effects , Gene Expression Profiling , Germ-Line Mutation , Humans , Oligonucleotide Array Sequence Analysis , RNA/genetics , Radiation Tolerance , Reverse Transcriptase Polymerase Chain Reaction , Skin/cytology
17.
Stem Cells Dev ; 27(18): 1257-1267, 2018 09 15.
Article in English | MEDLINE | ID: mdl-29901426

ABSTRACT

Astronauts on missions beyond low-Earth orbit are exposed to a hostile environment in which they are continually bombarded with unique high-energy species of radiation, while in conditions of microgravity (µG), which can alter radiation response and immunity. In the present studies, we examined the impact exposing human hematopoietic stem/progenitor cells (HSC) to µG had upon their capacity to repair DNA damage and their ability to generate immune cells critical for mounting an effective antitumor response. To this end, we first treated a human HSC-like cell line with an acute dose of the radiomimetic drug bleomycin, cultured them in normal gravity (1G) or simulated µG, and quantitated double-strand breaks through γ-H2AX foci. Calculating the median fluorescence intensity ratio at 1-to-4 h post-bleomycin revealed a 26% decrease in 1G, but a 20% increase in µG, suggesting that µG compromised HSC DNA damage repair and thus has the potential to enhance the genotoxic effects of space radiation. We next examined whether µG negatively affected the development of dendritic cells (DC), critical regulators of both the innate and acquired arms of the immune system. Primary human HSC were cytokine induced in 1G or µG and analyzed for generation of plasmacytoid (CD123+) and myeloid (CD11c+) DC. HSC cultured in 1G gave rise to significantly higher numbers of both myeloid and plasmacytoid DC than those cultured in µG, suggesting µG impairs production of these critical antigen-presenting cells. Our studies thus indicate that conditions of µG present during spaceflight perturb multiple pathways that could potentially enhance astronaut risk from exposure to space radiation.


Subject(s)
Cell Differentiation/drug effects , Cosmic Radiation/adverse effects , Dendritic Cells/drug effects , Immunity, Innate , Weightlessness/adverse effects , Astronauts , Bleomycin/pharmacology , Cell Differentiation/radiation effects , DNA Damage/drug effects , DNA Damage/radiation effects , DNA Repair/drug effects , DNA Repair/radiation effects , Dendritic Cells/radiation effects , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/radiation effects , Histones/genetics , Humans , Immunity, Innate/drug effects , Immunity, Innate/radiation effects , Stem Cells/drug effects , Stem Cells/radiation effects
18.
Stem Cells Dev ; 27(18): 1237-1256, 2018 09 15.
Article in English | MEDLINE | ID: mdl-29698131

ABSTRACT

The stem cell compartment of the hematopoietic system constitutes one of the most radiosensitive tissues of the body and leukemias represent one of the most frequent radiogenic cancers with short latency periods. As such, leukemias may pose a particular threat to astronauts during prolonged space missions. Control of hematopoiesis is tightly governed by a specialized bone marrow (BM) microenvironment/niche. As such, any environmental insult that damages cells of this niche would be expected to produce pronounced effects on the types and functionality of hematopoietic/immune cells generated. We recently reported that direct exposure of human hematopoietic stem cells (HSC) to simulated solar energetic particle (SEP) and galactic cosmic ray (GCR) radiation dramatically altered the differentiative potential of these cells, and that simulated GCR exposures can directly induce DNA damage and mutations within human HSC, which led to leukemic transformation when these cells repopulated murine recipients. In this study, we performed the first in-depth examination to define changes that occur in mesenchymal stem cells present in the human BM niche following exposure to accelerated protons and iron ions and assess the impact these changes have upon human hematopoiesis. Our data provide compelling evidence that simulated SEP/GCR exposures can also contribute to defective hematopoiesis/immunity through so-called "biological bystander effects" by damaging the stromal cells that comprise the human marrow microenvironment, thereby altering their ability to support normal hematopoiesis.


Subject(s)
Bone Marrow Cells/radiation effects , Cosmic Radiation/adverse effects , Hematopoiesis/radiation effects , Mesenchymal Stem Cells/radiation effects , Bystander Effect , Cellular Microenvironment/radiation effects , DNA Damage/radiation effects , Humans , Iron/chemistry , Protons/adverse effects , Solar Energy
19.
Environ Mol Mutagen ; 48(6): 491-500, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17603793

ABSTRACT

Previous studies using rodent cells indicate that a deficiency in XRCC1 results in reduced single-strand break repair, increased sensitivity to DNA-damaging agents, and elevated levels of sister chromatid exchange (SCE). Epidemiological studies have suggested an association of certain human XRCC1 polymorphisms with genetic instability and cancer susceptibility. However, investigations on the molecular functions of XRCC1 in human cells are limited. To determine the contributions of this nonenzymatic scaffold protein, we suppressed XRCC1 levels in several human cell lines using small interfering RNA (siRNA) technology. We report that XRCC1 down-regulation in HeLa cells leads to a concomitant decrease in the DNA ligase 3 protein level and an impaired nick ligation capacity. In addition, depletion of XRCC1 resulted in a significantly increased sensitivity to the alkylating agent methyl methanesulfonate and the thymidine base analog 5-hydroxymethyl-2'-deoxyuridine, a slightly increased sensitivity to ethyl methanesulfonate and 1,3-bis(2-chloroethyl)-1-nitrosourea, and no change in the response to camptothecin. We also discovered that a 70-80% reduction in XRCC1 protein leads to an elevated level of SCE in both HeLa cells and normal human fibroblasts, but does not affect chromosome aberrations in the diploid fibroblasts. Last, XRCC1 siRNA transfection led to an approximately 40% decrease in the survival of BRCA2-deficient cells, supporting a model whereby the accumulation of unrepaired SSBs leads to the accumulation of cytotoxic DNA double strand breaks following replication fork collapse in cells defective in homologous recombination.


Subject(s)
BRCA2 Protein/metabolism , DNA Damage , DNA-Binding Proteins/genetics , Down-Regulation , Mutagens/toxicity , Mutation/genetics , Sister Chromatid Exchange/drug effects , Animals , CHO Cells , Cell Extracts , Cell Survival/drug effects , Chromosomal Instability/drug effects , Cricetinae , Cricetulus , HeLa Cells , Humans , Methyl Methanesulfonate/toxicity , Micronucleus Tests , Neoplasms/pathology , RNA, Small Interfering/metabolism , Transfection , X-ray Repair Cross Complementing Protein 1
20.
ANZ J Surg ; 77(1-2): 20-3, 2007.
Article in English | MEDLINE | ID: mdl-17295814

ABSTRACT

BACKGROUND: There is some evidence that surgical plume may pose a risk to health professionals, but the risks posed by volatile organic compounds have not been thoroughly investigated. METHODS: The composition of volatile organic compounds in diathermy plume produced during surgery was analysed by selected ion flow tube mass spectrometry. RESULTS: Hydrogen cyanide (3-51 parts per million), acetylene (2-8 parts per million), and 1,3-butadiene (0.15-0.69 parts per million) were identified in the plume. CONCLUSION: Although there is no evidence of adverse health effects from the volatile organic compound in diathermy plume, the evidence that it is safe to breathe this plume is lacking. Therefore, we would recommend the use of smoke evacuators where practical.


Subject(s)
Abdominal Wall/surgery , Electrocoagulation , Mass Spectrometry/methods , Organic Chemicals/analysis , Acetylene/analysis , Butadienes/analysis , Gas Chromatography-Mass Spectrometry , Humans , Hydrogen Cyanide/analysis , Suction , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL