Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Nature ; 588(7838): 459-465, 2020 12.
Article in English | MEDLINE | ID: mdl-32866962

ABSTRACT

Aberrant aggregation of the RNA-binding protein TDP-43 in neurons is a hallmark of frontotemporal lobar degeneration caused by haploinsufficiency in the gene encoding progranulin1,2. However, the mechanism leading to TDP-43 proteinopathy remains unclear. Here we use single-nucleus RNA sequencing to show that progranulin deficiency promotes microglial transition from a homeostatic to a disease-specific state that causes endolysosomal dysfunction and neurodegeneration in mice. These defects persist even when Grn-/- microglia are cultured ex vivo. In addition, single-nucleus RNA sequencing reveals selective loss of excitatory neurons at disease end-stage, which is characterized by prominent nuclear and cytoplasmic TDP-43 granules and nuclear pore defects. Remarkably, conditioned media from Grn-/- microglia are sufficient to promote TDP-43 granule formation, nuclear pore defects and cell death in excitatory neurons via the complement activation pathway. Consistent with these results, deletion of the genes encoding C1qa and C3 mitigates microglial toxicity and rescues TDP-43 proteinopathy and neurodegeneration. These results uncover previously unappreciated contributions of chronic microglial toxicity to TDP-43 proteinopathy during neurodegeneration.


Subject(s)
Microglia/metabolism , Microglia/pathology , Neurons/metabolism , Neurons/pathology , Progranulins/deficiency , TDP-43 Proteinopathies/metabolism , TDP-43 Proteinopathies/pathology , Aging/genetics , Aging/pathology , Animals , Cell Nucleus/genetics , Cell Nucleus/pathology , Complement Activation/drug effects , Complement Activation/immunology , Complement C1q/antagonists & inhibitors , Complement C1q/immunology , Complement C3b/antagonists & inhibitors , Complement C3b/immunology , Culture Media, Conditioned/chemistry , Culture Media, Conditioned/pharmacology , DNA-Binding Proteins/metabolism , Disease Models, Animal , Female , Male , Mice , Nuclear Pore/metabolism , Nuclear Pore/pathology , Progranulins/genetics , RNA-Seq , Single-Cell Analysis , TDP-43 Proteinopathies/drug therapy , TDP-43 Proteinopathies/genetics , Thalamus/metabolism , Thalamus/pathology , Transcriptome
2.
Bioessays ; 41(3): e1800194, 2019 03.
Article in English | MEDLINE | ID: mdl-30730055

ABSTRACT

Microtubules form a highly dynamic filament network in all eukaryotic cells. Individual microtubules grow by tubulin dimer subunit addition and frequently switch between phases of growth and shortening. These unique dynamics are powered by GTP hydrolysis and drive microtubule network remodeling, which is central to eukaryotic cell biology and morphogenesis. Yet, our knowledge of the molecular events at growing microtubule ends remains incomplete. Here, recent ultrastructural, biochemical and cell biological data are integrated to develop a realistic model of growing microtubule ends comprised of structurally distinct but biochemically overlapping zones. Proteins that recognize microtubule lattice conformations associated with specific tubulin guanosine nucleotide states may independently control major structural transitions at growing microtubule ends. A model is proposed in which tubulin dimer addition and subsequent closure of the MT wall are optimized in cells to achieve rapid physiological microtubule growth.


Subject(s)
Microtubules/metabolism , Tubulin/chemistry , Animals , Cell Line, Tumor , Cryoelectron Microscopy , Doublecortin Domain Proteins , Guanosine/chemistry , Guanosine Triphosphate/chemistry , Humans , Hydrolysis , Mammals , Microtubule-Associated Proteins/metabolism , Microtubules/ultrastructure , Models, Molecular , Morphogenesis , Neuropeptides/metabolism , Polymerization , Protein Binding , Protein Conformation , Tubulin/ultrastructure , Tubulin Modulators/metabolism
3.
J Biol Chem ; 294(22): 8779-8790, 2019 05 31.
Article in English | MEDLINE | ID: mdl-30992364

ABSTRACT

Tau, a member of the MAP2/tau family of microtubule-associated proteins, stabilizes and organizes axonal microtubules in healthy neurons. In neurodegenerative tauopathies, tau dissociates from microtubules and forms neurotoxic extracellular aggregates. MAP2/tau family proteins are characterized by three to five conserved, intrinsically disordered repeat regions that mediate electrostatic interactions with the microtubule surface. Here, we used molecular dynamics, microtubule-binding experiments, and live-cell microscopy, revealing that highly-conserved histidine residues near the C terminus of each microtubule-binding repeat are pH sensors that can modulate tau-microtubule interaction strength within the physiological intracellular pH range. We observed that at low pH (<7.5), these histidines are positively charged and interact with phenylalanine residues in a hydrophobic cleft between adjacent tubulin dimers. At higher pH (>7.5), tau deprotonation decreased binding to microtubules both in vitro and in cells. Electrostatic and hydrophobic characteristics of histidine were both required for tau-microtubule binding, as substitutions with constitutively and positively charged nonaromatic lysine or uncharged alanine greatly reduced or abolished tau-microtubule binding. Consistent with these findings, tau-microtubule binding was reduced in a cancer cell model with increased intracellular pH but was rapidly restored by decreasing the pH to normal levels. These results add detailed insights into the intracellular regulation of tau activity that may be relevant in both normal and pathological conditions.


Subject(s)
Histidine/metabolism , Microtubules/metabolism , tau Proteins/metabolism , Amino Acid Sequence , Binding Sites , Cell Line, Tumor , Humans , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Kinetics , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Protein Binding , Protein Structure, Tertiary , Sequence Alignment , Static Electricity , tau Proteins/genetics
4.
J Cell Sci ; 130(8): 1404-1412, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28232523

ABSTRACT

Error-free chromosome segregation requires dynamic control of microtubule attachment to kinetochores, but how kinetochore-microtubule interactions are spatially and temporally controlled during mitosis remains incompletely understood. In addition to the NDC80 microtubule-binding complex, other proteins with demonstrated microtubule-binding activities localize to kinetochores. One such protein is the cytoplasmic linker-associated protein 2 (CLASP2). Here, we show that global GSK3-mediated phosphorylation of the longest isoform, CLASP2α, largely abolishes CLASP2α-microtubule association in metaphase. However, it does not directly control localization of CLASP2α to kinetochores. Using dominant phosphorylation-site variants, we find that CLASP2α phosphorylation weakens kinetochore-microtubule interactions as evidenced by decreased tension between sister kinetochores. Expression of CLASP2α phosphorylation-site mutants also resulted in increased chromosome segregation defects, indicating that GSK3-mediated control of CLASP2α-microtubule interactions contributes to correct chromosome dynamics. Because of global inhibition of CLASP2α-microtubule interactions, we propose a model in which only kinetochore-bound CLASP2α is dephosphorylated, locally engaging its microtubule-binding activity.


Subject(s)
Keratinocytes/physiology , Kinetochores/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Mitosis/physiology , CDC2 Protein Kinase , Cell Line , Chromosome Segregation/genetics , Cyclin-Dependent Kinases/metabolism , Cytoskeletal Proteins , Glycogen Synthase Kinase 3/metabolism , Humans , Microtubule-Associated Proteins/genetics , Mutation/genetics , Nuclear Proteins/metabolism , Phosphorylation/genetics , Protein Binding , Protein Engineering
6.
Cell ; 136(2): 380, 380.e1, 2009 Jan 23.
Article in English | MEDLINE | ID: mdl-19167337
7.
J Cell Sci ; 129(20): 3685-3693, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27672021

ABSTRACT

Autophagy, a pathway for lysosomal-mediated cellular degradation, has recently been described as a regulator of cell migration. Although the molecular mechanisms underlying autophagy-dependent motility are only beginning to emerge, new work demonstrates that selective autophagy mediated by the autophagy cargo receptor, NBR1, specifically promotes the dynamic turnover of integrin-based focal adhesion sites during motility. Here, we discuss the detailed mechanisms through which NBR1-dependent selective autophagy supports focal adhesion remodeling, and we describe the interconnections between this pathway and other established regulators of focal adhesion turnover, such as microtubules. We also highlight studies that examine the contribution of autophagy to selective degradation of proteins that mediate cellular tension and to integrin trafficking; these findings hint at further roles for autophagy in supporting adhesion and migration. Given the recently appreciated importance of selective autophagy in diverse cellular processes, we propose that further investigation into autophagy-mediated focal adhesion turnover will not only shed light onto how focal adhesions are regulated but will also unveil new mechanisms regulating selective autophagy.


Subject(s)
Autophagy , Cell Movement , Animals , Cell Adhesion , Focal Adhesions/metabolism , Humans , Integrins/metabolism , Protein Transport
8.
Hum Mol Genet ; 23(2): 449-66, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24030547

ABSTRACT

Heterozygous LIS1 mutations are responsible for the human neuronal migration disorder lissencephaly. Mitotic functions of LIS1 have been suggested from many organisms throughout evolution. However, the cellular functions of LIS1 at distinct intracellular compartments such as the centrosome and the cell cortex have not been well defined especially during mitotic cell division. Here, we used detailed cellular approaches and time-lapse live cell imaging of mitosis from Lis1 mutant mouse embryonic fibroblasts to reveal critical roles of LIS1 in mitotic spindle regulation. We found that LIS1 is required for the tight control of chromosome congression and segregation to dictate kinetochore-microtubule (MT) interactions and anaphase progression. In addition, LIS1 is essential for the establishment of mitotic spindle pole integrity by maintaining normal centrosome number. Moreover, LIS1 plays crucial roles in mitotic spindle orientation by increasing the density of astral MT plus-end movements toward the cell cortex, which enhances cortical targeting of LIS1-dynein complex. Overexpression of NDEL1-dynein and MT stabilization rescues spindle orientation defects in Lis1 mutants, demonstrating that mouse LIS1 acts via the LIS1-NDEL1-dynein complex to regulate astral MT plus-ends dynamics and establish proper contacts of MTs with the cell cortex to ensure precise cell division.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , Carrier Proteins/metabolism , Dyneins/metabolism , Lissencephaly/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Mitosis , Spindle Apparatus/metabolism , 1-Alkyl-2-acetylglycerophosphocholine Esterase/genetics , Animals , Cells, Cultured , Centrosome , Cerebral Cortex , Chromosome Segregation , HEK293 Cells , Humans , Lissencephaly/genetics , Mice , Microtubule-Associated Proteins/genetics , Mutation , Neurons/metabolism , Protein Stability , Spindle Apparatus/genetics
9.
Hum Mol Genet ; 23(18): 4945-59, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24821701

ABSTRACT

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a severe neurodegenerative disorder that affects carriers of premutation CGG-repeat expansion alleles of the fragile X mental retardation 1 (FMR1) gene; current evidence supports a causal role of the expanded CGG repeat within the FMR1 mRNA in the pathogenesis of FXTAS. Though the mRNA has been observed to induce cellular toxicity in FXTAS, the mechanisms are unclear. One common neurophysiological characteristic of FXTAS patients is their inability to properly attenuate their response to an auditory stimulus upon receipt of a small pre-stimulus. Therefore, to gain genetic and cell biological insight into FXTAS, we examined the effect of expanded CGG repeats on the plasticity of the olfactory response of the genetically tractable nematode, Caenorhabditis elegans (C. elegans). While C. elegans is innately attracted to odors, this response can be downregulated if the odor is paired with starvation. We found that expressing expanded CGG repeats in olfactory neurons interfered with this plasticity without affecting either the innate odor-seeking response or the olfactory neuronal morphology. Interrogation of three RNA regulatory pathways indicated that the expanded CGG repeats act via the C. elegans microRNA (miRNA)-specific Argonaute ALG-2 to diminish olfactory plasticity. This observation suggests that the miRNA-Argonaute pathway may play a pathogenic role in subverting neuronal function in FXTAS.


Subject(s)
Butanones/pharmacology , Caenorhabditis elegans/physiology , Fragile X Mental Retardation Protein/genetics , Olfactory Receptor Neurons/metabolism , Sensory Receptor Cells/metabolism , Animals , Animals, Genetically Modified , Argonaute Proteins/genetics , Ataxia/genetics , Ataxia/pathology , Caenorhabditis elegans/genetics , Disease Models, Animal , Fragile X Syndrome/genetics , Fragile X Syndrome/pathology , Humans , Neuronal Plasticity , Smell , Tremor/genetics , Tremor/pathology , Trinucleotide Repeat Expansion
10.
J Biol Chem ; 289(44): 30857-30867, 2014 Oct 31.
Article in English | MEDLINE | ID: mdl-25231989

ABSTRACT

The postsynaptic apparatus of the neuromuscular junction (NMJ) traps and anchors acetylcholine receptors (AChRs) at high density at the synapse. We have previously shown that microtubule (MT) capture by CLASP2, a MT plus-end-tracking protein (+TIP), increases the size and receptor density of AChR clusters at the NMJ through the delivery of AChRs and that this is regulated by a pathway involving neuronal agrin and several postsynaptic kinases, including GSK3. Phosphorylation by GSK3 has been shown to cause CLASP2 dissociation from MT ends, and nine potential phosphorylation sites for GSK3 have been mapped on CLASP2. How CLASP2 phosphorylation regulates MT capture at the NMJ and how this controls the size of AChR clusters are not yet understood. To examine this, we used myotubes cultured on agrin patches that induce AChR clustering in a two-dimensional manner. We show that expression of a CLASP2 mutant, in which the nine GSK3 target serines are mutated to alanine (CLASP2-9XS/9XA) and are resistant to GSK3ß-dependent phosphorylation, promotes MT capture at clusters and increases AChR cluster size, compared with myotubes that express similar levels of wild type CLASP2 or that are noninfected. Conversely, myotubes expressing a phosphomimetic form of CLASP2 (CLASP2-8XS/D) show enrichment of immobile mutant CLASP2 in clusters, but MT capture and AChR cluster size are reduced. Taken together, our data suggest that both GSK3ß-dependent phosphorylation and the level of CLASP2 play a role in the maintenance of AChR cluster size through the regulated capture and release of MT plus-ends.


Subject(s)
Glycogen Synthase Kinase 3/physiology , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Protein Processing, Post-Translational , Receptors, Cholinergic/metabolism , Agrin/physiology , Animals , COS Cells , Chlorocebus aethiops , Glycogen Synthase Kinase 3 beta , HEK293 Cells , Humans , Mice, Inbred C57BL , Mice, Knockout , Microtubules/ultrastructure , Muscle Fibers, Skeletal/metabolism , Phosphorylation , Primary Cell Culture , Protein Transport
11.
BMC Biol ; 12: 47, 2014 Jun 12.
Article in English | MEDLINE | ID: mdl-24923837

ABSTRACT

BACKGROUND: In the adult central nervous system, axonal regeneration is abortive. Regulators of microtubule dynamics have emerged as attractive targets to promote axonal growth following injury as microtubule organization is pivotal for growth cone formation. In this study, we used conditioned neurons with high regenerative capacity to further dissect cytoskeletal mechanisms that might be involved in the gain of intrinsic axon growth capacity. RESULTS: Following a phospho-site broad signaling pathway screen, we found that in conditioned neurons with high regenerative capacity, decreased glycogen synthase kinase 3ß (GSK3ß) activity and increased microtubule growth speed in the growth cone were present. To investigate the importance of GSK3ß regulation during axonal regeneration in vivo, we used three genetic mouse models with high, intermediate or no GSK3ß activity in neurons. Following spinal cord injury, reduced GSK3ß levels or complete neuronal deletion of GSK3ß led to increased growth cone microtubule growth speed and promoted axon regeneration. While several microtubule-interacting proteins are GSK3ß substrates, phospho-mimetic collapsin response mediator protein 2 (T/D-CRMP-2) was sufficient to decrease microtubule growth speed and neurite outgrowth of conditioned neurons and of GSK3ß-depleted neurons, prevailing over the effect of decreased levels of phosphorylated microtubule-associated protein 1B (MAP1B) and through a mechanism unrelated to decreased levels of phosphorylated cytoplasmic linker associated protein 2 (CLASP2). In addition, phospho-resistant T/A-CRMP-2 counteracted the inhibitory myelin effect on neurite growth, further supporting the GSK3ß-CRMP-2 relevance during axon regeneration. CONCLUSIONS: Our work shows that increased microtubule growth speed in the growth cone is present in conditions of increased axonal growth, and is achieved following inactivation of the GSK3ß-CRMP-2 pathway, enhancing axon regeneration through the glial scar. In this context, our results support that a precise control of microtubule dynamics, specifically in the growth cone, is required to optimize axon regrowth.


Subject(s)
Axons/physiology , Glycogen Synthase Kinase 3/genetics , Growth Cones/metabolism , Microtubules/metabolism , Regeneration , Animals , Female , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Phosphorylation , Rats , Rats, Wistar
12.
Cell Microbiol ; 15(4): 571-84, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23107073

ABSTRACT

Mammalian cell invasion by the protozoan parasite Trypanosoma cruzi involves host cell microtubule dynamics. Microtubules support kinesin-dependent anterograde trafficking of host lysosomes to the cell periphery where targeted lysosome exocytosis elicits remodelling of the plasma membrane and parasite invasion. Here, a novel role for microtubule plus-end tracking proteins (+TIPs) in the co-ordination of T. cruzi trypomastigote internalization and post-entry events is reported. Acute silencing of CLASP1, a +TIP that participates in microtubule stabilization at the cell periphery, impairs trypomastigote internalization without diminishing the capacity for calcium-regulated lysosome exocytosis. Subsequent fusion of the T. cruzi vacuole with host lysosomes and its juxtanuclear positioning are also delayed in CLASP1-depleted cells. These post-entry phenotypes correlate with a generalized impairment of minus-end directed transport of lysosomes in CLASP1 knock-down cells and mimic the effects of dynactin disruption. Consistent with GSK3ß acting as a negative regulator of CLASP function, inhibition of GSK3ß activity enhances T. cruzi entry in a CLASP1-dependent manner and expression of constitutively active GSK3ß dampens infection. This study provides novel molecular insights into the T. cruzi infection process, emphasizing functional links between parasite-elicited signalling, host microtubule plus-end tracking proteins and dynein-based retrograde transport. Highlighted in this work is a previously unrecognized role for CLASPs in dynamic lysosome positioning, an important aspect of the nutrient sensing response in mammalian cells.


Subject(s)
Endocytosis , Host-Pathogen Interactions , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Trypanosoma cruzi/physiology , Cells, Cultured , Epithelial Cells/parasitology , Fibroblasts/parasitology , Gene Silencing , Humans , Lysosomes/metabolism , Vacuoles/metabolism , Vacuoles/parasitology
13.
bioRxiv ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38464100

ABSTRACT

Doublecortin (DCX) is a microtubule-associated protein critical for brain development. Although most highly expressed in the developing central nervous system, the molecular function of DCX in neuron morphogenesis remains unknown and controversial. We demonstrate that DCX function is intimately linked to its microtubule-binding activity. By using human induced pluripotent stem cell (hiPSC)- derived cortical i 3 Neurons genome engineered to express mEmerald-tagged DCX from the endogenous locus, we find that DCX-MT interactions become highly polarized very early during neuron morphogenesis. DCX becomes enriched only on straight microtubules in advancing growth cones with approximately 120 DCX molecules bound per micrometer of growth cone microtubule. At a similar saturation, microtubule-bound DCX molecules begin to impede lysosome transport, and thus can potentially control growth cone organelle entry. In addition, by comparing control, DCX-mEmerald and knockout DCX -/Y i 3 Neurons, we find that DCX stabilizes microtubules in the growth cone peripheral domain by reducing the microtubule catastrophe frequency and the depolymerization rate. DCX -/Y i 3 Neuron morphogenesis was inhibited in soft microenvironments that mimic the viscoelasticity of brain tissue and DCX -/Y neurites failed to grow toward brain-derived neurotrophic factor (BDNF) gradients. Together with high resolution traction force microscopy data, we propose a model in which DCX-decorated, rigid growth cone microtubules provide intracellular mechanical resistance to actomyosin generated contractile forces in soft physiological environments in which weak and transient adhesion-mediated forces in the growth cone periphery may be insufficient for productive growth cone advance. These data provide a new mechanistic understanding of how DCX mutations cause lissencephaly-spectrum brain malformations by impacting growth cone dynamics during neuron morphogenesis in physiological environments.

14.
bioRxiv ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38370785

ABSTRACT

Stress granules (SGs) are macromolecular assemblies that form under cellular stress. Formation of these condensates is driven by the condensation of RNA and RNA-binding proteins such as G3BPs. G3BPs condense into SGs following stress-induced translational arrest. Three G3BP paralogs (G3BP1, G3BP2A, and G3BP2B) have been identified in vertebrates. However, the contribution of different G3BP paralogs to stress granule formation and stress-induced gene expression changes is incompletely understood. Here, we identified key residues for G3BP condensation such as V11. This conserved amino acid is required for formation of the G3BP-Caprin-1 complex, hence promoting SG assembly. Total RNA sequencing and ribosome profiling revealed that disruption of G3BP condensation corresponds to changes in mRNA levels and ribosome engagement during the integrated stress response (ISR). Moreover, we found that G3BP2B preferentially condenses and promotes changes in mRNA expression under endoplasmic reticulum (ER) stress. Together, this work suggests that stress granule assembly promotes changes in gene expression under cellular stress, which is differentially regulated by G3BP paralogs.

15.
J Biol Chem ; 287(21): 17050-17064, 2012 May 18.
Article in English | MEDLINE | ID: mdl-22467876

ABSTRACT

A group of diverse proteins reversibly binds to growing microtubule plus ends through interactions with end-binding proteins (EBs). These +TIPs control microtubule dynamics and microtubule interactions with other intracellular structures. Here, we use cytoplasmic linker-associated protein 2 (CLASP2) binding to EB1 to determine how multisite phosphorylation regulates interactions with EB1. The central, intrinsically disordered region of vertebrate CLASP proteins contains two SXIP EB1 binding motifs that are required for EB1-mediated plus-end-tracking in vitro. In cells, both EB1 binding motifs can be functional, but most of the binding free energy results from nearby electrostatic interactions. By employing molecular dynamics simulations of the EB1 interaction with a minimal CLASP2 plus-end-tracking module, we find that conserved arginine residues in CLASP2 form extensive hydrogen-bond networks with glutamate residues predominantly in the unstructured, acidic C-terminal tail of EB1. Multisite phosphorylation of glycogen synthase kinase 3 (GSK3) sites near the EB1 binding motifs disrupts this electrostatic "molecular Velcro." Molecular dynamics simulations and (31)P NMR spectroscopy indicate that phosphorylated serines participate in intramolecular interactions with and sequester arginine residues required for EB1 binding. Multisite phosphorylation of these GSK3 motifs requires priming phosphorylation by interphase or mitotic cyclin-dependent kinases (CDKs), and we find that CDK- and GSK3-dependent phosphorylation completely disrupts CLASP2 microtubule plus-end-tracking in mitosis.


Subject(s)
Microtubule-Associated Proteins/metabolism , Amino Acid Motifs , Glycogen Synthase Kinase 3/chemistry , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , HeLa Cells , Humans , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/genetics , Microtubules/chemistry , Microtubules/genetics , Microtubules/metabolism , Mitosis/physiology , Molecular Dynamics Simulation , Phosphorylation/physiology , Protein Structure, Tertiary , Static Electricity
16.
Nat Methods ; 7(9): 761-8, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20729842

ABSTRACT

Regulation of microtubule dynamics is essential for many cell biological processes and is likely to be variable between different subcellular regions. We describe a computational approach to analyze microtubule dynamics by detecting growing microtubule plus ends. Our algorithm tracked all EB1-EGFP comets visible in an image time-lapse sequence allowing the detection of spatial patterns of microtubule dynamics. We introduce spatiotemporal clustering of EB1-EGFP growth tracks to infer microtubule behaviors during phases of pause and shortening. We validated the algorithm by comparing the results to data for manually tracked, homogeneously labeled microtubules and by analyzing the effects of well-characterized inhibitors of microtubule polymerization dynamics. We used our method to analyze spatial variations of intracellular microtubule dynamics in migrating epithelial cells.


Subject(s)
Computational Biology , Microtubule-Associated Proteins/analysis , Microtubules/chemistry , Microtubules/metabolism , Acetylation , Algorithms , Biomarkers/analysis , Biomarkers/metabolism , Cell Line , Cell Movement , Computer Simulation , Epithelial Cells/cytology , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/metabolism , Humans , Microtubule-Associated Proteins/metabolism , Reproducibility of Results , Software , Tubulin/chemistry , Tubulin/metabolism
17.
PLoS Pathog ; 7(9): e1002198, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21909260

ABSTRACT

The strain designated Chlamydia trachomatis serovar that was used for experiments in this paper is Chlamydia muridarum, a species closely related to C. trachomatis (and formerly termed the Mouse Pneumonitis strain of C. trachomatis. [corrected]. The obligate intracellular pathogen Chlamydia trachomatis replicates within a membrane-bound inclusion that acquires host sphingomyelin (SM), a process that is essential for replication as well as inclusion biogenesis. Previous studies demonstrate that SM is acquired by a Brefeldin A (BFA)-sensitive vesicular trafficking pathway, although paradoxically, this pathway is dispensable for bacterial replication. This finding suggests that other lipid transport mechanisms are involved in the acquisition of host SM. In this work, we interrogated the role of specific components of BFA-sensitive and BFA-insensitive lipid trafficking pathways to define their contribution in SM acquisition during infection. We found that C. trachomatis hijacks components of both vesicular and non-vesicular lipid trafficking pathways for SM acquisition but that the SM obtained from these separate pathways is being utilized by the pathogen in different ways. We show that C. trachomatis selectively co-opts only one of the three known BFA targets, GBF1, a regulator of Arf1-dependent vesicular trafficking within the early secretory pathway for vesicle-mediated SM acquisition. The Arf1/GBF1-dependent pathway of SM acquisition is essential for inclusion membrane growth and stability but is not required for bacterial replication. In contrast, we show that C. trachomatis co-opts CERT, a lipid transfer protein that is a key component in non-vesicular ER to trans-Golgi trafficking of ceramide (the precursor for SM), for C. trachomatis replication. We demonstrate that C. trachomatis recruits CERT, its ER binding partner, VAP-A, and SM synthases, SMS1 and SMS2, to the inclusion and propose that these proteins establish an on-site SM biosynthetic factory at or near the inclusion. We hypothesize that SM acquired by CERT-dependent transport of ceramide and subsequent conversion to SM is necessary for C. trachomatis replication whereas SM acquired by the GBF1-dependent pathway is essential for inclusion growth and stability. Our results reveal a novel mechanism by which an intracellular pathogen redirects SM biosynthesis to its replicative niche.


Subject(s)
Chlamydia trachomatis/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Inclusion Bodies/physiology , Protein Serine-Threonine Kinases/metabolism , Sphingomyelins/biosynthesis , Vesicular Transport Proteins/metabolism , Amides/pharmacology , Benzamides/pharmacology , Benzoates/pharmacology , Brefeldin A/pharmacology , Casein Kinase I/metabolism , Chlamydia trachomatis/growth & development , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , HeLa Cells , Humans , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Transferases (Other Substituted Phosphate Groups)/metabolism
18.
Elife ; 122023 01 30.
Article in English | MEDLINE | ID: mdl-36715499

ABSTRACT

A challenge in analyzing dynamic intracellular cell biological processes is the dearth of methodologies that are sufficiently fast and specific to perturb intracellular protein activities. We previously developed a light-sensitive variant of the microtubule plus end-tracking protein EB1 by inserting a blue light-controlled protein dimerization module between functional domains. Here, we describe an advanced method to replace endogenous EB1 with this light-sensitive variant in a single genome editing step, thereby enabling this approach in human induced pluripotent stem cells (hiPSCs) and hiPSC-derived neurons. We demonstrate that acute and local optogenetic EB1 inactivation in developing cortical neurons induces microtubule depolymerization in the growth cone periphery and subsequent neurite retraction. In addition, advancing growth cones are repelled from areas of blue light exposure. These phenotypes were independent of the neuronal EB1 homolog EB3, revealing a direct dynamic role of EB1-mediated microtubule plus end interactions in neuron morphogenesis and neurite guidance.


Subject(s)
Induced Pluripotent Stem Cells , Microtubule-Associated Proteins , Humans , Genomics , Growth Cones/metabolism , Induced Pluripotent Stem Cells/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Protein Binding
19.
Dev Cell ; 13(5): 646-662, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17981134

ABSTRACT

Protrusion of the leading edge of migrating epithelial cells requires precise regulation of two actin filament (F-actin) networks, the lamellipodium and the lamella. Cofilin is a downstream target of Rho GTPase signaling that promotes F-actin cycling through its F-actin-nucleating, -severing, and -depolymerizing activity. However, its function in modulating lamellipodium and lamella dynamics, and the implications of these dynamics for protrusion efficiency, has been unclear. Using quantitative fluorescent speckle microscopy, immunofluorescence, and electron microscopy, we establish that the Rac1/Pak1/LIMK1 signaling pathway controls cofilin activity within the lamellipodium. Enhancement of cofilin activity accelerates F-actin turnover and retrograde flow, resulting in widening of the lamellipodium. This is accompanied by increased spatial overlap of the lamellipodium and lamella networks and reduced cell-edge protrusion efficiency. We propose that cofilin functions as a regulator of cell protrusion by modulating the spatial interaction of the lamellipodium and lamella in response to upstream signals.


Subject(s)
Actin Depolymerizing Factors/physiology , Actins/physiology , Epithelial Cells/physiology , Microfilament Proteins/physiology , Pseudopodia/physiology , p21-Activated Kinases/physiology , Cell Line , Cell Movement , Fluorescent Antibody Technique , Humans , Lim Kinases/metabolism , Signal Transduction , rac1 GTP-Binding Protein/metabolism
20.
Curr Biol ; 32(5): 1197-1205.e4, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35090591

ABSTRACT

Chromosome segregation is accomplished by the mitotic spindle, a bipolar micromachine built primarily from microtubules. Different microtubule populations contribute to spindle function: kinetochore microtubules attach and transmit forces to chromosomes, antiparallel interpolar microtubules support spindle structure, and astral microtubules connect spindle poles to the cell cortex.1,2 In mammalian cells, end-binding (EB) proteins associate with all growing microtubule plus ends throughout the cell cycle and serve as adaptors for diverse +TIPs that control microtubule dynamics and interactions with other intracellular structures.3 Because binding of many +TIPs to EB1 and thus microtubule-end association is switched off by mitotic phosphorylation,4-6 the mitotic function of EBs remains poorly understood. To analyze how EB1 and associated +TIPs on different spindle microtubule populations contribute to mitotic spindle dynamics, we use a light-sensitive EB1 variant, π-EB1, that allows local, acute, and reversible inactivation of +TIP association with growing microtubule ends in live cells.7 We find that acute π-EB1 photoinactivation results in rapid and reversible metaphase spindle shortening and transient relaxation of tension across the central spindle. However, in contrast to interphase, π-EB1 photoinactivation does not inhibit microtubule growth in metaphase but instead increases astral microtubule length and number. Yet in the absence of EB1 activity, astral microtubules fail to engage the cortical dynein/dynactin machinery, and spindle poles move away from regions of π-EB1 photoinactivation. In conclusion, our optogenetic approach reveals mitotic EB1 functions that remain hidden in genetic experiments, likely due to compensatory molecular systems regulating vertebrate spindle dynamics.


Subject(s)
Microtubule-Associated Proteins , Optogenetics , Animals , Mammals , Metaphase , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Spindle Apparatus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL