Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Hum Mutat ; 43(12): 1956-1969, 2022 12.
Article in English | MEDLINE | ID: mdl-36030538

ABSTRACT

Tuberous sclerosis complex (TSC) is a multi-system genetic disorder. Most patients have germline mutations in TSC1 or TSC2 but, 10%-15% patients do not have TSC1/TSC2 mutations detected on routine clinical genetic testing. We investigated the contribution of low-level mosaic TSC1/TSC2 mutations in unsolved sporadic patients and families with TSC. Thirty-one sporadic TSC patients negative on routine testing and eight families with suspected parental mosaicism were sequenced using deep panel sequencing followed by droplet digital polymerase chain reaction. Pathogenic variants were found in 22/31 (71%) unsolved sporadic patients, 16 were mosaic (median variant allele fraction [VAF] 6.8% in blood) and 6 had missed germline mutations. Parental mosaicism was detected in 5/8 families (median VAF 1% in blood). Clinical testing laboratories typically only report pathogenic variants with allele fractions above 10%. Our findings highlight the critical need to change laboratory practice by implementing higher sensitivity assays to improve diagnostic yield, inform patient management and guide reproductive counseling.


Subject(s)
Tuberous Sclerosis , Humans , Tuberous Sclerosis/diagnosis , Tuberous Sclerosis/genetics , Tuberous Sclerosis/pathology , Tuberous Sclerosis Complex 2 Protein/genetics , Tuberous Sclerosis Complex 1 Protein/genetics , Tumor Suppressor Proteins/genetics , Mosaicism , Mutation
2.
Clin Chem ; 67(9): 1201-1209, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34151944

ABSTRACT

BACKGROUND: Despite improvements in the genetic and epigenetic analysis of cell-free DNA (cfDNA), there has been limited focus on assessing the preanalytical variables of recovery efficiency following cfDNA extraction and bisulfite modification. Quantification of recovery efficiency after these steps can facilitate quality assurance and improve reliability when comparing serial samples. METHODS: We developed an exogenous DNA Construct to Evaluate the Recovery Efficiency of cfDNA extraction and BISulfite modification (CEREBIS) after cfDNA extraction and/or subsequent bisulfite modification from plasma. The strategic placement of cytosine bases in the 180 bp CEREBIS enabled PCR amplification of the construct by a single primer set both after plasma DNA extraction and following subsequent bisulfite modification. RESULTS: Plasma samples derived from 8 organ transplant donors and 6 serial plasma samples derived from a liver transplant recipient were spiked with a known number of copies of CEREBIS. Recovery of CEREBIS after cfDNA extraction and bisulfite modification was quantified with high analytical accuracy by droplet digital PCR. The use of CEREBIS and quantification of its recovery was useful in identifying problematic extractions. Furthermore, its use was shown to be invaluable towards improving the reliability of the analysis of serial samples. CONCLUSIONS: CEREBIS can be used as a spike-in control to address the preanalytical variable of recovery efficiency both after cfDNA extraction from plasma and following bisulfite modification. Our approach can be readily implemented and its application may have significant benefits, especially in settings where longitudinal quantification of cfDNA for disease monitoring is necessary.


Subject(s)
Cell-Free Nucleic Acids , Cell-Free Nucleic Acids/genetics , DNA/genetics , Humans , Reproducibility of Results , Sulfites
3.
Clin Chem ; 62(7): 1012-9, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27354569

ABSTRACT

BACKGROUND: The quantification of genomic chimerism is increasingly recognized for its clinical significance after transplantation. Before the measurement of chimerism, accurate genotyping of genetic polymorphisms for informative alleles that can distinguish donor DNA from recipient DNA is essential. The ease of allelic discrimination of small deletion and insertion polymorphisms (DIPs) makes DIPs attractive markers to track chimerism. Current methodologies for the genotyping of DIPs are largely based on "open-tube" approaches. "Closed-tube" approaches involving no or minimal post-PCR handling are preferred. We compared 3 distinct methodologies to determine an optimal platform for DIP genotyping. METHODS: Genomic DNA from 19 normal individuals was genotyped for 6 small biallelic DIPs using high-resolution melting analysis (HRMA), probe-free droplet digital PCR (ddPCR), and microfluidic electrophoresis of PCR products. For HRMA, 3 different platforms were compared. RESULTS: Our newly developed probe-free ddPCR approach allowed the genotype of each DIP to be determined by fluorescence intensity based on amplicon size. Microfluidic electrophoresis also allowed genotypes to be determined by amplicon size. HRMA assays allowed the genotype of each DIP to be determined by melting profile. Genotyping results were concordant between the 3 methodologies. HRMA was the most readily performed methodology and was robust across 3 separate HRMA-capable platforms. CONCLUSIONS: We demonstrated the effectiveness of probe-free ddPCR to accurately genotype small biallelic DIPs. Nevertheless, HRMA proved to be the optimal approach for genotyping small DIPs because closed-tube approaches are preferred owing to rapid and less laborious workflows and least risk of PCR contamination.


Subject(s)
DNA/genetics , Genotyping Techniques/methods , Microfluidic Analytical Techniques , Mutagenesis, Insertional/genetics , Polymerase Chain Reaction , Polymorphism, Single Nucleotide/genetics , Sequence Deletion/genetics , Alleles , Genotype , Humans
5.
Virchows Arch ; 482(3): 625-633, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36370168

ABSTRACT

ALK-rearranged renal cell carcinoma (ALK-RCC) is a very rare novel molecularly defined entity in the recently published fifth edition of the World Health Organization classification of tumours. We describe a case of ALK-RCC in a 76-year-old female. The tumour was composed of discohesive rhabdoid cells and pleomorphic, multinucleated cells (equivalent to ISUP/WHO grade 4). The tumour showed expression with PAX8, Keratin 7 and alpha methylacyl CoA racemase. ALK (D5F3 clone) was strongly and diffusely positive. ALK-FISH showed significant split signals of ALK, confirming the diagnosis. RNA sequencing showed TPM3::ALK rearrangement. Including the current case, there are 14 reported ALK-RCC cases with the same TPM3 fusion partner gene. Review of these published cases highlights their morphological heterogeneity and stresses the importance of running ALK immunohistochemistry on difficult cases to classify renal tumours. This is important while identification of ALK-RCC has clinical significance due to the availability of targeted therapy with ALK inhibitors.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Female , Humans , Carcinoma, Renal Cell/pathology , Gene Fusion , Gene Rearrangement , Immunohistochemistry , In Situ Hybridization, Fluorescence , Kidney Neoplasms/pathology , Tropomyosin/genetics , Aged
6.
JAMA Neurol ; 80(6): 578-587, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37126322

ABSTRACT

Importance: Mesial temporal lobe epilepsy (MTLE) is the most common focal epilepsy subtype and is often refractory to antiseizure medications. While most patients with MTLE do not have pathogenic germline genetic variants, the contribution of postzygotic (ie, somatic) variants in the brain is unknown. Objective: To test the association between pathogenic somatic variants in the hippocampus and MTLE. Design, Setting, and Participants: This case-control genetic association study analyzed the DNA derived from hippocampal tissue of neurosurgically treated patients with MTLE and age-matched and sex-matched neurotypical controls. Participants treated at level 4 epilepsy centers were enrolled from 1988 through 2019, and clinical data were collected retrospectively. Whole-exome and gene-panel sequencing (each genomic region sequenced more than 500 times on average) were used to identify candidate pathogenic somatic variants. A subset of novel variants was functionally evaluated using cellular and molecular assays. Patients with nonlesional and lesional (mesial temporal sclerosis, focal cortical dysplasia, and low-grade epilepsy-associated tumors) drug-resistant MTLE who underwent anterior medial temporal lobectomy were eligible. All patients with available frozen tissue and appropriate consents were included. Control brain tissue was obtained from neurotypical donors at brain banks. Data were analyzed from June 2020 to August 2022. Exposures: Drug-resistant MTLE. Main Outcomes and Measures: Presence and abundance of pathogenic somatic variants in the hippocampus vs the unaffected temporal neocortex. Results: Of 105 included patients with MTLE, 53 (50.5%) were female, and the median (IQR) age was 32 (26-44) years; of 30 neurotypical controls, 11 (36.7%) were female, and the median (IQR) age was 37 (18-53) years. Eleven pathogenic somatic variants enriched in the hippocampus relative to the unaffected temporal neocortex (median [IQR] variant allele frequency, 1.92 [1.5-2.7] vs 0.3 [0-0.9]; P = .01) were detected in patients with MTLE but not in controls. Ten of these variants were in PTPN11, SOS1, KRAS, BRAF, and NF1, all predicted to constitutively activate Ras/Raf/mitogen-activated protein kinase (MAPK) signaling. Immunohistochemical studies of variant-positive hippocampal tissue demonstrated increased Erk1/2 phosphorylation, indicative of Ras/Raf/MAPK activation, predominantly in glial cells. Molecular assays showed abnormal liquid-liquid phase separation for the PTPN11 variants as a possible dominant gain-of-function mechanism. Conclusions and Relevance: Hippocampal somatic variants, particularly those activating Ras/Raf/MAPK signaling, may contribute to the pathogenesis of sporadic, drug-resistant MTLE. These findings may provide a novel genetic mechanism and highlight new therapeutic targets for this common indication for epilepsy surgery.


Subject(s)
Drug Resistant Epilepsy , Epilepsy, Temporal Lobe , Epilepsy , Neocortex , Humans , Female , Adult , Middle Aged , Male , Epilepsy, Temporal Lobe/surgery , Mitogen-Activated Protein Kinases/metabolism , Retrospective Studies , Hippocampus/pathology , Epilepsy/pathology
7.
Cancers (Basel) ; 13(8)2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33918976

ABSTRACT

Antibodies that block immune regulatory checkpoints (programmed cell death 1, PD-1 and cytotoxic T-lymphocyte-associated antigen 4, CTLA-4) to mobilise immunity have shown unprecedented clinical efficacy against cancer, demonstrating the importance of antigen-specific tumour recognition. Despite this, many patients still fail to benefit from these treatments and additional approaches are being sought. These include mechanisms that boost antigen-specific immunity either by vaccination or adoptive transfer of effector cells. Other than neoantigens, epigenetically regulated and shared antigens such as NY-ESO-1 are attractive targets; however, tissue expression is often heterogeneous and weak. Therefore, peptide-specific therapies combining multiple antigens rationally selected to give additive anti-cancer benefits are necessary to achieve optimal outcomes. Here, we show that Ropporin-1 (ROPN1) and 1B (ROPN1B), cancer restricted antigens, are highly expressed and immunogenic, inducing humoral immunity in patients with advanced metastatic melanoma. By multispectral immunohistochemistry, 88.5% of melanoma patients tested (n = 54/61) showed ROPN1B expression in at least 1 of 2/3 tumour cores in tissue microarrays. Antibody responses against ROPN1A and ROPN1B were detected in 71.2% of melanoma patients tested (n = 74/104), with increased reactivity seen with more advanced disease stages. Thus, ROPN1A and ROPN1B may indeed be viable targets for cancer immunotherapy, alone or in combination with other cancer antigens, and could be combined with additional therapies such as immune checkpoint blockade.

8.
Front Immunol ; 12: 672521, 2021.
Article in English | MEDLINE | ID: mdl-34177913

ABSTRACT

A significant number of patients (pts) with metastatic melanoma do not respond to anti-programmed cell death 1 (PD1) therapies. Identifying predictive biomarkers therefore remains an urgent need. We retrospectively analyzed plasma DNA of pts with advanced melanoma treated with PD-1 antibodies, nivolumab or pembrolizumab, for five PD-1 genotype single nucleotide polymorphisms (SNPs): PD1.1 (rs36084323, G>A), PD1.3 (rs11568821, G>A), PD1.5 (rs2227981, C>T) PD1.6 (rs10204225, G>A) and PD1.9 (rs2227982, C>T). Clinico-pathological and treatment parameters were collected, and presence of SNPs correlated with response, progression free survival (PFS) and overall survival (OS). 115 patients were identified with a median follow up of 18.7 months (range 0.26 - 52.0 months). All were Caucasian; 27% BRAF V600 mutation positive. At PD-1 antibody commencement, 36% were treatment-naïve and 52% had prior ipilimumab. The overall response rate was 43%, 19% achieving a complete response. Overall median PFS was 11.0 months (95% CI 5.4 - 17.3) and median OS was 31.1 months (95% CI 23.2 - NA). Patients with the G/G genotype had more complete responses than with A/G genotype (16.5% vs. 2.6% respectively) and the G allele of PD1.3 rs11568821 was significantly associated with a longer median PFS than the AG allele, 14.1 vs. 7.0 months compared to the A allele (p=0.04; 95% CI 0.14 - 0.94). No significant association between the remaining SNPs and responses, PFS or OS were observed. Despite limitations in sample size, this is the first study to demonstrate an association of a germline PD-1 polymorphism and PFS in response to anti-PD-1 therapy in pts with metastatic melanoma. Extrinsic factors like host germline polymorphisms should be considered with tumor intrinsic factors as predictive biomarkers for immune checkpoint regulators.


Subject(s)
Biomarkers, Tumor/genetics , Drug Resistance, Neoplasm/genetics , Immune Checkpoint Inhibitors/therapeutic use , Melanoma/genetics , Programmed Cell Death 1 Receptor/genetics , Adult , Aged , Aged, 80 and over , Female , Genotype , Humans , Male , Melanoma/drug therapy , Melanoma/mortality , Middle Aged , Polymorphism, Single Nucleotide , Progression-Free Survival , Retrospective Studies
9.
J Mol Diagn ; 21(3): 418-426, 2019 05.
Article in English | MEDLINE | ID: mdl-30731208

ABSTRACT

The analysis of circulating tumor DNA provides a minimally invasive molecular interrogation that has the potential to guide treatment selection and disease monitoring. Here, the authors evaluated a custom UltraSEEK melanoma panel for the MassARRAY system, probing for 61 mutations over 13 genes. The analytical sensitivity and clinical accuracy of the UltraSEEK melanoma panel was compared with droplet digital PCR. The blinded analysis of 68 mutations detected in 48 plasma samples from stage IV melanoma patients revealed a concordance of 88% between the two platforms. Further comparison of both methods for the detection of BRAF V600E mutations in 77 plasma samples demonstrated a Cohen's κ of 0.826 (bias-corrected and accelerated 95% CI, 0.669-0.946). These results indicate that the UltraSEEK melanoma panel is as sensitive as droplet digital PCR for the detection of circulating tumor DNA in this cohort of patients but highlight the need for detected variants to be confirmed orthogonally to mitigate any false-positive results. The MassARRAY system enables rapid and sensitive genotyping for the detection of multiple melanoma-associated mutations in plasma.


Subject(s)
Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Genomics , Melanoma/blood , Melanoma/genetics , Oncogenes , Humans , Mutation/genetics , Proto-Oncogene Proteins B-raf/genetics
10.
J Invest Dermatol ; 139(8): 1762-1768, 2019 08.
Article in English | MEDLINE | ID: mdl-30772300

ABSTRACT

The benign melanocytic nevus is the most common tumor in humans and rarely transforms into cutaneous melanoma. Elucidation of the nevus genome is required to better understand the molecular steps of progression to melanoma. We performed whole genome sequencing on a series of 14 benign melanocytic nevi consisting of both congenital and acquired types. All nevi had driver mutations in the MAPK signaling pathway, either BRAF V600E or NRAS Q61R/L. No additional definite driver mutations were identified. Somatic mutations in nevi with higher mutation loads showed a predominance of mutational signatures 7a and 7b, consistent with UVR exposure, whereas nevi with lower mutation loads (including all three congenital nevi) had a predominance of the ubiquitous signatures 1 and 5. Two nevi had mutations in promoter regions predicted to bind E26 transformation-specific family transcription factors, as well as subclonal mutations in the TERT promoter. This paper presents whole genome data from melanocytic nevi. We confirm that UVR is involved in the etiology of a subset of nevi. This study also establishes that TERT promoter mutations are present in morphologically benign skin nevi in subclonal populations, which has implications regarding the interpretation of this emerging biomarker in sensitive assays.


Subject(s)
Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , MAP Kinase Signaling System/genetics , Nevus, Pigmented/genetics , Skin Neoplasms/genetics , Adolescent , Adult , Child , Cohort Studies , DNA Mutational Analysis , Female , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Humans , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Middle Aged , Mutation , Nevus, Pigmented/congenital , Nevus, Pigmented/pathology , Nevus, Pigmented/surgery , Polymorphism, Single Nucleotide , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Skin/pathology , Skin Neoplasms/congenital , Skin Neoplasms/pathology , Skin Neoplasms/surgery , Telomerase/genetics , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL