Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
2.
Analyst ; 127(7): 871-9, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12173641

ABSTRACT

We have developed a new class of synthetic membranes that consist of a porous polymeric support that contains an ensemble of gold nanotubes that span the thickness of the support membrane. The support is a commercially-available microporous polycarbonate filter with cylindrical nanoscopic pores. The gold nanotubes are prepared via electroless deposition of Au onto the pore walls; i.e., the pores acts as templates for the nanotubes. We have shown that by controlling the Au deposition time, Au nanotubes that have effective inside diameters of molecular dimensions (< 1 nm) can be prepared. These membranes are a new class of molecular sieves and can be used to separate both small molecules and proteins on the basis of molecular size. In addition, the use of these membranes in new approaches to electrochemical sensing is reviewed here. In this case, a current is forced through the nanotubes, and analyte molecules present in a contacting solution phase modulate the value of this transmembrane current.


Subject(s)
Electrochemistry/instrumentation , Membranes, Artificial , Nanotechnology , Gold , Micropore Filters
3.
Chemistry ; 8(16): 3572-8, 2002 Aug 16.
Article in English | MEDLINE | ID: mdl-12203283

ABSTRACT

We have developed a new class of synthetic membranes that consist of a porous polymeric support that contains an ensemble of gold nanotubes that span the thickness of the support membrane. The support is a commercially-available microporous polycarbonate filter with cylindrical nanoscopic pores. The gold nanotubes are prepared by electroless deposition of Au onto the pore walls, that is, the pores acts as templates for the nanotubes. We have shown that by controlling the Au deposition time, Au nanotubes that have effective inside diameters of molecular dimensions (<1 nm) can be prepared. These nanotube membranes can be used to cleanly separate small molecules on the basis of molecular size. Furthermore, use of these membranes as a novel electrochemical sensor is also discussed. This new sensing scheme involves applying a constant potential across the Au nanotube membrane and measuring the drop in the transmembrane current upon the addition of the analyte. This paper reviews our recent progress on size-based based transport selectivity and sensor applications in this new class of membranes.

4.
Chem Rec ; 2(4): 259-67, 2002.
Article in English | MEDLINE | ID: mdl-12203908

ABSTRACT

We have developed a new class of synthetic membranes that consist of a porous polymeric support that contains an ensemble of gold nanotubes that span the thickness of the support membrane. The support is a commercially available microporous polycarbonate filter with cylindrical nanoscopic pores. The gold nanotubes are prepared via electroless deposition of Au onto the pore walls; i.e., the pores act as templates for the nanotubes. We have shown that by controlling the Au deposition time, Au nanotubes that have effective inside diameters of molecular dimensions (<1 nm) can be prepared. These nanotube membranes can be used to cleanly separate small molecules on the basis of molecular size. Furthermore, use of these membranes as a novel electrochemical sensor is also discussed. This new sensing scheme involves applying a constant potential across the Au nanotube membrane and measuring the drop in the transmembrane current upon the addition of the analyte. This paper reviews our recent progress on size-based transport selectivity and sensor applications in this new class of membranes.


Subject(s)
Gold , Membranes, Artificial , Electrochemistry , Nanotechnology , Polymers/chemistry , Porosity
5.
Anal Chem ; 74(10): 2416-22, 2002 May 15.
Article in English | MEDLINE | ID: mdl-12038769

ABSTRACT

This paper describes synthetic micropore and nanotube membranes that mimic the function of a ligand-gated ion channel; that is, these membranes can be switched from an "off" state (no or low ion current through the membrane) to an "on" state (higher ion current) in response to the presence of a chemical stimulus. Ion channel mimics based on both microporous alumina and Au nanotube membranes were investigated. The off state was obtained by making the membranes hydrophobic by chemisorbing either a C18 silane (alumina membrane) or a C18 thiol (Au nanotube membrane). Water and electrolyte are forbidden from entering these very hydrophobic pores/nanotubes. The transition to the on state was induced by the partitioning of a hydrophobic ionic species (e.g., a drug or a surfactant) into the membrane. The membrane switches to the on state because at a sufficiently high concentration of this ionic analyte species, the pores/nanotubes flood with water and electrolyte. A pH-responsive membrane was also prepared by attaching a hydrophobic alkyl carboxylic acid silane to the alumina membrane.


Subject(s)
Biosensing Techniques/instrumentation , Ion Channels , Membranes, Artificial , Biosensing Techniques/methods , Hydrophobic and Hydrophilic Interactions , Molecular Mimicry , Nanotechnology , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL