Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Infect Dis ; 228(5): 542-554, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37166076

ABSTRACT

BACKGROUND: Mechanisms underlying persistent cardiopulmonary symptoms after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (postacute sequelae of coronavirus disease 2019 [COVID-19; PASC] or "long COVID") remain unclear. This study sought to elucidate mechanisms of cardiopulmonary symptoms and reduced exercise capacity. METHODS: We conducted cardiopulmonary exercise testing (CPET), cardiac magnetic resonance imaging (CMR) and ambulatory rhythm monitoring among adults >1 year after SARS-CoV-2 infection, compared those with and those without symptoms, and correlated findings with previously measured biomarkers. RESULTS: Sixty participants (median age, 53 years; 42% female; 87% nonhospitalized; median 17.6 months after infection) were studied. At CPET, 18/37 (49%) with symptoms had reduced exercise capacity (<85% predicted), compared with 3/19 (16%) without symptoms (P = .02). The adjusted peak oxygen consumption (VO2) was 5.2 mL/kg/min lower (95% confidence interval, 2.1-8.3; P = .001) or 16.9% lower percent predicted (4.3%-29.6%; P = .02) among those with symptoms. Chronotropic incompetence was common. Inflammatory markers and antibody levels early in PASC were negatively correlated with peak VO2. Late-gadolinium enhancement on CMR and arrhythmias were absent. CONCLUSIONS: Cardiopulmonary symptoms >1 year after COVID-19 were associated with reduced exercise capacity, which was associated with earlier inflammatory markers. Chronotropic incompetence may explain exercise intolerance among some with "long COVID."


Subject(s)
COVID-19 , Exercise Tolerance , Female , Male , Humans , Contrast Media , Heart Rate , SARS-CoV-2 , Gadolinium , Inflammation , Phenotype
2.
J Infect Dis ; 224(11): 1839-1848, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34677601

ABSTRACT

BACKGROUND: The biological processes associated with postacute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (PASC) are unknown. METHODS: We measured soluble markers of inflammation in a SARS-CoV-2 recovery cohort at early (<90 days) and late (>90 days) timepoints. We defined PASC as the presence of 1 or more coronavirus disease 2019 (COVID-19)-attributed symptoms beyond 90 days. We compared fold-changes in marker values between those with and without PASC using mixed-effects models with terms for PASC and early and late recovery time periods. RESULTS: During early recovery, those who went on to develop PASC generally had higher levels of cytokine biomarkers including tumor necrosis factor-α (1.14-fold higher mean ratio [95% confidence interval {CI}, 1.01-1.28]; P = .028) and interferon-γ-induced protein 10 (1.28-fold higher mean ratio [95% CI, 1.01-1.62]; P = .038). Among those with PASC, there was a trend toward higher interleukin 6 levels during early recovery (1.29-fold higher mean ratio [95% CI, .98-1.70]; P = .07), which became more pronounced in late recovery (1.44-fold higher mean ratio [95% CI, 1.11-1.86]; P < .001). These differences were more pronounced among those with a greater number of PASC symptoms. CONCLUSIONS: Persistent immune activation may be associated with ongoing symptoms following COVID-19. Further characterization of these processes might identify therapeutic targets for those experiencing PASC.


Subject(s)
COVID-19 , Inflammation , Biomarkers/blood , COVID-19/complications , COVID-19/immunology , Cytokines/blood , Disease Progression , Humans , Inflammation/blood , Inflammation/virology , Post-Acute COVID-19 Syndrome
3.
medRxiv ; 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-35677073

ABSTRACT

BACKGROUND: Mechanisms underlying persistent cardiopulmonary symptoms following SARS-CoV-2 infection (post-acute sequelae of COVID-19 "PASC" or "Long COVID") remain unclear. This study sought to elucidate mechanisms of cardiopulmonary symptoms and reduced exercise capacity using advanced cardiac testing. METHODS: We performed cardiopulmonary exercise testing (CPET), cardiac magnetic resonance imaging (CMR) and ambulatory rhythm monitoring among adults > 1 year after confirmed SARS-CoV-2 infection in Long-Term Impact of Infection with Novel Coronavirus cohort (LIINC; substudy of NCT04362150 ). Adults who completed a research echocardiogram (at a median 6 months after SARS-CoV-2 infection) without evidence of heart failure or pulmonary hypertension were asked to complete additional cardiopulmonary testing approximately 1 year later. Although participants were recruited as a prospective cohort, to account for selection bias, the primary analyses were as a case-control study comparing those with and without persistent cardiopulmonary symptoms. We also correlated findings with previously measured biomarkers. We used logistic regression and linear regression models to adjust for potential confounders including age, sex, body mass index, time since SARS-CoV-2 infection, and hospitalization for acute SARS-CoV-2 infection, with sensitivity analyses adjusting for medical history. RESULTS: Sixty participants (unselected for symptoms, median age 53, 42% female, 87% non- hospitalized) were studied at median 17.6 months following SARS-CoV-2 infection. On maximal CPET, 18/37 (49%) with symptoms had reduced exercise capacity (peak VO 2 <85% predicted) compared to 3/19 (16%) without symptoms (p=0.02). The adjusted peak VO 2 was 5.2 ml/kg/min (95%CI 2.1-8.3; p=0.001) or 16.9% lower actual compared to predicted (95%CI 4.3- 29.6; p=0.02) among those with symptoms compared to those without symptoms. Chronotropic incompetence was present among 12/21 (57%) with reduced VO 2 including 11/37 (30%) with symptoms and 1/19 (5%) without (p=0.04). Inflammatory markers (hsCRP, IL-6, TNF-α) and SARS-CoV-2 antibody levels measured early in PASC were negatively correlated with peak VO 2 more than 1 year later. Late-gadolinium enhancement on CMR and arrhythmias on ambulatory monitoring were not present. CONCLUSIONS: We found evidence of objectively reduced exercise capacity among those with cardiopulmonary symptoms more than 1 year following COVID-19, which was associated with elevated inflammatory markers early in PASC. Chronotropic incompetence may explain exercise intolerance among some with cardiopulmonary phenotype Long COVID. Key Points: Long COVID symptoms were associated with reduced exercise capacity on cardiopulmonary exercise testing more than 1 year after SARS-CoV-2 infection. The most common abnormal finding was chronotropic incompetence. Reduced exercise capacity was associated with early elevations in inflammatory markers.

4.
J Clin Invest ; 133(3)2023 02 01.
Article in English | MEDLINE | ID: mdl-36454631

ABSTRACT

BACKGROUNDThe presence and reactivation of chronic viral infections, such as EBV, CMV, and HIV, have been proposed as potential contributors to long COVID (LC), but studies in well-characterized postacute cohorts of individuals with COVID-19 over a longer time course consistent with current case definitions of LC are limited.METHODSIn a cohort of 280 adults with prior SARS-CoV-2 infection, we assessed the presence and types of LC symptoms and prior medical history (including COVID-19 history and HIV status) and performed serological testing for EBV and CMV using a commercial laboratory. We used covariate-adjusted binary logistic regression models to identify independent associations between variables and LC symptoms.RESULTSWe observed that LC symptoms, such as fatigue and neurocognitive dysfunction, at a median of 4 months following initial diagnosis were independently associated with serological evidence suggesting recent EBV reactivation (early antigen-diffuse IgG positivity) or high nuclear antigen (EBNA) IgG levels but not with ongoing EBV viremia. Serological evidence suggesting recent EBV reactivation (early antigen-diffuse IgG positivity) was most strongly associated with fatigue (OR = 2.12). Underlying HIV infection was also independently associated with neurocognitive LC (OR = 2.5). Interestingly, participants who had serologic evidence of prior CMV infection were less likely to develop neurocognitive LC (OR = 0.52).CONCLUSIONOverall, these findings suggest differential effects of chronic viral coinfections on the likelihood of developing LC and association with distinct syndromic patterns. Further assessment during the acute phase of COVID-19 is warranted.TRIAL REGISTRATIONLong-term Impact of Infection with Novel Coronavirus; ClinicalTrials.gov NCT04362150.FUNDINGThis work was supported by NIH/National Institute of Allergy and Infectious Diseases grants (3R01AI141003-03S1, R01AI158013, and K24AI145806); the Zuckerberg San Francisco General Hospital Department of Medicine and Division of HIV, Infectious Diseases, and Global Medicine; and the UCSF-Bay Area Center for AIDS Research (P30-AI027763).


Subject(s)
COVID-19 , Coinfection , Cytomegalovirus Infections , HIV Infections , Adult , Humans , COVID-19/epidemiology , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , HIV Infections/complications , HIV Infections/epidemiology , Coinfection/epidemiology , Fatigue/epidemiology , Fatigue/etiology , Immunoglobulin G , Antibodies, Viral
5.
JCI Insight ; 7(10)2022 05 23.
Article in English | MEDLINE | ID: mdl-35389890

ABSTRACT

Shortness of breath, chest pain, and palpitations occur as postacute sequelae of COVID-19, but whether symptoms are associated with echocardiographic abnormalities, cardiac biomarkers, or markers of systemic inflammation remains unknown. In a cross-sectional analysis, we assessed symptoms, performed echocardiograms, and measured biomarkers among adults more than 8 weeks after confirmed SARS-CoV-2 infection. We modeled associations between symptoms and baseline characteristics, echocardiographic findings, and biomarkers using logistic regression. We enrolled 102 participants at a median of 7.2 months following COVID-19 onset; 47 individuals reported dyspnea, chest pain, or palpitations. Median age was 52 years, and 41% of participants were women. Female sex, hospitalization, IgG antibody against SARS-CoV-2 receptor binding domain, and C-reactive protein were associated with symptoms. Regarding echocardiographic findings, 4 of 47 participants (9%) with symptoms had pericardial effusions compared with 0 of 55 participants without symptoms; those with effusions had a median of 4 symptoms compared with a median of 1 symptom in those without effusions. There was no strong evidence for a relationship between symptoms and echocardiographic functional parameters or other biomarkers. Among adults more than 8 weeks after SARS-CoV-2 infection, SARS-CoV-2 RBD antibodies, markers of inflammation, and, possibly, pericardial effusions are associated with cardiopulmonary symptoms. Investigation into inflammation as a mechanism underlying postacute sequelae of COVID-19 is warranted.


Subject(s)
COVID-19 , Pericardial Effusion , Adult , Antibodies, Viral , Biomarkers , COVID-19/complications , COVID-19/diagnostic imaging , Chest Pain/etiology , Cross-Sectional Studies , Echocardiography , Female , Humans , Inflammation , Male , Middle Aged , SARS-CoV-2
6.
JCI Insight ; 7(15)2022 08 08.
Article in English | MEDLINE | ID: mdl-35727635

ABSTRACT

Long COVID, a type of post-acute sequelae of SARS-CoV-2 (PASC), has been associated with sustained elevated levels of immune activation and inflammation. However, the mechanisms that drive this inflammation remain unknown. Inflammation during acute coronavirus disease 2019 could be exacerbated by microbial translocation (from the gut and/or lung) to blood. Whether microbial translocation contributes to inflammation during PASC is unknown. We did not observe a significant elevation in plasma markers of bacterial translocation during PASC. However, we observed higher levels of fungal translocation - measured as ß-glucan, a fungal cell wall polysaccharide - in the plasma of individuals experiencing PASC compared with those without PASC or SARS-CoV-2-negative controls. The higher ß-glucan correlated with higher inflammation and elevated levels of host metabolites involved in activating N-methyl-d-aspartate receptors (such as metabolites within the tryptophan catabolism pathway) with established neurotoxic properties. Mechanistically, ß-glucan can directly induce inflammation by binding to myeloid cells (via Dectin-1) and activating Syk/NF-κB signaling. Using a Dectin-1/NF-κB reporter model, we found that plasma from individuals experiencing PASC induced higher NF-κB signaling compared with plasma from negative controls. This higher NF-κB signaling was abrogated by piceatannol (Syk inhibitor). These data suggest a potential targetable mechanism linking fungal translocation and inflammation during PASC.


Subject(s)
COVID-19 , beta-Glucans , COVID-19/complications , Humans , Inflammation , Lectins, C-Type/metabolism , NF-kappa B/metabolism , SARS-CoV-2 , Syk Kinase , Post-Acute COVID-19 Syndrome
7.
medRxiv ; 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35898346

ABSTRACT

The presence and reactivation of chronic viral infections such as Epstein-Barr virus (EBV), cytomegalovirus (CMV) and human immunodeficiency virus (HIV) have been proposed as potential contributors to Long COVID (LC), but studies in well-characterized post-acute cohorts of individuals with COVID-19 over a longer time course consistent with current case definitions of LC are limited. In a cohort of 280 adults with prior SARS-CoV-2 infection, we observed that LC symptoms such as fatigue and neurocognitive dysfunction at a median of 4 months following initial diagnosis were independently associated with serological evidence of recent EBV reactivation (early antigen-D [EA-D] IgG positivity) or high nuclear antigen IgG levels, but not with ongoing EBV viremia. Evidence of EBV reactivation (EA-D IgG) was most strongly associated with fatigue (OR 2.12). Underlying HIV infection was also independently associated with neurocognitive LC (OR 2.5). Interestingly, participants who had serologic evidence of prior CMV infection were less likely to develop neurocognitive LC (OR 0.52) and tended to have less severe (>5 symptoms reported) LC (OR 0.44). Overall, these findings suggest differential effects of chronic viral co-infections on the likelihood of developing LC and predicted distinct syndromic patterns. Further assessment during the acute phase of COVID-19 is warranted. SUMMARY: The authors found that Long COVID symptoms in a post-acute cohort were associated with serological evidence of recent EBV reactivation and pre-existing HIV infection when adjusted for participant factors, sample timing, comorbid conditions and prior hospitalization, whereas underlying CMV infection was associated with a decreased risk of Long COVID.

8.
AIDS ; 36(12): F7-F16, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35866847

ABSTRACT

BACKGROUND: Limited data are available on the long-term clinical and immunologic consequences of SARS-CoV-2 infection in people with HIV (PWH). METHODS: We measured SARS-CoV-2-specific humoral and cellular responses in people with and without HIV recovering from COVID-19 ( n  = 39 and n  = 43, respectively) using binding antibody, surrogate virus neutralization, intracellular cytokine staining, and inflammatory marker assays. We identified individuals experiencing postacute sequelae of SARS-CoV-2 infection (PASC) and evaluated immunologic parameters. We used linear regression and generalized linear models to examine differences by HIV status in the magnitude of inflammatory and virus-specific antibody and T-cell responses, as well as differences in the prevalence of PASC. RESULTS: Among PWH, we found broadly similar SARS-CoV-2-specific antibody and T-cell responses as compared with a well matched group of HIV-negative individuals. PWH had 70% lower relative levels of SARS-CoV-2-specific memory CD8 + T cells ( P  = 0.007) and 53% higher relative levels of PD-1+ SARS-CoV-2-specific CD4 + T cells ( P  = 0.007). Higher CD4 + /CD8 + ratio was associated with lower PD-1 expression on SARS-CoV-2-specific CD8 + T cells (0.34-fold effect, P  = 0.02). HIV status was strongly associated with PASC (odds ratio 4.01, P  = 0.008), and levels of certain inflammatory markers (IL-6, TNF-alpha, and IP-10) were associated with persistent symptoms. CONCLUSION: We identified potentially important differences in SARS-CoV-2-specific CD4 + and CD8 + T cells in PWH and HIV-negative participants that might have implications for long-term immunity conferred by natural infection. HIV status strongly predicted the presence of PASC. Larger and more detailed studies of PASC in PWH are urgently needed.


Subject(s)
COVID-19 , HIV Infections , Humans , Antibodies, Viral/metabolism , CD4-Positive T-Lymphocytes , COVID-19/complications , HIV Infections/complications , HIV Infections/metabolism , Immunologic Memory , Programmed Cell Death 1 Receptor/metabolism , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
9.
Article in English | MEDLINE | ID: mdl-35701186

ABSTRACT

BACKGROUND AND OBJECTIVES: The biologic mechanisms underlying neurologic postacute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (PASC) are incompletely understood. METHODS: We measured markers of neurologic injury (glial fibrillary acidic protein [GFAP], neurofilament light chain [NfL]) and soluble markers of inflammation among a cohort of people with prior confirmed SARS-CoV-2 infection at early and late recovery after the initial illness (defined as less than and greater than 90 days, respectively). The primary clinical outcome was the presence of self-reported CNS PASC symptoms during the late recovery time point. We compared fold changes in marker values between those with and without CNS PASC symptoms using linear mixed-effects models and examined relationships between neurologic and immunologic markers using rank linear correlations. RESULTS: Of 121 individuals, 52 reported CNS PASC symptoms. During early recovery, those who went on to report CNS PASC symptoms had elevations in GFAP (1.3-fold higher mean ratio, 95% CI 1.04-1.63, p = 0.02), but not NfL (1.06-fold higher mean ratio, 95% CI 0.89-1.26, p = 0.54). During late recovery, neither GFAP nor NfL levels were elevated among those with CNS PASC symptoms. Although absolute levels of NfL did not differ, those who reported CNS PASC symptoms demonstrated a stronger downward trend over time in comparison with those who did not report CNS PASC symptoms (p = 0.041). Those who went on to report CNS PASC also exhibited elevations in interleukin 6 (48% higher during early recovery and 38% higher during late recovery), monocyte chemoattractant protein 1 (19% higher during early recovery), and tumor necrosis factor α (19% higher during early recovery and 13% higher during late recovery). GFAP and NfL correlated with levels of several immune activation markers during early recovery; these correlations were attenuated during late recovery. DISCUSSION: Self-reported neurologic symptoms present approximately 4 months after SARS-CoV-2 infection are associated with elevations in markers of neurologic injury and inflammation at earlier time points. Some inflammatory pathways seem to be involved months after acute infection. Additional work will be needed to better characterize these processes and to identify interventions to prevent or treat this condition.


Subject(s)
COVID-19 , Biomarkers , COVID-19/complications , Humans , Inflammation , SARS-CoV-2 , Self Report
10.
Open Forum Infect Dis ; 9(11): ofac563, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36381627

ABSTRACT

Background: SARS-CoV-2 nucleocapsid antigen can be detected in plasma, but little is known about its performance as a diagnostic test for acute SARS-CoV-2 infection or infectious viral shedding among nonhospitalized individuals. Methods: We used data generated from anterior nasal and blood samples collected in a longitudinal household cohort of SARS-CoV-2 cases and contacts. Participants were classified as true positives if polymerase chain reaction (PCR) positive for SARS-CoV-2 and as true negatives if PCR negative and seronegative. Infectious viral shedding was determined by the cytopathic effect from viral culture. Stratified by 7 days after symptom onset, we constructed receiver operating characteristic (ROC) curves to describe optimized accuracy (Youden index), optimized sensitivity, and specificity. Results: Of 80 participants, 58 (73%) were true positives while 22 (27%) were true negatives. Using the manufacturer's cutoff of 1.25 pg/mL for evaluating infection, sensitivity was higher from 0 to 7 days (77.6% [95% confidence interval {CI}, 64%-88.2%]) than from 8 to 14 days (43.2% [95% CI, 31.1%-54.5%]) after symptom onset; specificity was unchanged at 100% (95% CI, 88.1%-100%). This test had higher sensitivity (100% [95% CI, 88.4%-100%]) and lower specificity (65% [95% CI, 40.8%-84.6%]) for infectious viral shedding as compared with infection, particularly within the first week of symptom onset. Although the presence of N-antigen correlated with infectious viral shedding (r = 0.63; P < .01), sensitivity still declined over time. Additional cutoffs from ROC curves were identified to optimize sensitivity and specificity. Conclusions: We found that this SARS-CoV-2 N-antigen test was highly sensitive for detecting early but not late infectious viral shedding, making it a viable screening test for community-dwelling individuals to inform isolation practices.

SELECTION OF CITATIONS
SEARCH DETAIL