Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Neuroimage ; 280: 120313, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37595816

ABSTRACT

PURPOSE: Positron emission tomography (PET) provides in vivo quantification of amyloid-ß (Aß) pathology. Established methods for assessing Aß burden can be affected by physiological and technical factors. Novel, data-driven metrics have been developed to account for these sources of variability. We aimed to evaluate the performance of four of these amyloid PET metrics against conventional techniques, using a common set of criteria. METHODS: Three cohorts were used for evaluation: Insight 46 (N=464, [18F]florbetapir), AIBL (N=277, [18F]flutemetamol), and an independent test-retest data (N=10, [18F]flutemetamol). Established metrics of amyloid tracer uptake included the Centiloid (CL) and where dynamic data was available, the non-displaceable binding potential (BPND). The four data-driven metrics computed were the amyloid load (Aß load), the Aß-PET pathology accumulation index (Aß index), the Centiloid derived from non-negative matrix factorisation (CLNMF), and the amyloid pattern similarity score (AMPSS). These metrics were evaluated using reliability and repeatability in test-retest data, associations with BPND and CL, variability of the rate of change and sample size estimates to detect a 25% slowing in Aß accumulation. RESULTS: All metrics showed good reliability. Aß load, Aß index and CLNMF were strong associated with the BPND. The associations with CL suggest that cross-sectional measures of CLNMF, Aß index and Aß load are robust across studies. Sample size estimates for secondary prevention trial scenarios were the lowest for CLNMF and Aß load compared to the CL. CONCLUSION: Among the novel data-driven metrics evaluated, the Aß load, the Aß index and the CLNMF can provide comparable performance to more established quantification methods of Aß PET tracer uptake. The CLNMF and Aß load could offer a more precise alternative to CL, although further studies in larger cohorts should be conducted.


Subject(s)
Amyloid beta-Peptides , Benchmarking , Humans , Cross-Sectional Studies , Reproducibility of Results , Positron-Emission Tomography
2.
Hum Brain Mapp ; 44(7): 2754-2766, 2023 05.
Article in English | MEDLINE | ID: mdl-36852443

ABSTRACT

Current structural MRI-based brain age estimates and their difference from chronological age-the brain age gap (BAG)-are limited to late-stage pathological brain-tissue changes. The addition of physiological MRI features may detect early-stage pathological brain alterations and improve brain age prediction. This study investigated the optimal combination of structural and physiological arterial spin labelling (ASL) image features and algorithms. Healthy participants (n = 341, age 59.7 ± 14.8 years) were scanned at baseline and after 1.7 ± 0.5 years follow-up (n = 248, mean age 62.4 ± 13.3 years). From 3 T MRI, structural (T1w and FLAIR) volumetric ROI and physiological (ASL) cerebral blood flow (CBF) and spatial coefficient of variation ROI features were constructed. Multiple combinations of features and machine learning algorithms were evaluated using the Mean Absolute Error (MAE). From the best model, longitudinal BAG repeatability and feature importance were assessed. The ElasticNetCV algorithm using T1w + FLAIR+ASL performed best (MAE = 5.0 ± 0.3 years), and better compared with using T1w + FLAIR (MAE = 6.0 ± 0.4 years, p < .01). The three most important features were, in descending order, GM CBF, GM/ICV, and WM CBF. Average baseline and follow-up BAGs were similar (-1.5 ± 6.3 and - 1.1 ± 6.4 years respectively, ICC = 0.85, 95% CI: 0.8-0.9, p = .16). The addition of ASL features to structural brain age, combined with the ElasticNetCV algorithm, improved brain age prediction the most, and performed best in a cross-sectional and repeatability comparison. These findings encourage future studies to explore the value of ASL in brain age in various pathologies.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Middle Aged , Aged , Adult , Cross-Sectional Studies , Brain/physiology , Magnetic Resonance Imaging/methods , Neuroimaging , Perfusion , Spin Labels
3.
Eur J Nucl Med Mol Imaging ; 48(7): 2169-2182, 2021 07.
Article in English | MEDLINE | ID: mdl-33615397

ABSTRACT

PURPOSE: To investigate the sensitivity of visual read (VR) to detect early amyloid pathology and the overall utility of regional VR. METHODS: [18F]Flutemetamol PET images of 497 subjects (ALFA+ N = 352; ADC N = 145) were included. Scans were visually assessed according to product guidelines, recording the number of positive regions (0-5) and a final negative/positive classification. Scans were quantified using the standard and regional Centiloid (CL) method. The agreement between VR-based classification and published CL-based cut-offs for early (CL = 12) and established (CL = 30) pathology was determined. An optimal CL cut-off maximizing Youden's index was derived. Global and regional CL quantification was compared to VR. Finally, 28 post-mortem cases from the [18F]flutemetamol phase III trial were included to assess the percentage agreement between VR and neuropathological classification of neuritic plaque density. RESULTS: VR showed excellent agreement against CL = 12 (κ = .89, 95.2%) and CL = 30 (κ = .88, 95.4%) cut-offs. ROC analysis resulted in an optimal CL = 17 cut-off against VR (sensitivity = 97.9%, specificity = 97.8%). Each additional positive VR region corresponded to a clear increase in global CL. Regional VR was also associated with regional CL quantification. Compared to mCERADSOT-based classification (i.e., any region mCERADSOT > 1.5), VR was in agreement in 89.3% of cases, with 13 true negatives, 12 true positives, and 3 false positives (FP). Regional sparse-to-moderate neuritic and substantial diffuse Aß plaque was observed in all FP cases. Regional VR was also associated with regional plaque density. CONCLUSION: VR is an appropriate method for assessing early amyloid pathology and that grading the extent of visual amyloid positivity could present clinical value.


Subject(s)
Alzheimer Disease , Alzheimer Disease/diagnostic imaging , Amyloid/metabolism , Amyloid beta-Peptides/metabolism , Aniline Compounds , Benzothiazoles , Brain/metabolism , Humans , Positron-Emission Tomography
4.
Alzheimers Dement ; 17(7): 1189-1204, 2021 07.
Article in English | MEDLINE | ID: mdl-33811742

ABSTRACT

BACKGROUND: We classified non-demented European Prevention of Alzheimer's Dementia (EPAD) participants through the amyloid/tau/neurodegeneration (ATN) scheme and assessed their neuropsychological and imaging profiles. MATERIALS AND METHODS: From 1500 EPAD participants, 312 were excluded. Cerebrospinal fluid cut-offs of 1000 pg/mL for amyloid beta (Aß)1-42 and 27 pg/mL for p-tau181 were validated using Gaussian mixture models. Given strong correlation of p-tau and t-tau (R2  = 0.98, P < 0.001), neurodegeneration was defined by age-adjusted hippocampal volume. Multinomial regressions were used to test whether neuropsychological tests and regional brain volumes could distinguish ATN stages. RESULTS: Age was 65 ± 7 years, with 58% females and 38% apolipoprotein E (APOE) ε4 carriers; 57.1% were A-T-N-, 32.5% were in the Alzheimer's disease (AD) continuum, and 10.4% suspected non-Alzheimer's pathology. Age and cerebrovascular burden progressed with biomarker positivity (P < 0.001). Cognitive dysfunction appeared with T+. Paradoxically higher regional gray matter volumes were observed in A+T-N- compared to A-T-N- (P < 0.001). DISCUSSION: In non-demented individuals along the AD continuum, p-tau drives cognitive dysfunction. Memory and language domains are affected in the earliest stages.


Subject(s)
Amyloid/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Healthy Volunteers/statistics & numerical data , Hippocampus/pathology , tau Proteins/cerebrospinal fluid , Aged , Europe , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Neuropsychological Tests/statistics & numerical data
5.
Neuroimage ; 219: 117031, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32526385

ABSTRACT

Arterial spin labeling (ASL) has undergone significant development since its inception, with a focus on improving standardization and reproducibility of its acquisition and quantification. In a community-wide effort towards robust and reproducible clinical ASL image processing, we developed the software package ExploreASL, allowing standardized analyses across centers and scanners. The procedures used in ExploreASL capitalize on published image processing advancements and address the challenges of multi-center datasets with scanner-specific processing and artifact reduction to limit patient exclusion. ExploreASL is self-contained, written in MATLAB and based on Statistical Parameter Mapping (SPM) and runs on multiple operating systems. To facilitate collaboration and data-exchange, the toolbox follows several standards and recommendations for data structure, provenance, and best analysis practice. ExploreASL was iteratively refined and tested in the analysis of >10,000 ASL scans using different pulse-sequences in a variety of clinical populations, resulting in four processing modules: Import, Structural, ASL, and Population that perform tasks, respectively, for data curation, structural and ASL image processing and quality control, and finally preparing the results for statistical analyses on both single-subject and group level. We illustrate ExploreASL processing results from three cohorts: perinatally HIV-infected children, healthy adults, and elderly at risk for neurodegenerative disease. We show the reproducibility for each cohort when processed at different centers with different operating systems and MATLAB versions, and its effects on the quantification of gray matter cerebral blood flow. ExploreASL facilitates the standardization of image processing and quality control, allowing the pooling of cohorts which may increase statistical power and discover between-group perfusion differences. Ultimately, this workflow may advance ASL for wider adoption in clinical studies, trials, and practice.


Subject(s)
Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Angiography/methods , Algorithms , Cerebrovascular Circulation/physiology , Humans , Reproducibility of Results , Signal-To-Noise Ratio , Software , Spin Labels
6.
Alzheimers Dement ; 16(5): 750-758, 2020 05.
Article in English | MEDLINE | ID: mdl-32281303

ABSTRACT

INTRODUCTION: The Amyloid Imaging to Prevent Alzheimer's Disease (AMYPAD) Prognostic and Natural History Study (PNHS) aims at understanding the role of amyloid imaging in the earliest stages of Alzheimer's disease (AD). AMYPAD PNHS adds (semi-)quantitative amyloid PET imaging to several European parent cohorts (PCs) to predict AD-related progression as well as address methodological challenges in amyloid PET. METHODS: AMYPAD PNHS is an open-label, prospective, multi-center, cohort study recruiting from multiple PCs. Around 2000 participants will undergo baseline amyloid positron emission tomography (PET), half of whom will be invited for a follow-up PET 12 at least 12 months later. RESULTS: Primary include several amyloid PET measurements (Centiloid, SUVr, BPND , R1 ), and secondary are their changes from baseline, relationship to other amyloid markers (cerebrospinal fluid and visual assessment), and predictive value of AD-related decline. EXPECTED IMPACT: Determining the role of amyloid PET for the understanding of this complex disease and potentially improving secondary prevention trials.


Subject(s)
Alzheimer Disease , Amyloid/metabolism , Biomarkers/cerebrospinal fluid , Positron-Emission Tomography , Aged , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnostic imaging , Disease Progression , Europe , Female , Healthy Volunteers , Humans , Longitudinal Studies , Male , Prospective Studies
7.
Radiology ; 292(2): 449-457, 2019 08.
Article in English | MEDLINE | ID: mdl-31237498

ABSTRACT

Background Previous studies have demonstrated extensive functional network disturbances in patients with multiple sclerosis (MS), showing a less efficient brain network. Recent studies indicate that the dynamic properties of the brain network show a strong correlation with cognitive function. Purpose To investigate network dynamics on functional MRI in cognitively impaired patients with MS. Materials and Methods In secondary analysis of prospectively acquired data, with imaging performed between 2008 and 2012, differences in regional functional network dynamics (ie, eigenvector centrality dynamics) between cognitively impaired and cognitively preserved participants with MS were investigated. Functional network dynamics were computed on images from functional MRI (3 T) by using a sliding-window approach. Cognitively impaired and preserved groups were compared by using a clusterwise permutation-based method. Results The study included 96 healthy control subjects and 332 participants with MS (including 226 women and 106 men; median age, 48.1 years ± 11.0). Among the 332 participants with MS, 87 were cognitively impaired and 180 had preserved cognitive function; mildly impaired patients (n = 65) were excluded. The cognitively impaired group included a higher proportion of men compared with the cognitively preserved group (35 of 87 [40%] vs 48 of 180 [27%], respectively; P = .02) and had a higher mean age (51.1 years vs 46.3 years, respectively; P < .01). The clusterwise permutation-based comparison at P less than .05 showed reduced centrality dynamics in default-mode, frontoparietal, and visual network regions on functional MRI in cognitively impaired participants versus cognitively preserved participants. A subsequent correlation and hierarchical clustering analysis revealed that the default-mode and visual networks normally demonstrate negatively correlated fluctuations in functional importance (r = -0.23 in healthy control subjects), with an almost complete loss of this negative correlation in cognitively impaired participants compared with cognitively preserved participants (r = -0.04 vs r = -0.14; corrected P = .02). Conclusion As shown on functional MRI, cognitively impaired patients with multiple sclerosis not only demonstrate reduced dynamics in default-mode, frontoparietal, and visual networks, but also show a loss of interplay between default-mode and visual networks. © RSNA, 2019 Online supplemental material is available for this article. See also the article by Eijlers et al and the editorial by Zivadinov and Dwyer in this issue.


Subject(s)
Brain/diagnostic imaging , Brain/physiopathology , Cognitive Dysfunction/complications , Magnetic Resonance Imaging/methods , Multiple Sclerosis/complications , Multiple Sclerosis/physiopathology , Brain Mapping/methods , Cognitive Dysfunction/physiopathology , Female , Humans , Male , Middle Aged , Prospective Studies
8.
Hum Brain Mapp ; 38(7): 3623-3636, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28429383

ABSTRACT

INTRODUCTION: Longstanding type 1 diabetes (T1DM) is associated with microangiopathy and poorer cognition. In the brain, T1DM is related to increased functional resting-state network (RSN) connectivity in patients without, which was decreased in patients with clinically evident microangiopathy. Subcortical structure seems affected in both patient groups. How these localized alterations affect the hierarchy of the functional network in T1DM is unknown. Eigenvector centrality mapping (ECM) and degree centrality are graph theoretical methods that allow determining the relative importance (ECM) and connectedness (degree centrality) of regions within the whole-brain network hierarchy. METHODS: Therefore, ECM and degree centrality of resting-state functional MRI-scans were compared between 51 patients with, 53 patients without proliferative retinopathy, and 49 controls, and associated with RSN connectivity, subcortical gray matter volume, and cognition. RESULTS: In all patients versus controls, ECM and degree centrality were lower in the bilateral thalamus and the dorsal striatum, with lowest values in patients without proliferative retinopathy (PFWE < 0.05). Increased ECM in this group versus patients with proliferative retinopathy was seen in the bilateral lateral occipital cortex, and in the right cuneus and occipital fusiform gyrus versus controls (PFWE < 0.05). In all patients, ECM and degree centrality were related to altered visual, sensorimotor, and auditory and language RSN connectivity (PFWE < 0.05), but not to subcortical gray matter volume or cognition (PFDR > 0.05). CONCLUSION: The findings suggested reorganization of the hierarchy of the cortical connectivity network in patients without proliferative retinopathy, which is lost with disease progression. Centrality seems sensitive to capture early T1DM-related functional connectivity alterations, but not disease progression. Hum Brain Mapp 38:3623-3636, 2017. © 2017 Wiley Periodicals, Inc.

9.
Hum Brain Mapp ; 38(9): 4703-4715, 2017 09.
Article in English | MEDLINE | ID: mdl-28631336

ABSTRACT

Cognitive reserve (CR) explains interindividual differences in the ability to maintain cognitive function in the presence of neuropathology. We developed a neuroimaging approach including a measure of brain atrophy and cognition to capture this construct. In a group of 511 Alzheimer's disease (AD) biomarker-positive subjects in different stages across the disease spectrum, we performed 3T magnetic resonance imaging and predicted gray matter (GM) volume in each voxel based on cognitive performance (i.e. a global cognitive composite score), adjusted for age, sex, disease stage, premorbid brain size (i.e. intracranial volume) and scanner type. We used standardized individual differences between predicted and observed GM volume (i.e. W-scores) as an operational measure of CR. To validate this method, we showed that education correlated with mean W-scores in whole-brain (r = -0.090, P < 0.05) and temporoparietal (r = -0.122, P < 0.01) masks, indicating that higher education was associated with more CR (i.e. greater atrophy than predicted from cognitive performance). In a voxel-wise analysis, this effect was most prominent in the right inferior and middle temporal and right superior lateral occipital cortex (P < 0.05, corrected for multiple comparisons). Furthermore, survival analyses among subjects in the pre-dementia stage revealed that the W-scores predicted conversion to more advanced disease stages (whole-brain: hazard ratio [HR] = 0.464, P < 0.05; temporoparietal: HR = 0.397, P < 0.001). Our neuroimaging approach captures CR with high anatomical detail and at an individual level. This standardized method is applicable to various brain diseases or CR proxies and can flexibly incorporate different neuroimaging modalities and cognitive parameters, making it a promising tool for scientific and clinical purposes. Hum Brain Mapp 38:4703-4715, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Cognitive Reserve/physiology , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Aged , Alzheimer Disease/physiopathology , Alzheimer Disease/psychology , Atrophy/diagnostic imaging , Brain/physiopathology , Cohort Studies , Educational Status , Female , Gray Matter/diagnostic imaging , Gray Matter/physiopathology , Humans , Male , Neuropsychological Tests , Organ Size , Prodromal Symptoms , Survival Analysis
10.
Brain ; 139(Pt 1): 115-26, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26637488

ABSTRACT

Grey matter atrophy is common in multiple sclerosis. However, in contrast with other neurodegenerative diseases, it is unclear whether grey matter atrophy in multiple sclerosis is a diffuse 'global' process or develops, instead, according to distinct anatomical patterns. Using source-based morphometry we searched for anatomical patterns of co-varying cortical thickness and assessed their relationships with white matter pathology, physical disability and cognitive functioning. Magnetic resonance imaging was performed at 3 T in 208 patients with long-standing multiple sclerosis (141 females; age = 53.7 ± 9.6 years; disease duration = 20.2 ± 7.1 years) and 60 age- and sex-matched healthy controls. Spatial independent component analysis was performed on cortical thickness maps derived from 3D T1-weighted images across all subjects to identify co-varying patterns. The loadings, which reflect the presence of each cortical thickness pattern in a subject, were compared between patients with multiple sclerosis and healthy controls with generalized linear models. Stepwise linear regression analyses were used to assess whether white matter pathology was associated with these loadings and to identify the cortical thickness patterns that predict measures of physical and cognitive dysfunction. Ten cortical thickness patterns were identified, of which six had significantly lower loadings in patients with multiple sclerosis than in controls: the largest loading differences corresponded to the pattern predominantly involving the bilateral temporal pole and entorhinal cortex, and the pattern involving the bilateral posterior cingulate cortex. In patients with multiple sclerosis, overall white matter lesion load was negatively associated with the loadings of these two patterns. The final model for physical dysfunction as measured with Expanded Disability Status Scale score (adjusted R(2) = 0.297; P < 0.001) included the predictors age, overall white matter lesion load, the loadings of two cortical thickness patterns (bilateral sensorimotor cortex and bilateral insula), and global cortical thickness. The final model predicting average cognition (adjusted R(2) = 0.469; P < 0.001) consisted of age, the loadings of two cortical thickness patterns (bilateral posterior cingulate cortex and bilateral temporal pole), overall white matter lesion load and normal-appearing white matter integrity. Although white matter pathology measures were part of the final clinical regression models, they explained limited incremental variance (to a maximum of 4%). Several cortical atrophy patterns relevant for multiple sclerosis were found. This suggests that cortical atrophy in multiple sclerosis occurs largely in a non-random manner and develops (at least partly) according to distinct anatomical patterns. In addition, these cortical atrophy patterns showed stronger associations with clinical (especially cognitive) dysfunction than global cortical atrophy.


Subject(s)
Atrophy/pathology , Cerebral Cortex/pathology , Multiple Sclerosis/pathology , Case-Control Studies , Cognition Disorders/complications , Cognition Disorders/pathology , Disability Evaluation , Female , Gray Matter/pathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Models, Neurological , Multiple Sclerosis/complications , Neuroimaging , White Matter/pathology
11.
Radiology ; 281(3): 865-875, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27383395

ABSTRACT

Purpose To investigate whether multivariate pattern recognition analysis of arterial spin labeling (ASL) perfusion maps can be used for classification and single-subject prediction of patients with Alzheimer disease (AD) and mild cognitive impairment (MCI) and subjects with subjective cognitive decline (SCD) after using the W score method to remove confounding effects of sex and age. Materials and Methods Pseudocontinuous 3.0-T ASL images were acquired in 100 patients with probable AD; 60 patients with MCI, of whom 12 remained stable, 12 were converted to a diagnosis of AD, and 36 had no follow-up; 100 subjects with SCD; and 26 healthy control subjects. The AD, MCI, and SCD groups were divided into a sex- and age-matched training set (n = 130) and an independent prediction set (n = 130). Standardized perfusion scores adjusted for age and sex (W scores) were computed per voxel for each participant. Training of a support vector machine classifier was performed with diagnostic status and perfusion maps. Discrimination maps were extracted and used for single-subject classification in the prediction set. Prediction performance was assessed with receiver operating characteristic (ROC) analysis to generate an area under the ROC curve (AUC) and sensitivity and specificity distribution. Results Single-subject diagnosis in the prediction set by using the discrimination maps yielded excellent performance for AD versus SCD (AUC, 0.96; P < .01), good performance for AD versus MCI (AUC, 0.89; P < .01), and poor performance for MCI versus SCD (AUC, 0.63; P = .06). Application of the AD versus SCD discrimination map for prediction of MCI subgroups resulted in good performance for patients with MCI diagnosis converted to AD versus subjects with SCD (AUC, 0.84; P < .01) and fair performance for patients with MCI diagnosis converted to AD versus those with stable MCI (AUC, 0.71; P > .05). Conclusion With automated methods, age- and sex-adjusted ASL perfusion maps can be used to classify and predict diagnosis of AD, conversion of MCI to AD, stable MCI, and SCD with good to excellent accuracy and AUC values. © RSNA, 2016.


Subject(s)
Alzheimer Disease/diagnosis , Cognitive Dysfunction/diagnosis , Spin Labels , Aged , Alzheimer Disease/physiopathology , Alzheimer Disease/psychology , Area Under Curve , Cognitive Dysfunction/physiopathology , Early Diagnosis , Female , Humans , Machine Learning , Magnetic Resonance Angiography/methods , Male , Middle Aged , Pattern Recognition, Visual
12.
Radiology ; 279(3): 838-48, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26653846

ABSTRACT

Purpose To investigate the diagnostic accuracy of an image-based classifier to distinguish between Alzheimer disease (AD) and behavioral variant frontotemporal dementia (bvFTD) in individual patients by using gray matter (GM) density maps computed from standard T1-weighted structural images obtained with multiple imagers and with independent training and prediction data. Materials and Methods The local institutional review board approved the study. Eighty-four patients with AD, 51 patients with bvFTD, and 94 control subjects were divided into independent training (n = 115) and prediction (n = 114) sets with identical diagnosis and imager type distributions. Training of a support vector machine (SVM) classifier used diagnostic status and GM density maps and produced voxelwise discrimination maps. Discriminant function analysis was used to estimate suitability of the extracted weights for single-subject classification in the prediction set. Receiver operating characteristic (ROC) curves and area under the ROC curve (AUC) were calculated for image-based classifiers and neuropsychological z scores. Results Training accuracy of the SVM was 85% for patients with AD versus control subjects, 72% for patients with bvFTD versus control subjects, and 79% for patients with AD versus patients with bvFTD (P ≤ .029). Single-subject diagnosis in the prediction set when using the discrimination maps yielded accuracies of 88% for patients with AD versus control subjects, 85% for patients with bvFTD versus control subjects, and 82% for patients with AD versus patients with bvFTD, with a good to excellent AUC (range, 0.81-0.95; P ≤ .001). Machine learning-based categorization of AD versus bvFTD based on GM density maps outperforms classification based on neuropsychological test results. Conclusion The SVM can be used in single-subject discrimination and can help the clinician arrive at a diagnosis. The SVM can be used to distinguish disease-specific GM patterns in patients with AD and those with bvFTD as compared with normal aging by using common T1-weighted structural MR imaging. (©) RSNA, 2015.


Subject(s)
Alzheimer Disease/classification , Alzheimer Disease/pathology , Frontotemporal Dementia/classification , Frontotemporal Dementia/pathology , Atrophy , Diagnosis, Differential , Female , Gray Matter/pathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests , ROC Curve , Support Vector Machine
13.
Hum Brain Mapp ; 35(5): 2383-93, 2014 May.
Article in English | MEDLINE | ID: mdl-24039033

ABSTRACT

Recent imaging studies have demonstrated functional brain network changes in patients with Alzheimer's disease (AD). Eigenvector centrality (EC) is a graph analytical measure that identifies prominent regions in the brain network hierarchy and detects localized differences between patient populations. This study used voxel-wise EC mapping (ECM) to analyze individual whole-brain resting-state functional magnetic resonance imaging (MRI) scans in 39 AD patients (age 67 ± 8) and 43 healthy controls (age 69 ± 7). Between-group differences were assessed by a permutation-based method. Associations of EC with biomarkers for AD pathology in cerebrospinal fluid (CSF) and Mini Mental State Examination (MMSE) scores were assessed using Spearman correlation analysis. Decreased EC was found bilaterally in the occipital cortex in AD patients compared to controls. Regions of increased EC were identified in the anterior cingulate and paracingulate gyrus. Across groups, frontal and occipital EC changes were associated with pathological concentrations of CSF biomarkers and with cognition. In controls, decreased EC values in the occipital regions were related to lower MMSE scores. Our main finding is that ECM, a hypothesis-free and computationally efficient analysis method of functional MRI (fMRI) data, identifies changes in brain network organization in AD patients that are related to cognition and underlying AD pathology. The relation between AD-like EC changes and cognitive performance suggests that resting-state fMRI measured EC is a potential marker of disease severity for AD.


Subject(s)
Alzheimer Disease , Biomarkers/cerebrospinal fluid , Brain/pathology , Cognition Disorders/etiology , Neural Pathways/pathology , Aged , Aged, 80 and over , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/complications , Alzheimer Disease/pathology , Amyloid beta-Peptides/cerebrospinal fluid , Brain/blood supply , Brain Mapping , Cytokines/cerebrospinal fluid , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Neural Pathways/blood supply , Oxygen/blood , Peptide Fragments/cerebrospinal fluid
14.
Hum Brain Mapp ; 35(3): 779-91, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23238869

ABSTRACT

The purpose of this study was to investigate the association between functional connectivity and ß-amyloid depositions in the default mode network (DMN) in Alzheimer's disease (AD), patients with mild cognitive impairment (MCI), and healthy elderly. Twenty-five patients with AD, 12 patients with MCI, and 18 healthy controls were included in the study. Resting-state functional magnetic resonance imaging was used to assess functional connectivity in the DMN. In parallel, amyloid burden was measured in the same subjects using positron emission tomography with carbon-11-labeled Pittsburgh Compound-B as amyloid tracer. Functional connectivity of the DMN and amyloid deposition within the DMN were not associated across all subjects or within diagnostic groups. Longitudinal studies are needed to examine if amyloid depositions precede aberrant functional connectivity in the DMN.


Subject(s)
Aging , Alzheimer Disease , Amyloid beta-Peptides/metabolism , Brain , Cognitive Dysfunction , Functional Neuroimaging/methods , Nerve Net , Positron-Emission Tomography/methods , Aged , Aging/metabolism , Aging/physiology , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Aniline Compounds , Brain/metabolism , Brain/physiopathology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology , Female , Functional Neuroimaging/instrumentation , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Net/metabolism , Nerve Net/physiopathology , Positron-Emission Tomography/instrumentation , Thiazoles
16.
Ann Clin Transl Neurol ; 11(6): 1541-1556, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38757392

ABSTRACT

OBJECTIVE: Alzheimer's disease (AD) and cerebral small vessel disease (cSVD), the two most common causes of dementia, are characterized by white matter (WM) alterations diverging from the physiological changes occurring in healthy aging. Diffusion tensor imaging (DTI) is a valuable tool to quantify WM integrity non-invasively and identify the determinants of such alterations. Here, we investigated main effects and interactions of AD pathology, APOE-ε4, cSVD, and cardiovascular risk on spatial patterns of WM alterations in non-demented older adults. METHODS: Within the prospective European Prevention of Alzheimer's Dementia study, we selected 606 participants (64.9 ± 7.2 years, 376 females) with baseline cerebrospinal fluid samples of amyloid ß1-42 and p-Tau181 and MRI scans, including DTI scans. Longitudinal scans (mean follow-up time = 1.3 ± 0.5 years) were obtained in a subset (n = 223). WM integrity was assessed by extracting fractional anisotropy and mean diffusivity in relevant tracts. To identify the determinants of WM disruption, we performed a multimodel inference to identify the best linear mixed-effects model for each tract. RESULTS: AD pathology, APOE-ε4, cSVD burden, and cardiovascular risk were all associated with WM integrity within several tracts. While limbic tracts were mainly impacted by AD pathology and APOE-ε4, commissural, associative, and projection tract integrity was more related to cSVD burden and cardiovascular risk. AD pathology and cSVD did not show any significant interaction effect. INTERPRETATION: Our results suggest that AD pathology and cSVD exert independent and spatially different effects on WM microstructure, supporting the role of DTI in disease monitoring and suggesting independent targets for preventive medicine approaches.


Subject(s)
Alzheimer Disease , Cerebral Small Vessel Diseases , Diffusion Tensor Imaging , White Matter , Humans , Alzheimer Disease/pathology , Alzheimer Disease/diagnostic imaging , Female , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/pathology , Male , White Matter/diagnostic imaging , White Matter/pathology , Aged , Middle Aged , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Apolipoprotein E4/genetics , tau Proteins/cerebrospinal fluid , tau Proteins/metabolism , Prospective Studies
17.
Neurology ; 103(1): e209419, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38862136

ABSTRACT

BACKGROUND AND OBJECTIVES: Discordance between CSF and PET biomarkers of ß-amyloid (Aß) might reflect an imbalance between soluble and aggregated species, possibly reflecting disease heterogeneity. Previous studies generally used binary cutoffs to assess discrepancies in CSF/PET biomarkers, resulting in a loss of information on the extent of discordance. In this study, we (1) jointly modeled Aß-CSF/PET data to derive a continuous measure of the imbalance between soluble and fibrillar pools of Aß, (2) investigated factors contributing to this imbalance, and (3) examined associations with cognitive trajectories. METHODS: Across 822 cognitively unimpaired (n = 261) and cognitively impaired (n = 561) Alzheimer's Disease Neuroimaging Initiative individuals (384 [46.7%] females, mean age 73.0 ± 7.4 years), we fitted baseline CSF-Aß42 and global Aß-PET to a hyperbolic regression model, deriving a participant-specific Aß-aggregation score (standardized residuals); negative values represent more soluble relative to aggregated Aß and positive values more aggregated relative to soluble Aß. Using linear models, we investigated whether methodological factors, demographics, CSF biomarkers, and vascular burden contributed to Aß-aggregation scores. With linear mixed models, we assessed whether Aß-aggregation scores were predictive of cognitive functioning. Analyses were repeated in an early independent validation cohort of 383 Amyloid Imaging to Prevent Alzheimer's Disease Prognostic and Natural History Study individuals (224 [58.5%] females, mean age 65.2 ± 6.9 years). RESULTS: The imbalance model could be fit (pseudo-R2 = 0.94) in both cohorts, across CSF kits and PET tracers. Although no associations were observed with the main methodological factors, lower Aß-aggregation scores were associated with larger ventricular volume (ß = 0.13, p < 0.001), male sex (ß = -0.18, p = 0.019), and homozygous APOE-ε4 carriership (ß = -0.56, p < 0.001), whereas higher scores were associated with increased uncorrected CSF p-tau (ß = 0.17, p < 0.001) and t-tau (ß = 0.16, p < 0.001), better baseline executive functioning (ß = 0.12, p < 0.001), and slower global cognitive decline (ß = 0.14, p = 0.006). In the validation cohort, we replicated the associations with APOE-ε4, CSF t-tau, and, although modestly, with cognition. DISCUSSION: We propose a novel continuous model of Aß CSF/PET biomarker imbalance, accurately describing heterogeneity in soluble vs aggregated Aß pools in 2 independent cohorts across the full Aß continuum. Aß-aggregation scores were consistently associated with genetic and AD-associated CSF biomarkers, possibly reflecting disease heterogeneity beyond methodological influences.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , Positron-Emission Tomography , Humans , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnostic imaging , Female , Male , Amyloid beta-Peptides/cerebrospinal fluid , Aged , Biomarkers/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid , Aged, 80 and over , Cognitive Dysfunction/cerebrospinal fluid , Cognitive Dysfunction/diagnostic imaging , Middle Aged
18.
Radiology ; 267(1): 221-30, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23238159

ABSTRACT

PURPOSE: To compare quantitative cerebral blood flow (CBF) values in patients with Alzheimer disease (AD), patients with mild cognitive impairment (MCI), and subjects with subjective complaints by using a whole-brain three-dimensional (3D) pseudocontinuous arterial spin-labeling (ASL) technique at 3.0 T. MATERIALS AND METHODS: The local institutional review board approved the study. All subjects provided informed consent. Whole-brain 3D fast spin-echo pseudocontinuous ASL images were acquired at 3.0 T in 71 patients with AD (mean age, 65 years ± 7; 55% women), 35 patients with MCI (mean age, 65 years ± 8; 42% women), and 73 subjects with subjective complaints (mean age, 60 years ± 9; 39% women) who visited a memory clinic. Analyses were performed by using both uncorrected maps and maps corrected for partial volume effects. Regional CBF was compared by using analyses of variance; permutation tests were used for voxel-wise comparisons. Associations with cognition (Mini-Mental State Examination) were investigated by using linear regression analyses. All analyses were corrected for age and sex. RESULTS: Uncorrected CBF was decreased in patients with AD compared with subjects with subjective complaints (27 mL/100 g/min ± 5 vs 33 mL/100 g/min ± 5; P < .001), with strongest reductions in the parietal lobes (22 mL/100 g/min ± 6 vs 30 mL/100 g/min ± 5; ie, decrease of 27%). Corrected cortical CBF showed similar results. In patients with MCI, CBF was decreased in the precuneus and the parietal and occipital lobes compared with subjects with subjective complaints. Voxel-wise comparisons confirmed the region of interest-based findings, showing the largest CBF differences in the precuneus and bilateral parietal cortex. Uncorrected and corrected cortical CBF were associated with cognition across diagnostic groups (ß = 0.46 and ß = 0.42, P < .001) and within the AD group (ß = 0.41 and ß = 0.42, P < .001). CONCLUSION: CBF measured with 3D pseudocontinuous ASL MR imaging helps detect functional changes in the prodromal and more advanced stages of AD and is a marker for disease severity.


Subject(s)
Alzheimer Disease/physiopathology , Cerebrovascular Circulation/physiology , Cognitive Dysfunction/physiopathology , Imaging, Three-Dimensional , Magnetic Resonance Angiography/methods , Aged , Analysis of Variance , Chi-Square Distribution , Female , Humans , Image Interpretation, Computer-Assisted , Linear Models , Male , Middle Aged , Prospective Studies , Severity of Illness Index , Spin Labels
19.
Brain Commun ; 5(3): fcad088, 2023.
Article in English | MEDLINE | ID: mdl-37151225

ABSTRACT

Amyloid-ß accumulation starts in highly connected brain regions and is associated with functional connectivity alterations in the early stages of Alzheimer's disease. This regional vulnerability is related to the high neuronal activity and strong fluctuations typical of these regions. Recently, dynamic functional connectivity was introduced to investigate changes in functional network organization over time. High dynamic functional connectivity variations indicate increased regional flexibility to participate in multiple subnetworks, promoting functional integration. Currently, only a limited number of studies have explored the temporal dynamics of functional connectivity in the pre-dementia stages of Alzheimer's disease. We study the associations between abnormal cerebrospinal fluid amyloid and both static and dynamic properties of functional hubs, using eigenvector centrality, and their relationship with cognitive performance, in 701 non-demented participants from the European Prevention of Alzheimer's Dementia cohort. Voxel-wise eigenvector centrality was computed for the whole functional magnetic resonance imaging time series (static), and within a sliding window (dynamic). Differences in static eigenvector centrality between amyloid positive (A+) and negative (A-) participants and amyloid-tau groups were found in a general linear model. Dynamic eigenvector centrality standard deviation and range were compared between groups within clusters of significant static eigenvector centrality differences, and within 10 canonical resting-state networks. The effect of the interaction between amyloid status and cognitive performance on dynamic eigenvector centrality variability was also evaluated with linear models. Models were corrected for age, sex, and education level. Lower static centrality was found in A+ participants in posterior brain areas including a parietal and an occipital cluster; higher static centrality was found in a medio-frontal cluster. Lower eigenvector centrality variability (standard deviation) occurred in A+ participants in the frontal cluster. The default mode network and the dorsal visual networks of A+ participants had lower dynamic eigenvector centrality variability. Centrality variability in the default mode network and dorsal visual networks were associated with cognitive performance in the A- and A+ groups, with lower variability being observed in A+ participants with good cognitive scores. Our results support the role and timing of eigenvector centrality alterations in very early stages of Alzheimer's disease and show that centrality variability over time adds relevant information on the dynamic patterns that cause static eigenvector centrality alterations. We propose that dynamic eigenvector centrality is an early biomarker of the interplay between early Alzheimer's disease pathology and cognitive decline.

20.
Hum Brain Mapp ; 33(5): 1189-201, 2012 May.
Article in English | MEDLINE | ID: mdl-21520347

ABSTRACT

During the first 6-7 years of life children undergo a period of major neurocognitive development. Higher-order cognitive functions such as executive control of attention, encoding and retrieving of stored information and goal-directed behavior are present but less developed compared to older individuals. There is only very limited information from functional magnetic resonance imaging (fMRI) studies about the level of organization of functional networks in children in the early school period. In this study we perform continuous resting-state functional connectivity MRI in 5- to 8-year-old children in an awake state to identify and characterize resting-state networks (RSNs). Temporal concatenation independent component analysis (ICA) approach was applied to analyze the data. We identified 14 components consisting of regions known to be involved in visual and auditory processing, motor function, attention control, memory, and the default mode network (DMN). Most networks, in particular those supporting basic motor function and sensory related processing, had a robust functional organization similar to mature adult patterns. In contrast, the DMN and other RSNs involved in higher-order cognitive functions had immature characteristics, revealing incomplete and fragmented patterns indicating less developed functional connectivity. We therefore conclude that the DMN and other RSNs involved in higher order cognitive functioning are detectable, yet in an immature state, at an age when these cognitive abilities are mastered.


Subject(s)
Attention/physiology , Brain/physiology , Magnetic Resonance Imaging/methods , Nerve Net/physiology , Rest/physiology , Adult , Age Factors , Brain Mapping/methods , Child , Child, Preschool , Female , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL