ABSTRACT
Nutrient supply regulates the activity of phytoplankton, but the global biogeography of nutrient limitation and co-limitation is poorly understood. Prochlorococcus adapt to local environments by gene gains and losses, and we used genomic changes as an indicator of adaptation to nutrient stress. We collected metagenomes from all major ocean regions as part of the Global Ocean Ship-based Hydrographic Investigations Program (Bio-GO-SHIP) and quantified shifts in genes involved in nitrogen, phosphorus, and iron assimilation. We found regional transitions in stress type and severity as well as widespread co-stress. Prochlorococcus stress genes, bottle experiments, and Earth system model predictions were correlated. We propose that the biogeography of multinutrient stress is stoichiometrically linked by controls on nitrogen fixation. Our omics-based description of phytoplankton resource use provides a nuanced and highly resolved description of nutrient stress in the global ocean.
Subject(s)
Genes, Bacterial , Metagenome , Oceans and Seas , Phytoplankton/genetics , Phytoplankton/physiology , Prochlorococcus/genetics , Prochlorococcus/physiology , Adaptation, Physiological , Atlantic Ocean , Indian Ocean , Iron/metabolism , Metagenomics , Nitrates/metabolism , Nitrogen/metabolism , Nitrogen Fixation/genetics , Nutrients , Pacific Ocean , Phosphates/metabolism , Phosphorus/metabolism , Phytoplankton/metabolism , Prochlorococcus/metabolism , Seawater/microbiology , Stress, Physiological/geneticsABSTRACT
Oceanic emissions represent a highly uncertain term in the natural atmospheric methane (CH4) budget, due to the sparse sampling of dissolved CH4 in the marine environment. Here we overcome this limitation by training machine-learning models to map the surface distribution of methane disequilibrium (∆CH4). Our approach yields a global diffusive CH4 flux of 2-6TgCH4yr-1 from the ocean to the atmosphere, after propagating uncertainties in ∆CH4 and gas transfer velocity. Combined with constraints on bubble-driven ebullitive fluxes, we place total oceanic CH4 emissions between 6-12TgCH4yr-1, narrowing the range adopted by recent atmospheric budgets (5-25TgCH4yr-1) by a factor of three. The global flux is dominated by shallow near-shore environments, where CH4 released from the seafloor can escape to the atmosphere before oxidation. In the open ocean, our models reveal a significant relationship between ∆CH4 and primary production that is consistent with hypothesized pathways of in situ methane production during organic matter cycling.