Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Bioinformatics ; 37(12): 1781-1782, 2021 07 19.
Article in English | MEDLINE | ID: mdl-33031499

ABSTRACT

MOTIVATION: Since its launch in 2010, Identifiers.org has become an important tool for the annotation and cross-referencing of Life Science data. In 2016, we established the Compact Identifier (CID) scheme (prefix: accession) to generate globally unique identifiers for data resources using their locally assigned accession identifiers. Since then, we have developed and improved services to support the growing need to create, reference and resolve CIDs, in systems ranging from human readable text to cloud-based e-infrastructures, by providing high availability and low-latency cloud-based services, backed by a high-quality, manually curated resource. RESULTS: We describe a set of services that can be used to construct and resolve CIDs in Life Sciences and beyond. We have developed a new front end for accessing the Identifiers.org registry data and APIs to simplify integration of Identifiers.org CID services with third-party applications. We have also deployed the new Identifiers.org infrastructure in a commercial cloud environment, bringing our services closer to the data. AVAILABILITYAND IMPLEMENTATION: https://identifiers.org.


Subject(s)
Biological Science Disciplines , Cloud Computing , Humans
2.
PLoS Biol ; 15(6): e2001414, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28662064

ABSTRACT

In many disciplines, data are highly decentralized across thousands of online databases (repositories, registries, and knowledgebases). Wringing value from such databases depends on the discipline of data science and on the humble bricks and mortar that make integration possible; identifiers are a core component of this integration infrastructure. Drawing on our experience and on work by other groups, we outline 10 lessons we have learned about the identifier qualities and best practices that facilitate large-scale data integration. Specifically, we propose actions that identifier practitioners (database providers) should take in the design, provision and reuse of identifiers. We also outline the important considerations for those referencing identifiers in various circumstances, including by authors and data generators. While the importance and relevance of each lesson will vary by context, there is a need for increased awareness about how to avoid and manage common identifier problems, especially those related to persistence and web-accessibility/resolvability. We focus strongly on web-based identifiers in the life sciences; however, the principles are broadly relevant to other disciplines.


Subject(s)
Biological Science Disciplines/methods , Computational Biology/methods , Data Mining/methods , Software Design , Software , Biological Science Disciplines/statistics & numerical data , Biological Science Disciplines/trends , Computational Biology/trends , Data Mining/statistics & numerical data , Data Mining/trends , Databases, Factual/statistics & numerical data , Databases, Factual/trends , Forecasting , Humans , Internet
3.
Nucleic Acids Res ; 46(D1): D1248-D1253, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29106614

ABSTRACT

BioModels serves as a central repository of mathematical models representing biological processes. It offers a platform to make mathematical models easily shareable across the systems modelling community, thereby supporting model reuse. To facilitate hosting a broader range of model formats derived from diverse modelling approaches and tools, a new infrastructure for BioModels has been developed that is available at http://www.ebi.ac.uk/biomodels. This new system allows submitting and sharing of a wide range of models with improved support for formats other than SBML. It also offers a version-control backed environment in which authors and curators can work collaboratively to curate models. This article summarises the features available in the current system and discusses the potential benefit they offer to the users over the previous system. In summary, the new portal broadens the scope of models accepted in BioModels and supports collaborative model curation which is crucial for model reproducibility and sharing.


Subject(s)
Data Curation , Models, Biological , Software , Data Collection , Data Curation/methods , Internet , User-Computer Interface
4.
Nucleic Acids Res ; 43(Database issue): D542-8, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25414348

ABSTRACT

BioModels (http://www.ebi.ac.uk/biomodels/) is a repository of mathematical models of biological processes. A large set of models is curated to verify both correspondence to the biological process that the model seeks to represent, and reproducibility of the simulation results as described in the corresponding peer-reviewed publication. Many models submitted to the database are annotated, cross-referencing its components to external resources such as database records, and terms from controlled vocabularies and ontologies. BioModels comprises two main branches: one is composed of models derived from literature, while the second is generated through automated processes. BioModels currently hosts over 1200 models derived directly from the literature, as well as in excess of 140,000 models automatically generated from pathway resources. This represents an approximate 60-fold growth for literature-based model numbers alone, since BioModels' first release a decade ago. This article describes updates to the resource over this period, which include changes to the user interface, the annotation profiles of models in the curation pipeline, major infrastructure changes, ability to perform online simulations and the availability of model content in Linked Data form. We also outline planned improvements to cope with a diverse array of new challenges.


Subject(s)
Databases, Factual , Models, Biological , Computer Simulation , Internet
5.
Bioinformatics ; 31(11): 1875-7, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25638809

ABSTRACT

MOTIVATION: On the semantic web, in life sciences in particular, data is often distributed via multiple resources. Each of these sources is likely to use their own International Resource Identifier for conceptually the same resource or database record. The lack of correspondence between identifiers introduces a barrier when executing federated SPARQL queries across life science data. RESULTS: We introduce a novel SPARQL-based service to enable on-the-fly integration of life science data. This service uses the identifier patterns defined in the Identifiers.org Registry to generate a plurality of identifier variants, which can then be used to match source identifiers with target identifiers. We demonstrate the utility of this identifier integration approach by answering queries across major producers of life science Linked Data. AVAILABILITY AND IMPLEMENTATION: The SPARQL-based identifier conversion service is available without restriction at http://identifiers.org/services/sparql.


Subject(s)
Databases, Factual , Biological Science Disciplines , Internet , Semantics , Systems Integration
6.
Bioinformatics ; 30(9): 1338-9, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24413672

ABSTRACT

MOTIVATION: Resource description framework (RDF) is an emerging technology for describing, publishing and linking life science data. As a major provider of bioinformatics data and services, the European Bioinformatics Institute (EBI) is committed to making data readily accessible to the community in ways that meet existing demand. The EBI RDF platform has been developed to meet an increasing demand to coordinate RDF activities across the institute and provides a new entry point to querying and exploring integrated resources available at the EBI.


Subject(s)
Computational Biology/methods , Databases, Genetic , Academies and Institutes , Biomedical Research , Internet
7.
Bioinformatics ; 28(3): 448-50, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22130590

ABSTRACT

SUMMARY: The article presents an infrastructure for supporting the semantic interoperability of biomedical resources based on the management (storing and inference-based querying) of their ontology-based annotations. This infrastructure consists of: (i) a repository to store and query ontology-based annotations; (ii) a knowledge base server with an inference engine to support the storage of and reasoning over ontologies used in the annotation of resources; (iii) a set of applications and services allowing interaction with the integrated repository and knowledge base. The infrastructure is being prototyped and developed and evaluated by the RICORDO project in support of the knowledge management of biomedical resources, including physiology and pharmacology models and associated clinical data. AVAILABILITY AND IMPLEMENTATION: The RICORDO toolkit and its source code are freely available from http://ricordo.eu/relevant-resources. CONTACT: sarala@ebi.ac.uk.


Subject(s)
Information Storage and Retrieval , Knowledge Bases , Databases, Factual , Heart/physiology , Humans , Programming Languages , Semantics
8.
Bioinformatics ; 27(7): 973-9, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21296753

ABSTRACT

MOTIVATION: The need for the automated computational design of genetic circuits is becoming increasingly apparent with the advent of ever more complex and ambitious synthetic biology projects. Currently, most circuits are designed through the assembly of models of individual parts such as promoters, ribosome binding sites and coding sequences. These low level models are combined to produce a dynamic model of a larger device that exhibits a desired behaviour. The larger model then acts as a blueprint for physical implementation at the DNA level. However, the conversion of models of complex genetic circuits into DNA sequences is a non-trivial undertaking due to the complexity of mapping the model parts to their physical manifestation. Automating this process is further hampered by the lack of computationally tractable information in most models. RESULTS: We describe a method for automatically generating DNA sequences from dynamic models implemented in CellML and Systems Biology Markup Language (SBML). We also identify the metadata needed to annotate models to facilitate automated conversion, and propose and demonstrate a method for the markup of these models using RDF. Our algorithm has been implemented in a software tool called MoSeC. AVAILABILITY: The software is available from the authors' web site http://research.ncl.ac.uk/synthetic_biology/downloads.html.


Subject(s)
Models, Genetic , Molecular Sequence Annotation/methods , Synthetic Biology/methods , Algorithms , Base Sequence , DNA/chemistry , Software , Systems Biology/methods
9.
BMC Bioinformatics ; 12: 22, 2011 Jan 14.
Article in English | MEDLINE | ID: mdl-21235804

ABSTRACT

BACKGROUND: Building repositories of computational models of biological systems ensures that published models are available for both education and further research, and can provide a source of smaller, previously verified models to integrate into a larger model. One problem with earlier repositories has been the limitations in facilities to record the revision history of models. Often, these facilities are limited to a linear series of versions which were deposited in the repository. This is problematic for several reasons. Firstly, there are many instances in the history of biological systems modelling where an 'ancestral' model is modified by different groups to create many different models. With a linear series of versions, if the changes made to one model are merged into another model, the merge appears as a single item in the history. This hides useful revision history information, and also makes further merges much more difficult, as there is no record of which changes have or have not already been merged. In addition, a long series of individual changes made outside of the repository are also all merged into a single revision when they are put back into the repository, making it difficult to separate out individual changes. Furthermore, many earlier repositories only retain the revision history of individual files, rather than of a group of files. This is an important limitation to overcome, because some types of models, such as CellML 1.1 models, can be developed as a collection of modules, each in a separate file. The need for revision history is widely recognised for computer software, and a lot of work has gone into developing version control systems and distributed version control systems (DVCSs) for tracking the revision history. However, to date, there has been no published research on how DVCSs can be applied to repositories of computational models of biological systems. RESULTS: We have extended the Physiome Model Repository software to be fully revision history aware, by building it on top of Mercurial, an existing DVCS. We have demonstrated the utility of this approach, when used in conjunction with the model composition facilities in CellML, to build and understand more complex models. We have also demonstrated the ability of the repository software to present version history to casual users over the web, and to highlight specific versions which are likely to be useful to users. CONCLUSIONS: Providing facilities for maintaining and using revision history information is an important part of building a useful repository of computational models, as this information is useful both for understanding the source of and justification for parts of a model, and to facilitate automated processes such as merges. The availability of fully revision history aware repositories, and associated tools, will therefore be of significant benefit to the community.


Subject(s)
Computer Simulation , Models, Biological , Computational Biology , Software
10.
Sci Data ; 5: 180029, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29737976

ABSTRACT

Most biomedical data repositories issue locally-unique accessions numbers, but do not provide globally unique, machine-resolvable, persistent identifiers for their datasets, as required by publishers wishing to implement data citation in accordance with widely accepted principles. Local accessions may however be prefixed with a namespace identifier, providing global uniqueness. Such "compact identifiers" have been widely used in biomedical informatics to support global resource identification with local identifier assignment. We report here on our project to provide robust support for machine-resolvable, persistent compact identifiers in biomedical data citation, by harmonizing the Identifiers.org and N2T.net (Name-To-Thing) meta-resolvers and extending their capabilities. Identifiers.org services hosted at the European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), and N2T.net services hosted at the California Digital Library (CDL), can now resolve any given identifier from over 600 source databases to its original source on the Web, using a common registry of prefix-based redirection rules. We believe these services will be of significant help to publishers and others implementing persistent, machine-resolvable citation of research data.

11.
PeerJ ; 4: e2331, 2016.
Article in English | MEDLINE | ID: mdl-27602295

ABSTRACT

Access to consistent, high-quality metadata is critical to finding, understanding, and reusing scientific data. However, while there are many relevant vocabularies for the annotation of a dataset, none sufficiently captures all the necessary metadata. This prevents uniform indexing and querying of dataset repositories. Towards providing a practical guide for producing a high quality description of biomedical datasets, the W3C Semantic Web for Health Care and the Life Sciences Interest Group (HCLSIG) identified Resource Description Framework (RDF) vocabularies that could be used to specify common metadata elements and their value sets. The resulting guideline covers elements of description, identification, attribution, versioning, provenance, and content summarization. This guideline reuses existing vocabularies, and is intended to meet key functional requirements including indexing, discovery, exchange, query, and retrieval of datasets, thereby enabling the publication of FAIR data. The resulting metadata profile is generic and could be used by other domains with an interest in providing machine readable descriptions of versioned datasets.

12.
BMC Syst Biol ; 8: 91, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25182954

ABSTRACT

BACKGROUND: BioModels Database is a reference repository of mathematical models used in biology. Models are stored as SBML files on a file system and metadata is provided in a relational database. Models can be retrieved through a web interface and programmatically via web services. In addition to those more traditional ways to access information, Linked Data using Semantic Web technologies (such as the Resource Description Framework, RDF), is becoming an increasingly popular means to describe and expose biological relevant data. RESULTS: We present the BioModels Linked Dataset, which exposes the models' content as a dereferencable interlinked dataset. BioModels Linked Dataset makes use of the wealth of annotations available within a large number of manually curated models to link and integrate data and models from other resources. CONCLUSIONS: The BioModels Linked Dataset provides users with a dataset interoperable with other semantic web resources. It supports powerful search queries, some of which were not previously available to users and allow integration of data from multiple resources. This provides a distributed platform to find similar models for comparison, processing and enrichment.


Subject(s)
Data Collection/methods , Databases as Topic , Internet , Models, Biological , Computational Biology
13.
Philos Trans A Math Phys Eng Sci ; 367(1895): 1845-67, 2009 May 28.
Article in English | MEDLINE | ID: mdl-19380315

ABSTRACT

The development of standards for encoding mathematical models is an important component of model building and model sharing among scientists interested in understanding multi-scale physiological processes. CellML provides such a standard, particularly for models based on biophysical mechanisms, and a substantial number of models are now available in the CellML Model Repository. However, there is an urgent need to extend the current CellML metadata standard to provide biological and biophysical annotation of the models in order to facilitate model sharing, automated model reduction and connection to biological databases. This paper gives a broad overview of a number of new developments on CellML metadata and provides links to further methodological details available from the CellML website.


Subject(s)
Computer Simulation , Database Management Systems , Programming Languages , Biophysics
14.
Nat Biotechnol ; 27(8): 735-41, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19668183

ABSTRACT

Circuit diagrams and Unified Modeling Language diagrams are just two examples of standard visual languages that help accelerate work by promoting regularity, removing ambiguity and enabling software tool support for communication of complex information. Ironically, despite having one of the highest ratios of graphical to textual information, biology still lacks standard graphical notations. The recent deluge of biological knowledge makes addressing this deficit a pressing concern. Toward this goal, we present the Systems Biology Graphical Notation (SBGN), a visual language developed by a community of biochemists, modelers and computer scientists. SBGN consists of three complementary languages: process diagram, entity relationship diagram and activity flow diagram. Together they enable scientists to represent networks of biochemical interactions in a standard, unambiguous way. We believe that SBGN will foster efficient and accurate representation, visualization, storage, exchange and reuse of information on all kinds of biological knowledge, from gene regulation, to metabolism, to cellular signaling.


Subject(s)
Computer Graphics , Software , Systems Biology , Computer Graphics/history , History, 20th Century , Internet , Systems Biology/history
SELECTION OF CITATIONS
SEARCH DETAIL