Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Cell ; 186(13): 2765-2782.e28, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37327786

ABSTRACT

Cancer is characterized by hypomethylation-associated silencing of large chromatin domains, whose contribution to tumorigenesis is uncertain. Through high-resolution genome-wide single-cell DNA methylation sequencing, we identify 40 core domains that are uniformly hypomethylated from the earliest detectable stages of prostate malignancy through metastatic circulating tumor cells (CTCs). Nested among these repressive domains are smaller loci with preserved methylation that escape silencing and are enriched for cell proliferation genes. Transcriptionally silenced genes within the core hypomethylated domains are enriched for immune-related genes; prominent among these is a single gene cluster harboring all five CD1 genes that present lipid antigens to NKT cells and four IFI16-related interferon-inducible genes implicated in innate immunity. The re-expression of CD1 or IFI16 murine orthologs in immuno-competent mice abrogates tumorigenesis, accompanied by the activation of anti-tumor immunity. Thus, early epigenetic changes may shape tumorigenesis, targeting co-located genes within defined chromosomal loci. Hypomethylation domains are detectable in blood specimens enriched for CTCs.


Subject(s)
DNA Methylation , Prostatic Neoplasms , Animals , Humans , Male , Mice , Carcinogenesis/genetics , DNA , Epigenesis, Genetic , Prostatic Neoplasms/genetics , Neoplastic Cells, Circulating
2.
Cell ; 158(5): 1110-1122, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25171411

ABSTRACT

Circulating tumor cell clusters (CTC clusters) are present in the blood of patients with cancer but their contribution to metastasis is not well defined. Using mouse models with tagged mammary tumors, we demonstrate that CTC clusters arise from oligoclonal tumor cell groupings and not from intravascular aggregation events. Although rare in the circulation compared with single CTCs, CTC clusters have 23- to 50-fold increased metastatic potential. In patients with breast cancer, single-cell resolution RNA sequencing of CTC clusters and single CTCs, matched within individual blood samples, identifies the cell junction component plakoglobin as highly differentially expressed. In mouse models, knockdown of plakoglobin abrogates CTC cluster formation and suppresses lung metastases. In breast cancer patients, both abundance of CTC clusters and high tumor plakoglobin levels denote adverse outcomes. Thus, CTC clusters are derived from multicellular groupings of primary tumor cells held together through plakoglobin-dependent intercellular adhesion, and though rare, they greatly contribute to the metastatic spread of cancer.


Subject(s)
Breast Neoplasms/pathology , Neoplasm Metastasis/pathology , Neoplastic Cells, Circulating/pathology , Animals , Breast Neoplasms/physiopathology , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Prostatic Neoplasms/pathology , Prostatic Neoplasms/physiopathology , Sequence Analysis, RNA , Single-Cell Analysis , gamma Catenin/metabolism
3.
Mol Cell ; 81(19): 4041-4058.e15, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34624217

ABSTRACT

Deregulation of oncogenic signals in cancer triggers replication stress. Immediate early genes (IEGs) are rapidly and transiently expressed following stressful signals, contributing to an integrated response. Here, we find that the orphan nuclear receptor NR4A1 localizes across the gene body and 3' UTR of IEGs, where it inhibits transcriptional elongation by RNA Pol II, generating R-loops and accessible chromatin domains. Acute replication stress causes immediate dissociation of NR4A1 and a burst of transcriptionally poised IEG expression. Ectopic expression of NR4A1 enhances tumorigenesis by breast cancer cells, while its deletion leads to massive chromosomal instability and proliferative failure, driven by deregulated expression of its IEG target, FOS. Approximately half of breast and other primary cancers exhibit accessible chromatin domains at IEG gene bodies, consistent with this stress-regulatory pathway. Cancers that have retained this mechanism in adapting to oncogenic replication stress may be dependent on NR4A1 for their proliferation.


Subject(s)
Breast Neoplasms/metabolism , Cell Proliferation , Immediate-Early Proteins/metabolism , Mitosis , Neoplastic Cells, Circulating/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , 3' Untranslated Regions , Animals , Antineoplastic Agents/pharmacology , Binding Sites , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Chromatin Assembly and Disassembly , Female , Gene Expression Regulation, Neoplastic , Genomic Instability , HEK293 Cells , Humans , Immediate-Early Proteins/genetics , Indoles/pharmacology , MCF-7 Cells , Mice, Inbred NOD , Mice, SCID , Mitosis/drug effects , Neoplastic Cells, Circulating/drug effects , Neoplastic Cells, Circulating/pathology , Nuclear Receptor Subfamily 4, Group A, Member 1/antagonists & inhibitors , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Phenylacetates/pharmacology , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , R-Loop Structures , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Signal Transduction , Transcription Elongation, Genetic , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
4.
Breast Cancer Res Treat ; 201(1): 43-56, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37318638

ABSTRACT

PURPOSE: Metastatic hormone receptor-positive (HR+) breast cancer initially responds to serial courses of endocrine therapy, but ultimately becomes refractory. Elacestrant, a new generation FDA-approved oral selective estrogen receptor degrader (SERD) and antagonist, has demonstrated efficacy in a subset of women with advanced HR+breast cancer, but there are few patient-derived models to characterize its effect in advanced cancers with diverse treatment histories and acquired mutations. METHODS: We analyzed clinical outcomes with elacestrant, compared with endocrine therapy, among women who had previously been treated with a fulvestrant-containing regimen from the recent phase 3 EMERALD Study. We further modeled sensitivity to elacestrant, compared with the currently approved SERD, fulvestrant in patient-derived xenograft (PDX) models and cultured circulating tumor cells (CTCs). RESULTS: Analysis of the subset of breast cancer patients enrolled in the EMERALD study who had previously received a fulvestrant-containing regimen indicates that they had better progression-free survival with elacestrant than with standard-of-care endocrine therapy, a finding that was independent estrogen receptor (ESR1) gene mutations. We modeled elacestrant responsiveness using patient-derived xenograft (PDX) models and in ex vivo cultured CTCs derived from patients with HR+breast cancer extensively treated with multiple endocrine therapies, including fulvestrant. Both CTCs and PDX models are refractory to fulvestrant but sensitive to elacestrant, independent of mutations in ESR1 and Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha (PIK3CA) genes. CONCLUSION: Elacestrant retains efficacy in breast cancer cells that have acquired resistance to currently available ER targeting therapies. Elacestrant may be an option for patients with HR+/HER2- breast cancer whose disease progressed on fulvestrant in the metastatic setting. TRANSLATIONAL RELEVANCE: Serial endocrine therapy is the mainstay of management for metastatic HR+breast cancer, but acquisition of drug resistance highlights the need for better therapies. Elacestrant is a recently FDA-approved novel oral selective estrogen receptor degrader (SERD), with demonstrated efficacy in the EMERALD phase 3 clinical trial of refractory HR+breast cancer. Subgroup analysis of the EMERALD clinical trial identifies clinical benefit with elacestrant in patients who had received prior fulvestrant independent of the mutational status of the ESR1 gene, supporting its potential utility in treating refractory HR+breast cancer. Here, we use pre-clinical models, including ex vivo cultures of circulating tumor cells and patient-derived xenografts, to demonstrate the efficacy of elacestrant in breast cancer cells with acquired resistance to fulvestrant.


Subject(s)
Breast Neoplasms , Neoplastic Cells, Circulating , Animals , Humans , Female , Fulvestrant , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Receptors, Estrogen , Estrogen Antagonists/therapeutic use , Disease Models, Animal , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
5.
Nature ; 537(7618): 102-106, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27556950

ABSTRACT

Circulating tumour cells in women with advanced oestrogen-receptor (ER)-positive/human epidermal growth factor receptor 2 (HER2)-negative breast cancer acquire a HER2-positive subpopulation after multiple courses of therapy. In contrast to HER2-amplified primary breast cancer, which is highly sensitive to HER2-targeted therapy, the clinical significance of acquired HER2 heterogeneity during the evolution of metastatic breast cancer is unknown. Here we analyse circulating tumour cells from 19 women with ER+/HER2- primary tumours, 84% of whom had acquired circulating tumour cells expressing HER2. Cultured circulating tumour cells maintain discrete HER2+ and HER2- subpopulations: HER2+ circulating tumour cells are more proliferative but not addicted to HER2, consistent with activation of multiple signalling pathways; HER2- circulating tumour cells show activation of Notch and DNA damage pathways, exhibiting resistance to cytotoxic chemotherapy, but sensitivity to Notch inhibition. HER2+ and HER2- circulating tumour cells interconvert spontaneously, with cells of one phenotype producing daughters of the opposite within four cell doublings. Although HER2+ and HER2- circulating tumour cells have comparable tumour initiating potential, differential proliferation favours the HER2+ state, while oxidative stress or cytotoxic chemotherapy enhances transition to the HER2- phenotype. Simultaneous treatment with paclitaxel and Notch inhibitors achieves sustained suppression of tumorigenesis in orthotopic circulating tumour cell-derived tumour models. Together, these results point to distinct yet interconverting phenotypes within patient-derived circulating tumour cells, contributing to progression of breast cancer and acquisition of drug resistance.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Receptor, ErbB-2/metabolism , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , Female , Humans , Neoplastic Cells, Circulating/drug effects , Phenotype , Receptor, ErbB-2/deficiency , Receptor, Notch1/antagonists & inhibitors , Receptor, Notch1/metabolism , Signal Transduction
6.
Proc Natl Acad Sci U S A ; 116(12): 5223-5232, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30819896

ABSTRACT

Tumor-stromal communication within the microenvironment contributes to initiation of metastasis and may present a therapeutic opportunity. Using serial single-cell RNA sequencing in an orthotopic mouse prostate cancer model, we find up-regulation of prolactin receptor as cancer cells that have disseminated to the lungs expand into micrometastases. Secretion of the ligand prolactin by adjacent lung stromal cells is induced by tumor cell production of the COX-2 synthetic product prostaglandin E2 (PGE2). PGE2 treatment of fibroblasts activates the orphan nuclear receptor NR4A (Nur77), with prolactin as a major transcriptional target for the NR4A-retinoid X receptor (RXR) heterodimer. Ectopic expression of prolactin receptor in mouse cancer cells enhances micrometastasis, while treatment with the COX-2 inhibitor celecoxib abrogates prolactin secretion by fibroblasts and reduces tumor initiation. Across multiple human cancers, COX-2, prolactin, and prolactin receptor show consistent differential expression in tumor and stromal compartments. Such paracrine cross-talk may thus contribute to the documented efficacy of COX-2 inhibitors in cancer suppression.


Subject(s)
Carcinogenesis/metabolism , Prolactin/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Signal Transduction/physiology , Stromal Cells/metabolism , Animals , Carcinogenesis/drug effects , Celecoxib/pharmacology , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Dinoprostone/metabolism , Disease Models, Animal , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Male , Mice , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Prostatic Neoplasms/drug therapy , Retinoid X Receptors/metabolism , Signal Transduction/drug effects , Stromal Cells/drug effects , Stromal Cells/pathology , Up-Regulation/drug effects , Up-Regulation/physiology
7.
Breast Cancer Res Treat ; 188(1): 43-52, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34101078

ABSTRACT

PURPOSE: Therapeutic efficacy of hormonal therapies to target estrogen receptor (ER)-positive breast cancer is limited by the acquisition of ligand-independent ESR1 mutations, which confer treatment resistance to aromatase inhibitors (AIs). Monitoring for the emergence of such mutations may enable individualized therapy. We thus assessed CTC- and ctDNA-based detection of ESR1 mutations with the aim of evaluating non-invasive approaches for the determination of endocrine resistance. PATIENTS AND METHODS: In a prospective cohort of 55 women with hormone receptor-positive metastatic breast cancer, we isolated circulating tumor cells (CTCs) and developed a high-sensitivity method for the detection of ESR1 mutations in these CTCs. In patients with sufficient plasma for the simultaneous extraction of circulating tumor DNA (ctDNA), we performed a parallel analysis of ESR1 mutations using multiplex droplet digital PCR (ddPCR) and examined the agreement between these two platforms. Finally, we isolated single CTCs from a subset of these patients and reviewed RNA expression to explore alternate methods of evaluating endocrine responsiveness. RESULTS: High-sensitivity ESR1 sequencing from CTCs revealed mono- and oligoclonal mutations in 22% of patients. These were concordant with plasma DNA sequencing in 95% of cases. Emergence of ESR1 mutations was correlated both with time to metastatic relapse and duration of AI therapy following such recurrence. The Presence of an ESR1 mutation, compared to ESR1 wild type, was associated with markedly shorter Progression-Free Survival on AI-based therapies (p = 0.0006), but unaltered to other non-AI-based therapies (p = 0.73). Compared with ESR1 mutant cases, AI-resistant CTCs with wild-type ESR1 showed an elevated ER-coactivator RNA signature, consistent with their predicted response to second-line hormonal therapies. CONCLUSION: Blood-based serial monitoring may guide the selection of precision therapeutics for women with AI-resistant ER-positive breast cancer.


Subject(s)
Breast Neoplasms , Circulating Tumor DNA , Neoplastic Cells, Circulating , Estrogen Receptor alpha/genetics , Female , Genotype , Humans , Mutation , Neoplasm Recurrence, Local , Prospective Studies
8.
Proc Natl Acad Sci U S A ; 115(10): 2467-2472, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29453278

ABSTRACT

A subset of patients with metastatic melanoma have sustained remissions following treatment with immune checkpoint inhibitors. However, analyses of pretreatment tumor biopsies for markers predictive of response, including PD-1 ligand (PD-L1) expression and mutational burden, are insufficiently precise to guide treatment selection, and clinical radiographic evidence of response on therapy may be delayed, leading to some patients receiving potentially ineffective but toxic therapy. Here, we developed a molecular signature of melanoma circulating tumor cells (CTCs) to quantify early tumor response using blood-based monitoring. A quantitative 19-gene digital RNA signature (CTC score) applied to microfluidically enriched CTCs robustly distinguishes melanoma cells, within a background of blood cells in reconstituted and in patient-derived (n = 42) blood specimens. In a prospective cohort of 49 patients treated with immune checkpoint inhibitors, a decrease in CTC score within 7 weeks of therapy correlates with marked improvement in progression-free survival [hazard ratio (HR), 0.17; P = 0.008] and overall survival (HR, 0.12; P = 0.04). Thus, digital quantitation of melanoma CTC-derived transcripts enables serial noninvasive monitoring of tumor burden, supporting the rational application of immune checkpoint inhibition therapies.


Subject(s)
Antineoplastic Agents, Immunological , Biomarkers, Tumor/blood , Melanoma , Neoplastic Cells, Circulating , Skin Neoplasms , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Biomarkers, Tumor/chemistry , Cell- and Tissue-Based Therapy , Female , Humans , Kaplan-Meier Estimate , Liquid Biopsy , Male , Melanoma/blood , Melanoma/diagnosis , Melanoma/drug therapy , Melanoma/mortality , Middle Aged , Neoplastic Cells, Circulating/chemistry , Neoplastic Cells, Circulating/drug effects , RNA/analysis , RNA/genetics , RNA/metabolism , Skin Neoplasms/blood , Skin Neoplasms/diagnosis , Skin Neoplasms/drug therapy , Skin Neoplasms/mortality
9.
Nat Methods ; 12(7): 685-91, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25984697

ABSTRACT

Cancer cells metastasize through the bloodstream either as single migratory circulating tumor cells (CTCs) or as multicellular groupings (CTC clusters). Existing technologies for CTC enrichment are designed to isolate single CTCs, and although CTC clusters are detectable in some cases, their true prevalence and significance remain to be determined. Here we developed a microchip technology (the Cluster-Chip) to capture CTC clusters independently of tumor-specific markers from unprocessed blood. CTC clusters are isolated through specialized bifurcating traps under low-shear stress conditions that preserve their integrity, and even two-cell clusters are captured efficiently. Using the Cluster-Chip, we identified CTC clusters in 30-40% of patients with metastatic breast or prostate cancer or with melanoma. RNA sequencing of CTC clusters confirmed their tumor origin and identified tissue-derived macrophages within the clusters. Efficient capture of CTC clusters will enable the detailed characterization of their biological properties and role in metastasis.


Subject(s)
Microfluidic Analytical Techniques , Neoplastic Cells, Circulating , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Immunohistochemistry , Male , Prostatic Neoplasms/pathology , Sequence Analysis, RNA
10.
Nature ; 487(7408): 510-3, 2012 Jul 26.
Article in English | MEDLINE | ID: mdl-22763454

ABSTRACT

Circulating tumour cells (CTCs) shed into blood from primary cancers include putative precursors that initiate distal metastases. Although these cells are extraordinarily rare, they may identify cellular pathways contributing to the blood-borne dissemination of cancer. Here, we adapted a microfluidic device for efficient capture of CTCs from an endogenous mouse pancreatic cancer model and subjected CTCs to single-molecule RNA sequencing, identifying Wnt2 as a candidate gene enriched in CTCs. Expression of WNT2 in pancreatic cancer cells suppresses anoikis, enhances anchorage-independent sphere formation, and increases metastatic propensity in vivo. This effect is correlated with fibronectin upregulation and suppressed by inhibition of MAP3K7 (also known as TAK1) kinase. In humans, formation of non-adherent tumour spheres by pancreatic cancer cells is associated with upregulation of multiple WNT genes, and pancreatic CTCs revealed enrichment for WNT signalling in 5 out of 11 cases. Thus, molecular analysis of CTCs may identify candidate therapeutic targets to prevent the distal spread of cancer.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , Neoplasm Metastasis/genetics , Neoplastic Cells, Circulating/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Wnt Proteins/metabolism , Wnt Signaling Pathway/genetics , Animals , Cell Survival , Contact Inhibition , Disease Models, Animal , Genes, Neoplasm/genetics , Humans , MAP Kinase Kinase Kinases/antagonists & inhibitors , Mice , RNA, Messenger/analysis , RNA, Messenger/biosynthesis , Sequence Analysis, RNA , Wnt Proteins/genetics , Wnt2 Protein/genetics , Wnt2 Protein/metabolism
11.
Proc Natl Acad Sci U S A ; 112(49): 15148-53, 2015 Dec 08.
Article in English | MEDLINE | ID: mdl-26575630

ABSTRACT

Aberrant transcription of the pericentromeric human satellite II (HSATII) repeat is present in a wide variety of epithelial cancers. In deriving experimental systems to study its deregulation, we observed that HSATII expression is induced in colon cancer cells cultured as xenografts or under nonadherent conditions in vitro, but it is rapidly lost in standard 2D cultures. Unexpectedly, physiological induction of endogenous HSATII RNA, as well as introduction of synthetic HSATII transcripts, generated cDNA intermediates in the form of DNA/RNA hybrids. Single molecule sequencing of tumor xenografts showed that HSATII RNA-derived DNA (rdDNA) molecules are stably incorporated within pericentromeric loci. Suppression of RT activity using small molecule inhibitors reduced HSATII copy gain. Analysis of whole-genome sequencing data revealed that HSATII copy number gain is a common feature in primary human colon tumors and is associated with a lower overall survival. Together, our observations suggest that cancer-associated derepression of specific repetitive sequences can promote their RNA-driven genomic expansion, with potential implications on pericentromeric architecture.


Subject(s)
Centromere/genetics , DNA, Satellite/genetics , Neoplasms/genetics , Repetitive Sequences, Nucleic Acid , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Humans , Nucleic Acid Hybridization , RNA/genetics
12.
J Biol Chem ; 290(23): 14381-90, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-25882849

ABSTRACT

WTX encodes a tumor suppressor implicated in the pediatric kidney cancer Wilms tumor and in mesenchymal differentiation with potentially distinct functions in the cytoplasm, at the plasma membrane, and in the nucleus. Although modulating components of the WNT signaling pathway is a proposed function for cytoplasmic and membrane-bound WTX, its nuclear properties are not well understood. Here we report that the transcriptional corepressor TRIM28 is the major binding partner for nuclear WTX. WTX interacted with the coiled coil domain of TRIM28 required for its binding to Krüppel-associated box domains of transcription factors and for its chromatin recruitment through its own coiled coil and proline-rich domains. Knockdown of endogenous WTX reduced the recruitment of TRIM28 to a chromatinized reporter sequence and its ability to repress a target transcript. In mouse embryonic stem cells where TRIM28 plays a major role in repressing endogenous retroviruses and long interspersed elements, knockdown of either TRIM28 or WTX combined with single molecule RNA sequencing revealed a highly significant shared set of differentially regulated transcripts, including derepression of non-coding repetitive sequences and their neighboring protein encoding genes (p < 1e-20). In mesenchymal precursor cells, depletion of WTX and TRIM28 resulted in analogous ß-catenin-independent defects in adipogenic and osteogenic differentiation, and knockdown of WTX reduced TRIM28 binding to Pparγ promoter. Together, the physical and functional interaction between WTX and TRIM28 suggests that the nuclear fraction of WTX plays a role in epigenetic silencing, an effect that may contribute to its function as a regulator of cellular differentiation and tumorigenesis.


Subject(s)
Embryonic Stem Cells/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Adipogenesis , Animals , Cell Line , Chromatin/genetics , Chromatin/metabolism , Embryonic Stem Cells/cytology , Gene Expression Regulation , Gene Knockdown Techniques , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Mice , Nuclear Proteins/genetics , Protein Interaction Maps , Repressor Proteins/genetics , Transcriptional Activation , Tripartite Motif-Containing Protein 28 , Tumor Suppressor Proteins/genetics , Wilms Tumor/genetics , Wilms Tumor/metabolism
13.
Proc Natl Acad Sci U S A ; 110(13): 5139-44, 2013 Mar 26.
Article in English | MEDLINE | ID: mdl-23483055

ABSTRACT

Metastasis confronts clinicians with two major challenges: estimating the patient's risk of metastasis and identifying therapeutic targets. Because they are key signal integrators connecting cellular processes to clinical outcome, we aimed to identify transcriptional nodes regulating cancer cell metastasis. Using rodent xenograft models that we previously developed, we identified the transcription factor Fos-related antigen-1 (Fra-1) as a key coordinator of metastasis. Because Fra-1 often is overexpressed in human metastatic breast cancers and has been shown to control their invasive potential in vitro, we aimed to assess the implication and prognostic significance of the Fra-1-dependent genetic program in breast cancer metastasis and to identify potential Fra-1-dependent therapeutic targets. In several in vivo assays in mice, we demonstrate that stable RNAi depletion of Fra-1 from human breast cancer cells strongly suppresses their ability to metastasize. These results support a clinically important role for Fra-1 and the genetic program it controls. We show that a Fra-1-dependent gene-expression signature accurately predicts recurrence of breast cancer. Furthermore, a synthetic lethal drug screen revealed that antagonists of the adenosine receptor A2B (ADORA2B) are preferentially toxic to breast tumor cells expressing Fra-1. Both RNAi silencing and pharmacologic blockade of ADORA2B inhibited filopodia formation and invasive activity of breast cancer cells and correspondingly reduced tumor outgrowth in the lungs. These data show that Fra-1 activity is causally involved in and is a prognostic indicator of breast cancer metastasis. They suggest that Fra-1 activity predicts responsiveness to inhibition of pharmacologically tractable targets, such as ADORA2B, which may be used for clinical interference of metastatic breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins c-fos/metabolism , Receptor, Adenosine A2B/metabolism , Adenosine A2 Receptor Antagonists/pharmacology , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasm Transplantation , Proto-Oncogene Proteins c-fos/genetics , Pseudopodia/genetics , Pseudopodia/metabolism , Pseudopodia/pathology , Rats , Receptor, Adenosine A2B/genetics , Transplantation, Heterologous , Xenograft Model Antitumor Assays
14.
Nature ; 462(7269): 108-12, 2009 Nov 05.
Article in English | MEDLINE | ID: mdl-19847166

ABSTRACT

The proto-oncogene KRAS is mutated in a wide array of human cancers, most of which are aggressive and respond poorly to standard therapies. Although the identification of specific oncogenes has led to the development of clinically effective, molecularly targeted therapies in some cases, KRAS has remained refractory to this approach. A complementary strategy for targeting KRAS is to identify gene products that, when inhibited, result in cell death only in the presence of an oncogenic allele. Here we have used systematic RNA interference to detect synthetic lethal partners of oncogenic KRAS and found that the non-canonical IkappaB kinase TBK1 was selectively essential in cells that contain mutant KRAS. Suppression of TBK1 induced apoptosis specifically in human cancer cell lines that depend on oncogenic KRAS expression. In these cells, TBK1 activated NF-kappaB anti-apoptotic signals involving c-Rel and BCL-XL (also known as BCL2L1) that were essential for survival, providing mechanistic insights into this synthetic lethal interaction. These observations indicate that TBK1 and NF-kappaB signalling are essential in KRAS mutant tumours, and establish a general approach for the rational identification of co-dependent pathways in cancer.


Subject(s)
Genes, ras/genetics , Oncogene Protein p21(ras)/genetics , Oncogene Protein p21(ras)/metabolism , Protein Serine-Threonine Kinases/metabolism , RNA Interference , Alleles , Apoptosis , Cell Line, Tumor , Cell Survival , Gene Expression Profiling , Genes, Lethal , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Mas , Proto-Oncogene Proteins c-rel/metabolism , Signal Transduction , bcl-X Protein/metabolism
15.
Breast Cancer Res ; 16(2): R25, 2014 Mar 14.
Article in English | MEDLINE | ID: mdl-24625110

ABSTRACT

INTRODUCTION: There is an unmet clinical need for biomarkers to identify breast cancer patients at an increased risk of developing brain metastases. The objective is to identify gene signatures and biological pathways associated with human epidermal growth factor receptor 2-positive (HER2+) brain metastasis. METHODS: We combined laser capture microdissection and gene expression microarrays to analyze malignant epithelium from HER2+ breast cancer brain metastases with that from HER2+ nonmetastatic primary tumors. Differential gene expression was performed including gene set enrichment analysis (GSEA) using publicly available breast cancer gene expression data sets. RESULTS: In a cohort of HER2+ breast cancer brain metastases, we identified a gene expression signature that anti-correlates with overexpression of BRCA1. Sequence analysis of the HER2+ brain metastases revealed no pathogenic mutations of BRCA1, and therefore the aforementioned signature was designated BRCA1 Deficient-Like (BD-L). Evaluation of an independent cohort of breast cancer metastases demonstrated that BD-L values are significantly higher in brain metastases as compared to other metastatic sites. Although the BD-L signature is present in all subtypes of breast cancer, it is significantly higher in BRCA1 mutant primary tumors as compared with sporadic breast tumors. Additionally, BD-L signature values are significantly higher in HER2-/ER- primary tumors as compared with HER2+/ER + and HER2-/ER + tumors. The BD-L signature correlates with breast cancer cell line pharmacologic response to a combination of poly (ADP-ribose) polymerase (PARP) inhibitor and temozolomide, and the signature outperformed four published gene signatures of BRCA1/2 deficiency. CONCLUSIONS: A BD-L signature is enriched in HER2+ breast cancer brain metastases without pathogenic BRCA1 mutations. Unexpectedly, elevated BD-L values are found in a subset of primary tumors across all breast cancer subtypes. Evaluation of pharmacological sensitivity in breast cancer cell lines representing all breast cancer subtypes suggests the BD-L signature may serve as a biomarker to identify sporadic breast cancer patients who might benefit from a therapeutic combination of PARP inhibitor and temozolomide and may be indicative of a dysfunctional BRCA1-associated pathway.


Subject(s)
BRCA1 Protein/genetics , Brain Neoplasms/genetics , Breast Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Transcriptome , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/secondary , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line , Cell Line, Tumor , DNA Damage , DNA Mutational Analysis , Dacarbazine/administration & dosage , Dacarbazine/analogs & derivatives , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacology , Female , Humans , Immunohistochemistry , Oligonucleotide Array Sequence Analysis , Phthalazines/administration & dosage , Piperazines/administration & dosage , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Prognosis , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Temozolomide
16.
Proc Natl Acad Sci U S A ; 108(31): 12845-50, 2011 Aug 02.
Article in English | MEDLINE | ID: mdl-21757645

ABSTRACT

Human tumors often contain slowly proliferating cancer cells that resist treatment, but we do not know precisely how these cells arise. We show that rapidly proliferating cancer cells can divide asymmetrically to produce slowly proliferating "G0-like" progeny that are enriched following chemotherapy in breast cancer patients. Asymmetric cancer cell division results from asymmetric suppression of AKT/PKB kinase signaling in one daughter cell during telophase of mitosis. Moreover, inhibition of AKT signaling with small-molecule drugs can induce asymmetric cancer cell division and the production of slow proliferators. Cancer cells therefore appear to continuously flux between symmetric and asymmetric division depending on the precise state of their AKT signaling network. This model may have significant implications for understanding how tumors grow, evade treatment, and recur.


Subject(s)
Cell Division , Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Blotting, Western , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , HCT116 Cells , Heterocyclic Compounds, 3-Ring/chemistry , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Confocal , Models, Biological , Molecular Structure , Neoplasms/genetics , Neoplasms/pathology , Oligonucleotide Array Sequence Analysis , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/genetics , Resting Phase, Cell Cycle , Signal Transduction/drug effects , Time Factors
17.
bioRxiv ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38559183

ABSTRACT

Circulating Tumor Cells (CTCs), interrogated by sampling blood from patients with cancer, contain multiple analytes, including intact RNA, high molecular weight DNA, proteins, and metabolic markers. However, the clinical utility of tumor cell-based liquid biopsy has been limited since CTCs are very rare, and current technologies cannot process the blood volumes required to isolate a sufficient number of tumor cells for in-depth assays. We previously described a high-throughput microfluidic prototype utilizing high-flow channels and amplification of cell sorting forces through magnetic lenses. Here, we apply this technology to analyze patient-derived leukapheresis products, interrogating a mean blood volume of 5.83 liters from patients with metastatic cancer, with a median of 2,799 CTCs purified per patient. Isolation of many CTCs from individual patients enables characterization of their morphological and molecular heterogeneity, including cell and nuclear size and RNA expression. It also allows robust detection of gene copy number variation, a definitive cancer marker with potential diagnostic applications. High-volume microfluidic enrichment of CTCs constitutes a new dimension in liquid biopsies.

18.
Nat Methods ; 7(8): 619-21, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20639869

ABSTRACT

Generating reliable expression profiles from minute cell quantities is critical for scientific discovery and potential clinical applications. Here we present low-quantity digital gene expression (LQ-DGE), an amplification-free approach involving capture of poly(A)(+) RNAs from cellular lysates onto poly(dT)-coated sequencing surfaces, followed by on-surface reverse transcription and sequencing. We applied LQ-DGE to profile malignant and nonmalignant mouse and human cells, demonstrating its quantitative power and potential applicability to archival specimens.


Subject(s)
Gene Expression Profiling/methods , Animals , Cell Line , Humans , Mice , Microarray Analysis/methods , Oligonucleotide Array Sequence Analysis/methods , Poly T/metabolism , RNA, Messenger/metabolism , Reverse Transcription , Sequence Analysis, DNA
19.
Proc Natl Acad Sci U S A ; 107(8): 3698-703, 2010 Feb 23.
Article in English | MEDLINE | ID: mdl-20133671

ABSTRACT

Gene expression signatures are used in the clinic as prognostic tools to determine the risk of individual patients with localized breast tumors developing distant metastasis. We lack a clear understanding, however, of whether these correlative biomarkers link to a common biological network that regulates metastasis. We find that the c-MYC oncoprotein coordinately regulates the expression of 13 different "poor-outcome" cancer signatures. In addition, functional inactivation of MYC in human breast cancer cells specifically inhibits distant metastasis in vivo and invasive behavior in vitro of these cells. These results suggest that MYC oncogene activity (as marked by "poor-prognosis" signature expression) may be necessary for the translocation of poor-outcome human breast tumors to distant sites.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins c-myc/metabolism , Breast Neoplasms/genetics , Cell Movement/genetics , Female , Gene Expression Profiling , Humans , Neoplasm Metastasis , Oligonucleotide Array Sequence Analysis , Prognosis
20.
Cell Rep ; 42(3): 112129, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36821441

ABSTRACT

TGF-ß induces senescence in embryonic tissues. Whether TGF-ß in the hypoxic tumor microenvironment (TME) induces senescence in cancer and how the ensuing senescence-associated secretory phenotype (SASP) remodels the cellular TME to influence immune checkpoint inhibitor (ICI) responses are unknown. We show that TGF-ß induces a deeper senescent state under hypoxia than under normoxia; deep senescence correlates with the degree of E2F suppression and is marked by multinucleation, reduced reentry into proliferation, and a distinct 14-gene SASP. Suppressing TGF-ß signaling in tumors in an immunocompetent mouse lung cancer model abrogates endogenous senescent cells and suppresses the 14-gene SASP and immune infiltration. Untreated human lung cancers with a high 14-gene SASP display immunosuppressive immune infiltration. In a lung cancer clinical trial of ICIs, elevated 14-gene SASP is associated with increased senescence, TGF-ß and hypoxia signaling, and poor progression-free survival. Thus, TME-induced senescence may represent a naturally occurring state in cancer, contributing to an immune-suppressive phenotype associated with immune therapy resistance.


Subject(s)
Lung Neoplasms , Transforming Growth Factor beta , Mice , Animals , Humans , Phenotype , Disease Models, Animal , Cellular Microenvironment , Tumor Microenvironment , Cellular Senescence/physiology
SELECTION OF CITATIONS
SEARCH DETAIL