Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters

Publication year range
1.
Immunol Rev ; 314(1): 326-356, 2023 03.
Article in English | MEDLINE | ID: mdl-36408947

ABSTRACT

The term "vasculitis" refers to a group of rare immune-mediated diseases characterized by the dysregulated immune system attacking blood vessels located in any organ of the body, including the skin, lungs, and kidneys. Vasculitides are classified according to the size of the vessel that is affected. Although this observation is not specific to small-, medium-, or large-vessel vasculitides, patients show a high circulating neutrophil-to-lymphocyte ratio, suggesting the direct or indirect involvement of neutrophils in these diseases. As first responders to infection or inflammation, neutrophils release cytotoxic mediators, including reactive oxygen species, proteases, and neutrophil extracellular traps. If not controlled, this dangerous arsenal can injure the vascular system, which acts as the main transport route for neutrophils, thereby amplifying the initial inflammatory stimulus and the recruitment of immune cells. This review highlights the ability of neutrophils to "set the tone" for immune cells and other cells in the vessel wall. Considering both their long-established and newly described roles, we extend their functions far beyond their direct host-damaging potential. We also review the roles of neutrophils in various types of primary vasculitis, including immune complex vasculitis, anti-neutrophil cytoplasmic antibody-associated vasculitis, polyarteritis nodosa, Kawasaki disease, giant cell arteritis, Takayasu arteritis, and Behçet's disease.


Subject(s)
Mucocutaneous Lymph Node Syndrome , Polyarteritis Nodosa , Takayasu Arteritis , Humans , Inflammation , Skin
2.
Semin Immunol ; 54: 101516, 2021 04.
Article in English | MEDLINE | ID: mdl-34728120

ABSTRACT

Neutrophils are vital for the innate immune system's control of pathogens and neutrophil deficiency can render the host susceptible to life-threatening infections. Neutrophil responses must also be tightly regulated because excessive production, recruitment or activation of neutrophils can cause tissue damage in both acute and chronic inflammatory diseases. Granulocyte colony stimulating factor (G-CSF) is a key regulator of neutrophil biology, from production, differentiation, and release of neutrophil precursors in the bone marrow (BM) to modulating the function of mature neutrophils outside of the BM, particularly at sites of inflammation. G-CSF acts by binding to its cognate cell surface receptor on target cells, causing the activation of intracellular signalling pathways mediating the proliferation, differentiation, function, and survival of cells in the neutrophil lineage. Studies in humans and mice demonstrate that G-CSF contributes to protecting the host against infection, but conversely, it can play a deleterious role in inflammatory diseases. As such, neutrophils and the G-CSF pathway may provide novel therapeutic targets. This review will focus on understanding the role G-CSF plays in the balance between effective neutrophil mediated host defence versus neutrophil-mediated inflammation and tissue damage in various inflammatory and infectious diseases.


Subject(s)
Granulocyte Colony-Stimulating Factor , Neutrophils , Animals , Bone Marrow/metabolism , Cell Differentiation , Granulocyte Colony-Stimulating Factor/metabolism , Humans , Inflammation/metabolism , Mice
3.
J Am Soc Nephrol ; 34(7): 1207-1221, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37022108

ABSTRACT

SIGNIFICANCE STATEMENT: Kidney-derived thrombopoietin (TPO) increases myeloid cell and platelet production during antibody-mediated chronic kidney disease (AMCKD) in a mouse model, exacerbating chronic thromobinflammation in microvessels. The effect is mirrored in patients with extracapillary glomerulonephritis associated with thromboinflammation, TGF ß -dependent glomerulosclerosis, and increased bioavailability of TPO. Neutralization of TPO in mice normalized hematopoiesis, reduced chronic thromboinflammation, and ameliorated renal disease. The findings suggest that TPO is a relevant biomarker and a promising therapeutic target for patients with CKD and other chronic thromboinflammatory diseases.Neutralization of TPO in mice normalized hematopoiesis, reduced chronic thromboinflammation, and ameliorated renal disease. The findings suggest that TPO is a relevant biomarker and a promising therapeutic target for patients with CKD and other chronic thromboinflammatory diseases. BACKGROUND: Chronic thromboinflammation provokes microvascular alterations and rarefaction, promoting organ dysfunction in individuals with various life-threatening diseases. Hematopoietic growth factors (HGFs) released by the affected organ may sustain emergency hematopoiesis and fuel the thromboinflammatory process. METHODS: Using a murine model of antibody-mediated chronic kidney disease (AMCKD) and pharmacological interventions, we comprehensively monitored the response to injury in the circulating blood, urine, bone marrow, and kidney. RESULTS: Experimental AMCKD was associated with chronic thromboinflammation and the production of HGFs, especially thrombopoietin (TPO), by the injured kidney, which stimulated and skewed hematopoiesis toward myelo-megakaryopoiesis. AMCKD was characterized by vascular and kidney dysfunction, TGF ß -dependent glomerulosclerosis, and microvascular rarefaction. In humans, extracapillary glomerulonephritis is associated with thromboinflammation, TGF ß -dependent glomerulosclerosis, and increased bioavailability of TPO. Analysis of albumin, HGF, and inflammatory cytokine levels in sera from patients with extracapillary glomerulonephritis allowed us to identify treatment responders. Strikingly, TPO neutralization in the experimental AMCKD model normalized hematopoiesis, reduced chronic thromboinflammation, and ameliorated renal disease. CONCLUSION: TPO-skewed hematopoiesis exacerbates chronic thromboinflammation in microvessels and worsens AMCKD. TPO is both a relevant biomarker and a promising therapeutic target in humans with CKD and other chronic thromboinflammatory diseases.


Subject(s)
Glomerulonephritis , Renal Insufficiency, Chronic , Thrombosis , Humans , Mice , Animals , Thrombopoietin/metabolism , Thrombopoietin/pharmacology , Receptors, Thrombopoietin , Inflammation , Thromboinflammation , Hematopoiesis/physiology , Antibodies/pharmacology , Kidney/metabolism , Renal Insufficiency, Chronic/etiology , Transforming Growth Factor beta/pharmacology
4.
Article in English | MEDLINE | ID: mdl-37947315

ABSTRACT

OBJECTIVES: Neutrophils play a key role in ANCA-associated vasculitis, both as targets of autoimmunity and facilitators of vascular damage. In granulomatosis with polyangiitis (GPA), data regarding the production of reactive oxygen species (ROS) in neutrophils are unclear. Further, recent data suggests that ROS production could have an anti-inflammatory effect through the regulation of the inflammasome and IL-1-related cytokines. We aimed to analyse the ROS production in neutrophils from patients with GPA and investigate its association with IL-1-related cytokines and the autoantigen proteinase 3 (PR3). METHODS: Seventy-two GPA patients with disease flare were included in the NEUTROVASC prospective cohort study. ROS production was evaluated in whole blood of patients with active GPA and compared with the same patients in remission or healthy controls. Associations between ROS production, PR3 membrane expression on neutrophils, serum levels of IL-1-related cytokines as well as inflammasome-related proteins were analyzed. RESULTS: We observed a robust defect in ROS production by neutrophils from patients with active GPA compared with healthy controls, independent of glucocorticoid treatment. Serum levels of IL-1-related cytokines were significantly increased in GPA patients, particularly in patients with kidney involvement, and levels of these cytokines returned to normal after patients achieved remission. Further, inflammasome-related proteins were significantly dysregulated in the cytosol of neutrophils as well as the serum from GPA patients. CONCLUSION: Our data suggests that ROS production and regulation of the inflammasome in neutrophils from patients with GPA are disturbed and may be a potential therapeutic target. CLINICAL TRIAL REGISTRATION NUMBER: NCT01862068, clinicaltrials.gov, https://www.clinicaltrials.gov.

5.
Immunol Cell Biol ; 99(7): 782-789, 2021 08.
Article in English | MEDLINE | ID: mdl-33811670

ABSTRACT

Neutrophils are the most abundant circulating white blood cells and are the central players of the innate immune response. During their lifecycle, neutrophils mainly evolve under low oxygen conditions (0.1-4% O2 ), to which they are well adapted. Neutrophils are atypical cells since they are highly glycolytic and susceptible to oxygen exposure, which induces their activation and death through mechanisms that remain currently elusive. Nevertheless, nearly all studies conducted on neutrophils are carried out under atmospheric oxygen (21%), corresponding to hyperoxia. Here, we investigated the impact of hyperoxia during neutrophil purification and culture on neutrophil viability, activation and cytosolic protein content. We demonstrate that neutrophil hyper-activation (CD62L shedding) is induced during culture under hyperoxic conditions (24 h), compared with neutrophils cultured under anoxic conditions. Spontaneous neutrophil extracellular trap (NET) formation is observed when neutrophils face hyperoxia during purification or culture. In addition, we show that maintaining neutrophils in autologous plasma is the preferred strategy to maintain their basal state. Our results show that manipulating neutrophils under hyperoxic conditions leads to the loss of 57 cytosolic proteins during purification, while it does not lead to an immediate impact on neutrophil activation (CD11bhigh , CD54high , CD62Lneg ) or viability (DAPI+ ). We identified two clusters of proteins belonging to cholesterol metabolism and to the complement and coagulation cascade pathways, which are highly susceptible to neutrophil oxygen exposure during neutrophil purification. In conclusion, protecting neutrophil from oxygen during their purification and culture is recommended to avoid activation and to prevent the alteration of cytosolic protein composition.


Subject(s)
Extracellular Traps , Neutrophils , Leukocyte Count , Neutrophil Activation , Oxygen
6.
Rheumatology (Oxford) ; 60(5): 2157-2168, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33026090

ABSTRACT

OBJECTIVES: To characterize lymphocytes dysregulation in patients with granulomatosis with polyangiitis (GPA) and microscopic polyangiitis (MPA). METHODS: Using flow cytometry, we analysed B- and T-cell subsets in peripheral blood from 37 untreated patients with active disease (29 GPA and 8 MPA) and 22 healthy controls (HCs). RESULTS: GPA patients had increased Th2 (1.8 vs 1.0%, P = 0.02), Th9 (1.1 vs 0.2%, P = 0.0007) and Th17 (1.4 vs 0.9%, P = 0.03) cells compared with HC. Patients with MPO-ANCAs had significantly more CD21- B cells than HC or PR3-ANCA patients (6.9 vs 3.3% and 4.4%, P = 0.01). CD69 expressing B cells were significantly higher in GPA and MPA (3.0 and 5.9 vs 1.4%, P = 0.02 and P = 0.03, respectively) compared with HC, whereas B-cell activating factor-receptor expression was decreased in GPA and MPA (median fluorescence intensity ratio 11.8 and 13.7 vs 45.1 in HC, P < 0.0001 and P = 0.003, respectively). Finally, IL-6-producing B cells were increased in GPA vs HC (25.8 vs 14.9%, P < 0.0001) and decreased in MPA vs HC (4.6 vs 14.9%, P = 0.005), whereas TNF-α-producing B cells were lower in both GPA and MPA patients compared with controls (15 and 8.4 vs 30%, P = 0.01 and P = 0.006, respectively). CONCLUSION: Skewed T-cell polarization towards Th2, Th9 and Th17 responses characterizes GPA, whereas B-cell populations are dysregulated in both GPA and MPA with an activated phenotype and a decreased B-cell activating factor-receptor expression. Finally, inflammatory B cells producing IL-6 are dramatically increased in GPA, providing an additional mechanism by which rituximab could be effective.


Subject(s)
B-Lymphocytes/immunology , Granulomatosis with Polyangiitis/blood , Microscopic Polyangiitis/blood , T-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cytokines/metabolism , Flow Cytometry , Granulomatosis with Polyangiitis/immunology , Granulomatosis with Polyangiitis/metabolism , Humans , Microscopic Polyangiitis/immunology , Microscopic Polyangiitis/metabolism , T-Lymphocytes/metabolism
7.
Semin Immunol ; 28(2): 159-73, 2016 04.
Article in English | MEDLINE | ID: mdl-27036091

ABSTRACT

Human neutrophils have great capacity to cause tissue damage in inflammatory diseases via their inappropriate activation to release reactive oxygen species (ROS), proteases and other tissue-damaging molecules. Furthermore, activated neutrophils can release a wide variety of cytokines and chemokines that can regulate almost every element of the immune system. In addition to these important immuno-regulatory processes, activated neutrophils can also release, expose or generate neoepitopes that have the potential to break immune tolerance and result in the generation of autoantibodies, that characterise a number of human auto-immune diseases. For example, in vasculitis, anti-neutrophil cytoplasmic antibodies (ANCA) that are directed against proteinase 3 or myeloperoxidase are neutrophil-derived autoantigens and activated neutrophils are the main effector cells of vascular damage. In other auto-immune diseases, these neutrophil-derived neoepitopes may arise from a number of processes that include release of granule enzymes and ROS, changes in the properties of components of their plasma membrane as a result of activation or apoptosis, and via the release of Neutrophil Extracellular Traps (NETs). NETs are extracellular structures that contain chromatin that is decorated with granule enzymes (including citrullinated proteins) that can act as neo-epitopes to generate auto-immunity. This review therefore describes the processes that can result in neutrophil-mediated auto-immunity, and the role of neutrophils in the molecular pathologies of auto-immune diseases such as vasculitis, rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We discuss the potential role of NETs in these processes and some of the debate in the literature regarding the role of this phenomenon in microbial killing, cell death and auto-immunity.


Subject(s)
Autoimmunity , Neutrophils/immunology , Neutrophils/metabolism , Adaptive Immunity , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/etiology , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/metabolism , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/pathology , Apoptosis/immunology , Arthritis, Rheumatoid/etiology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Autoantigens/immunology , Extracellular Traps/genetics , Extracellular Traps/immunology , Humans , Immunity, Innate , Lupus Erythematosus, Systemic/etiology , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/pathology , Neutrophil Activation/immunology , Phagocytosis/immunology
8.
Immunol Rev ; 273(1): 344-56, 2016 09.
Article in English | MEDLINE | ID: mdl-27558345

ABSTRACT

The life span of a neutrophil is a tightly regulated process as extended survival is beneficial for pathogen elimination and cell death necessary to prevent cytotoxic content release from activated neutrophils at the inflammatory site. Therefore, the control between survival and death must be a dynamic process. We have previously described that proliferating cell nuclear antigen (PCNA) which is known as a nuclear protein pivotal in DNA synthesis, is a key element in controlling neutrophil survival through its association with procaspases. Contrary to the dogma which asserted that PCNA has a strictly nuclear function, in mature neutrophils, PCNA is present exclusively within the cytosol due to its nuclear export at the end of the granulocytic differentiation. More recent studies are consistent with the notion that the cytosolic scaffold of PCNA is aimed at modulating neutrophil fate rather than simply preventing death. Ultimately, targeting neutrophil survival might have important applications not just in the field of immunology and inflammation, but also in hematology and transfusion. The neutrophil emerges as a unique and powerful cellular model to unravel the basic mechanisms governing the cell cycle-independent functions of PCNA and should be considered as a leader of the pack.


Subject(s)
Cell Degranulation , Cell Survival , Neutrophil Activation , Neutrophils/immunology , Proliferating Cell Nuclear Antigen/metabolism , Animals , Apoptosis , Caspases, Initiator/metabolism , Humans , Protein Transport
9.
Kidney Int ; 96(2): 397-408, 2019 08.
Article in English | MEDLINE | ID: mdl-31142442

ABSTRACT

Granulomatosis with polyangiitis (GPA) is an autoimmune vasculitis associated with anti-neutrophil-cytoplasmic antibodies (ANCA) against proteinase 3 leading to kidney damage. Neutrophils from those patients have increased expression of membrane proteinase 3 during apoptosis. Here we examined whether neutrophils from patients with GPA have dysregulated protein expressions associated with apoptosis. A global proteomic analysis was performed comparing neutrophils from patients with GPA, with healthy individuals under basal conditions and during apoptosis. At disease onset, the cytosolic proteome of neutrophils of patients with GPA before treatment was significantly different from healthy controls, and this dysregulation was more pronounced following ex vivo apoptosis. Proteins involved in cell death/survival were altered in neutrophils of patients with GPA. Several proteins identified were PR3-binding partners involved in the clearance of apoptotic cells, namely calreticulin, annexin-A1 and phospholipid scramblase 1. These proteins form a platform at the membrane of apoptotic neutrophils in patients with GPA but not healthy individuals and this was associated with the clinical presentation of GPA. Thus, our study shows that neutrophils from patients with GPA have an intrinsic dysregulation in proteins involved in apoptotic cell clearance, which could contribute to the unabated inflammation and autoimmunity in GPA. Hence, harnessing these dysregulated pathways could lead to novel biomarkers and targeted therapeutic opportunities to treat kidney disease.


Subject(s)
Annexin A1/metabolism , Apoptosis/immunology , Autoimmunity , Granulomatosis with Polyangiitis/immunology , Neutrophils/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Annexin A1/immunology , Antibodies, Antineutrophil Cytoplasmic/immunology , Biomarkers/metabolism , Calreticulin/immunology , Calreticulin/metabolism , Female , Granulomatosis with Polyangiitis/blood , Granulomatosis with Polyangiitis/diagnosis , Humans , Male , Middle Aged , Myeloblastin/immunology , Myeloblastin/metabolism , Neutrophils/metabolism , Phospholipid Transfer Proteins/immunology , Phospholipid Transfer Proteins/metabolism , Proteomics , Signal Transduction/immunology , Young Adult
10.
J Immunol ; 199(11): 3914-3924, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29079698

ABSTRACT

Proteinase 3 (PR3) is a myeloid serine protease expressed in neutrophils, monocytes, and macrophages. PR3 has a number of well-characterized proinflammatory functions, including cleaving and activating chemokines and controlling cell survival and proliferation. When presented on the surface of apoptotic neutrophils, PR3 can disrupt the normal anti-inflammatory reprogramming of macrophages following the phagocytosis of apoptotic cells. To better understand the function of PR3 in vivo, we generated a human PR3 transgenic mouse (hPR3Tg). During zymosan-induced peritonitis, hPR3Tg displayed an increased accumulation of neutrophils within the peritoneal cavity compared with wild-type control mice, with no difference in the recruitment of macrophages or B or T lymphocytes. Mice were also subjected to cecum ligation and puncture, a model used to induce peritoneal inflammation through infection. hPR3Tg displayed decreased survival rates in acute sepsis, associated with increased neutrophil extravasation. The decreased survival and increased neutrophil accumulation were associated with the cleavage of annexin A1, a powerful anti-inflammatory protein known to facilitate the resolution of inflammation. Additionally, neutrophils from hPR3Tg displayed enhanced survival during apoptosis compared with controls, and this may also contribute to the increased accumulation observed during the later stages of inflammation. Taken together, our data suggest that human PR3 plays a proinflammatory role during acute inflammatory responses by affecting neutrophil accumulation, survival, and the resolution of inflammation.


Subject(s)
Myeloblastin/metabolism , Neutrophils/immunology , Peritoneal Cavity/pathology , Peritonitis/immunology , Sepsis/immunology , Animals , Annexin A1/metabolism , Apoptosis , Disease Models, Animal , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myeloblastin/genetics , Peritonitis/chemically induced , Phagocytosis , Sepsis/chemically induced , Zymosan
12.
Rheumatology (Oxford) ; 57(6): 1011-1020, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29506143

ABSTRACT

Objectives: Takayasu arteritis (TA) and GCA are large-vessel vasculitides characterized by vascular remodelling involving endothelial cells (ECs) and vascular smooth muscle cells. Mammalian target of rapamycin (mTOR) pathway has been involved in vascular remodelling. We hypothesized that the mTOR pathway was involved in the pathogenesis of large-vessel vasculitis. Methods: We used IF analysis on aortic and temporal artery biopsies from patients with TA and GCA to assess the involvement of the mTOR pathway and searched for antibodies targeting ECs in serum by IIF and cellular ELISA. We evaluated in vitro the effect of purified IgG from patients on mTOR pathway activation and cell proliferation. Results: IF analyses on tissues revealed that both mTORC1 and mTORC2 are activated specifically in ECs from TA patients but not in ECs from GCA patients and healthy controls (HCs). Using IIF and ELISA, we observed higher levels of antibodies binding to ECs in TA patients compared with GCA patients and HCs. Using western blot, we demonstrated that purified IgG from TA patients caused mTORC1 activation in ECs, whereas this effect was not observed with purified IgG from GCA patients or HCs. Purified IgG from TA patients induced a significant EC proliferation compared with to GCA and HC IgG, and this effect was decreased after EC exposure with sirolimus, a specific mTOR inhibitor and PI3K inhibitor. Conclusion: Our results suggest that antibodies targeting ECs drive endothelial remodelling in TA through activation of the mTOR pathway, but not in GCA. Inhibition of the mTOR pathway could represent a therapeutic option in TA.


Subject(s)
Antibodies/immunology , Endothelial Cells/metabolism , Immunoglobulin G/blood , TOR Serine-Threonine Kinases/metabolism , Takayasu Arteritis/metabolism , Temporal Arteries/physiopathology , Vascular Remodeling , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies/blood , Blotting, Western , Cell Survival , Cells, Cultured , Endothelial Cells/immunology , Endothelial Cells/pathology , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin G/immunology , Immunohistochemistry , Male , Middle Aged , TOR Serine-Threonine Kinases/immunology , Takayasu Arteritis/pathology , Takayasu Arteritis/physiopathology , Temporal Arteries/metabolism , Temporal Arteries/pathology , Young Adult
13.
Blood ; 128(7): 993-1002, 2016 08 18.
Article in English | MEDLINE | ID: mdl-27402974

ABSTRACT

Functional studies of human neutrophils and their transfusion for clinical purposes have been hampered by their short life span after isolation. Here, we demonstrate that neutrophil viability is maintained for 20 hours in culture media at 37°C under anoxic conditions with 3 mM glucose and 32 µg/mL dimethyloxalylglycine supplementation, as evidenced by stabilization of Mcl-1, proliferating cell nuclear antigen (PCNA), and pro-caspase-3. Notably, neutrophil morphology (nucleus shape and cell-surface markers) and functions (phagocytosis, degranulation, calcium release, chemotaxis, and reactive oxygen species production) were comparable to blood circulating neutrophils. The observed extension in neutrophil viability was reversed upon exposure to oxygen. Extending neutrophil life span allowed efficient transfection of plasmids (40% transfection efficiency) and short interfering RNA (interleukin-8, PCNA, and Bax), as a validation of effective and functional genetic manipulation of neutrophils both in vitro and in vivo. In vivo, transfusion of conditioned neutrophils in a neutropenic guinea pig model increased bacterial clearance of Shigella flexneri upon colonic infection, strongly suggesting that these conditioned neutrophils might be suitable for transfusion purposes. In summary, such conditioning of neutrophils in vitro should facilitate their study and offer new opportunities for genetic manipulation and therapeutic use.


Subject(s)
Glucose/pharmacology , Hypoxia/pathology , Neutrophils/cytology , Animals , Anti-Infective Agents/metabolism , Apoptosis/drug effects , Biomarkers/metabolism , Blood Transfusion , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Separation , Cell Shape/drug effects , Cell Survival/drug effects , Guinea Pigs , Humans , Neutrophils/drug effects , Neutrophils/ultrastructure , Oxygen/pharmacology , Proliferating Cell Nuclear Antigen/metabolism , Transfection , bcl-2-Associated X Protein/metabolism
14.
Eur J Clin Invest ; 48 Suppl 2: e12990, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30039869

ABSTRACT

Neutrophils are critically involved in host defence and they also modulate the inflammatory process. Turning the inflammatory response towards a resolutive outcome requires a dialogue between apoptotic neutrophils and proresolving macrophages through complex key molecular interactions controlling efferocytosis, anti-inflammatory reprogramming and ultimately immune regulation. In this review, we will first focus on recent molecular analyses aiming at characterizing the role of proteins expressed on apoptotic neutrophils and their cognate partners expressed on macrophages in the resolution of inflammation. These will include chemokine receptors and their ligands and annexin A1 and its receptor FPR2. We will next depict how the structural and enzymatic properties of proteinase 3 (PR3), the autoantigen in vasculitis, allow its expression on apoptotic neutrophils, which in turn affects efferocytosis and immune response associated with the clearance of apoptotic cells. This example illustrates that the fate of apoptotic neutrophils directly influences the resolution of inflammation and immune responses thereby potentially contributing to systemic and nonresolving inflammation as well as autoimmunity.


Subject(s)
Autoimmunity/physiology , Macrophage Activation/immunology , Myeloblastin/immunology , Neutrophils/physiology , Animals , Apoptosis/immunology , Autoimmune Diseases/immunology , Cytokines/immunology , Humans , Inflammation/immunology , Macrophages/immunology , Mice , Neutrophils/enzymology , Neutrophils/immunology , Phagocytosis/immunology
15.
J Biol Chem ; 291(20): 10476-89, 2016 May 13.
Article in English | MEDLINE | ID: mdl-26961880

ABSTRACT

Proteinase 3 (PR3), the autoantigen in granulomatosis with polyangiitis, is expressed at the plasma membrane of resting neutrophils, and this membrane expression increases during both activation and apoptosis. Using surface plasmon resonance and protein-lipid overlay assays, this study demonstrates that PR3 is a phosphatidylserine-binding protein and this interaction is dependent on the hydrophobic patch responsible for membrane anchorage. Molecular simulations suggest that PR3 interacts with phosphatidylserine via a small number of amino acids, which engage in long lasting interactions with the lipid heads. As phosphatidylserine is a major component of microvesicles (MVs), this study also examined the consequences of this interaction on MV production and function. PR3-expressing cells produced significantly fewer MVs during both activation and apoptosis, and this reduction was dependent on the ability of PR3 to associate with the membrane as mutating the hydrophobic patch restored MV production. Functionally, activation-evoked MVs from PR3-expressing cells induced a significantly larger respiratory burst in human neutrophils compared with control MVs. Conversely, MVs generated during apoptosis inhibited the basal respiratory burst in human neutrophils, and those generated from PR3-expressing cells hampered this inhibition. Given that membrane expression of PR3 is increased in patients with granulomatosis with polyangiitis, MVs generated from neutrophils expressing membrane PR3 may potentiate oxidative damage of endothelial cells and promote the systemic inflammation observed in this disease.


Subject(s)
Cell-Derived Microparticles/metabolism , Myeloblastin/metabolism , Phosphatidylserines/metabolism , Animals , Apoptosis , Cell Line , Granulomatosis with Polyangiitis/enzymology , Granulomatosis with Polyangiitis/etiology , Humans , Male , Mice , Mice, Inbred C57BL , Molecular Docking Simulation , Myeloblastin/chemistry , Neutrophils/metabolism , Phospholipid Transfer Proteins/metabolism , Rats , Respiratory Burst
16.
Am J Respir Cell Mol Biol ; 54(5): 740-50, 2016 05.
Article in English | MEDLINE | ID: mdl-26517580

ABSTRACT

Neutrophil-associated inflammation during Pseudomonas aeruginosa lung infection is a determinant of morbidity in cystic fibrosis (CF). Neutrophil apoptosis is a key factor in inflammation resolution and is controlled by cytosolic proliferating cell nuclear antigen (PCNA). p21/Waf1, a cyclin-dependent kinase inhibitor, is a partner of PCNA, and its mRNA is up-regulated in human neutrophils during LPS challenge. We show here that, after 7 days of persistent infection with P. aeruginosa, neutrophilic inflammation was more prominent in p21(-/-) compared with wild-type (WT) mice. Notably, no intrinsic defect in the phagocytosis of apoptotic cells by macrophages was found in p21(-/-) compared with WT mice. Inflammatory cell analysis in peritoneal lavages after zymosan-induced peritonitis showed a significantly increased number of neutrophils at 48 hours in p21(-/-) compared with WT mice. In vitro analysis was consistent with delayed neutrophil apoptosis in p21(-/-) compared with WT mice. Ectopic expression of p21/waf1 in neutrophil-differentiated PLB985 cells potentiated apoptosis and reversed the prosurvival effect of PCNA. In human neutrophils, p21 messenger RNA was induced by TNF-α, granulocyte colony-stimulating factor, and LPS. Neutrophils isolated from patients with CF showed enhanced survival, which was reduced after treatment with a carboxy-peptide derived from the sequence of p21/waf1. Notably, p21/waf1 was detected by immunohistochemistry in neutrophils within lungs from patients with CF. Our data reveal a novel role for p21/waf1 in the resolution of inflammation via its ability to control neutrophil apoptosis. This mechanism may be relevant in the neutrophil-dominated inflammation observed in CF and other chronic inflammatory lung conditions.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21/metabolism , Neutrophils/metabolism , Pneumonia/metabolism , Pneumonia/microbiology , Pseudomonas Infections/metabolism , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/physiology , Adolescent , Animals , Apoptosis/drug effects , Cell Count , Cell Differentiation/drug effects , Cell Line , Cyclin-Dependent Kinase Inhibitor p21/deficiency , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cystic Fibrosis/complications , Cystic Fibrosis/microbiology , Cystic Fibrosis/pathology , Female , Granulocyte Colony-Stimulating Factor/pharmacology , Humans , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Macrophages/pathology , Male , Mice , Models, Biological , Neutrophils/drug effects , Peritonitis/microbiology , Peritonitis/pathology , Phagocytosis/drug effects , Pneumonia/complications , Pneumonia/pathology , Proliferating Cell Nuclear Antigen/metabolism , Pseudomonas Infections/complications , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Zymosan
18.
Trends Immunol ; 32(3): 117-24, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21317039

ABSTRACT

Recently, unexpected biological features of polymorphonuclear neutrophils have been revealed. In addition to their pivotal role in the defence against pathogens, neutrophils display a high degree of plasticity and contribute to control of adaptive immune responses. An emerging aspect of neutrophils is their ability to modulate their survival in response to both intrinsic and extrinsic factors. This review focuses on recent advances that have uncovered proliferating cell nuclear antigen (PCNA) and other cell cycle regulatory proteins as novel players regulating neutrophil survival. A better understanding of the mechanisms involved in neutrophil fate might pave the way for the identification of new anti-inflammatory molecules.


Subject(s)
Apoptosis , Neutrophils/cytology , Neutrophils/immunology , Animals , Cell Nucleus/immunology , Cytoplasm/immunology , Humans , Inflammation/immunology , Proliferating Cell Nuclear Antigen/immunology
19.
J Immunol ; 189(5): 2574-83, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22844112

ABSTRACT

Proteinase 3 (PR3) is the target of anti-neutrophil cytoplasm Abs in granulomatosis with polyangiitis, a form of systemic vasculitis. Upon neutrophil apoptosis, PR3 is coexternalized with phosphatidylserine and impaired macrophage phagocytosis. Calreticulin (CRT), a protein involved in apoptotic cell recognition, was found to be a new PR3 partner coexpressed with PR3 on the neutrophil plasma membrane during apoptosis, but not after degranulation. The association between PR3 and CRT was demonstrated in neutrophils by confocal microscopy and coimmunoprecipitation. Evidence for a direct interaction between PR3 and the globular domain of CRT, but not with its P domain, was provided by surface plasmon resonance spectroscopy. Phagocytosis of apoptotic neutrophils from healthy donors was decreased after blocking lipoprotein receptor-related protein (LRP), a CRT receptor on macrophages. In contrast, neutrophils from patients with granulomatosis with polyangiitis expressing high membrane PR3 levels showed a lower rate of phagocytosis than those from healthy controls not affected by anti-LRP, suggesting that the LRP-CRT pathway was disturbed by PR3-CRT association. Moreover, phagocytosis of apoptotic PR3-expressing cells potentiated proinflammatory cytokine in vitro by human monocyte-derived macrophages and in vivo by resident murine peritoneal macrophages, and diverted the anti-inflammatory response triggered by the phagocytosis of apoptotic cells after LPS challenge in thioglycolate-elicited murine macrophages. Therefore, membrane PR3 expressed on apoptotic neutrophils might amplify inflammation and promote autoimmunity by affecting the anti-inflammatory "reprogramming" of macrophages.


Subject(s)
Apoptosis/immunology , Autoantigens/metabolism , Calreticulin/metabolism , Granulomatosis with Polyangiitis/immunology , Macrophages/immunology , Microscopic Polyangiitis/immunology , Myeloblastin/metabolism , Neutrophils/immunology , Adjuvants, Immunologic/physiology , Animals , Granulomatosis with Polyangiitis/enzymology , Granulomatosis with Polyangiitis/pathology , Humans , Inflammation/enzymology , Inflammation/immunology , Inflammation/pathology , Macrophages/enzymology , Macrophages/pathology , Macrophages, Peritoneal/enzymology , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/pathology , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Microscopic Polyangiitis/enzymology , Microscopic Polyangiitis/pathology , Neutrophils/enzymology , Neutrophils/pathology , Rats
20.
Postgrad Med J ; 90(1063): 290-6, 2014 May.
Article in English | MEDLINE | ID: mdl-24737903

ABSTRACT

Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitides are a heterogeneous group of diseases corresponding to necrotising inflammation of small vessels with a wide range of clinical presentations. At least two of the diseases are believed to exhibit a common ground of pathophysiological mechanisms. These are granulomatosis with polyangiitis (GPA, formerly known as Wegener's granulomatosis) and microscopic polyangiitis (MPA). ANCA directed against proteinase 3 (PR3) are preferentially associated with GPA, and anti-myeloperoxidase (MPO) ANCA are associated mainly with MPA and eosinophilic GPA (formerly known as Churg-Strauss syndrome). Anti-MPO and anti-PR3 antibodies can activate neutrophils in vitro. In vivo data are available for humans and mice on the pathogenicity of anti-MPO but it is more controversial for PR3-ANCA. A recent genome-wide association study of patients with ANCA-associated vasculitides confirmed the genetic contribution to the pathogenesis of these conditions, with significant association of PR3-ANCA and human leukocyte antigen-DP and the genes encoding α1-antitrypsin and PR3. MPO-ANCA were significantly associated with human leukocyte antigen-DQ. Thus, recent results from epidemiological studies, genome-wide association study and therapeutic trials have suggested that these entities are, in fact, distinct. We have summarised these results and discuss the idea that these two entities should be studied separately as the nature of the two auto-antigens suggests at a molecular level despite shared ANCA involvement.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/immunology , Granulomatosis with Polyangiitis/immunology , Microscopic Polyangiitis/immunology , alpha 1-Antitrypsin/immunology , Animals , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/genetics , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/pathology , Antibodies, Antineutrophil Cytoplasmic/immunology , Autoantigens , Gene-Environment Interaction , Genetic Predisposition to Disease , Genome-Wide Association Study , Granulomatosis with Polyangiitis/genetics , Granulomatosis with Polyangiitis/pathology , Humans , Mice , Microscopic Polyangiitis/genetics , Microscopic Polyangiitis/pathology , Polymorphism, Single Nucleotide , alpha 1-Antitrypsin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL