Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
Add more filters

Country/Region as subject
Publication year range
1.
PLoS Pathog ; 20(7): e1011909, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38976719

ABSTRACT

Viruses are obligate intracellular parasites that rely on host cell metabolism for successful replication. Thus, viruses rewire host cell pathways involved in central carbon metabolism to increase the availability of building blocks for successful propagation. However, the underlying mechanisms of virus-induced alterations to host metabolism are largely unknown. Noroviruses (NoVs) are highly prevalent pathogens that cause sporadic and epidemic viral gastroenteritis. In the present study, we uncovered several strain-specific and shared host cell metabolic requirements of three murine norovirus (MNV) strains, MNV-1, CR3, and CR6. While all three strains required glycolysis, glutaminolysis, and the pentose phosphate pathway for optimal infection of macrophages, only MNV-1 relied on host oxidative phosphorylation. Furthermore, the first metabolic flux analysis of NoV-infected cells revealed that both glycolysis and glutaminolysis are upregulated during MNV-1 infection of macrophages. Glutamine deprivation affected the viral lifecycle at the stage of genome replication, resulting in decreased non-structural and structural protein synthesis, viral assembly, and egress. Mechanistic studies further showed that MNV infection and overexpression of the non-structural protein NS1/2 increased the enzymatic activity of the rate-limiting enzyme glutaminase. In conclusion, the inaugural investigation of NoV-induced alterations to host glutaminolysis identified NS1/2 as the first viral molecule for RNA viruses that regulates glutaminolysis either directly or indirectly. This increases our fundamental understanding of virus-induced metabolic alterations and may lead to improvements in the cultivation of human NoVs.


Subject(s)
Caliciviridae Infections , Glutamine , Norovirus , Viral Nonstructural Proteins , Virus Replication , Norovirus/physiology , Virus Replication/physiology , Mice , Animals , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Glutamine/metabolism , Caliciviridae Infections/virology , Caliciviridae Infections/metabolism , Macrophages/virology , Macrophages/metabolism , Humans , Glutaminase/metabolism , Glycolysis/physiology , RAW 264.7 Cells
2.
J Virol ; 98(2): e0173523, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38236007

ABSTRACT

Murine norovirus (MNV) undergoes extremely large conformational changes in response to the environment. The T = 3 icosahedral capsid is composed of 180 copies of ~58-kDa VP1 comprised of N-terminus (N), shell (S), and C-terminal protruding (P) domains. At neutral pH, the P domains are loosely tethered to the shell and float ~15 ƅ above the surface. At low pH or in the presence of bile salts, the P domain drops onto the shell and this movement is accompanied by conformational changes within the P domain that enhance receptor interactions while blocking antibody binding. While previous crystallographic studies identified metal binding sites in the isolated P domain, the ~2.7-ƅ cryo-electron microscopy structures of MNV in the presence of Mg2+ or Ca2+ presented here show that metal ions can recapitulate the contraction observed at low pH or in the presence of bile. Further, we show that these conformational changes are reversed by dialysis against EDTA. As observed in the P domain crystal structures, metal ions bind to and contract the G'H' loop. This movement is correlated with the lifting of the C'D' loop and rotation of the P domain dimers about each other, exposing the bile salt binding pocket. Isothermal titration calorimetry experiments presented here demonstrate that the activation signals (bile salts, low pH, and metal ions) act in a synergistic manner that, individually, all result in the same activated structure. We present a model whereby these reversible conformational changes represent a uniquely dynamic and tissue-specific structural adaptation to the in vivo environment.IMPORTANCEThe highly mobile protruding domains on the calicivirus capsids are recognized by cell receptor(s) and antibodies. At neutral pH, they float ~15 ƅ above the shell but at low pH or in the presence of bile salts, they contract onto the surface. Concomitantly, changes within the P domain block antibody binding while enhancing receptor binding. While we previously demonstrated that metals also block antibody binding, it was unknown whether they might also cause similar conformational changes in the virion. Here, we present the near atomic cryo-electron microscopy structures of infectious murine norovirus (MNV) in the presence of calcium or magnesium ions. The metal ions reversibly induce the same P domain contraction as low pH and bile salts and act in a synergistic manner with the other stimuli. We propose that, unlike most other viruses, MNV facilely changes conformations as a unique means to escape immune surveillance as it moves through various tissues.


Subject(s)
Calcium , Magnesium , Norovirus , Animals , Mice , Bile Acids and Salts , Capsid/ultrastructure , Capsid Proteins/chemistry , Cryoelectron Microscopy , Norovirus/chemistry , Norovirus/ultrastructure , Calcium/chemistry , Magnesium/chemistry
3.
J Virol ; 97(12): e0171923, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38032199

ABSTRACT

IMPORTANCE: All viruses initiate infection by utilizing receptors to attach to target host cells. These virus-receptor interactions can therefore dictate viral replication and pathogenesis. Understanding the nature of virus-receptor interactions could also be important for the development of novel therapies. Noroviruses are non-enveloped icosahedral viruses of medical importance. They are a common cause of acute gastroenteritis with no approved vaccine or therapy and are a tractable model for studying fundamental virus biology. In this study, we utilized the murine norovirus model system to show that variation in a single amino acid of the major capsid protein alone can affect viral infectivity through improved attachment to suspension cells. Modulating plasma membrane mobility reduced infectivity, suggesting an importance of membrane mobility for receptor recruitment and/or receptor conformation. Furthermore, different substitutions at this site altered viral tissue distribution in a murine model, illustrating how in-host capsid evolution could influence viral infectivity and/or immune evasion.


Subject(s)
Caliciviridae Infections , Capsid Proteins , Norovirus , Animals , Mice , Amino Acid Substitution , Caliciviridae Infections/metabolism , Capsid/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , Immune Evasion , Norovirus/metabolism , Viral Core Proteins/metabolism
4.
J Virol ; 97(12): e0127623, 2023 12 21.
Article in English | MEDLINE | ID: mdl-37975674

ABSTRACT

ABSTRACT: Disease progression during SARS-CoV-2 infection is tightly linked to the fate of lung epithelial cells, with severe cases of COVID-19 characterized by direct injury of the alveolar epithelium and an impairment in its regeneration from progenitor cells. The molecular pathways that govern respiratory epithelial cell death and proliferation during SARS-CoV-2 infection, however, remain unclear. We now report a high-throughput CRISPR screen for host genetic modifiers of the survival and proliferation of SARS-CoV-2-infected Calu-3 respiratory epithelial cells. The top four genes identified in our screen encode components of the same type I interferon (IFN-I) signaling complexĀ­IFNAR1, IFNAR2, JAK1, and TYK2. The fifth gene, ACE2, was an expected control encoding the SARS-CoV-2 viral receptor. Surprisingly, despite the antiviral properties of IFN-I signaling, its disruption in our screen was associated with an increase in Calu-3 cell fitness. We validated this effect and found that IFN-I signaling did not sensitize SARS-CoV-2-infected cultures to cell death but rather inhibited the proliferation of surviving cells after the early peak of viral replication and cytopathic effect. We also found that IFN-I signaling alone, in the absence of viral infection, was sufficient to induce this delayed antiproliferative response in both Calu-3 cells and iPSC-derived type 2 alveolar epithelial cells. Together, these findings highlight a cell autonomous antiproliferative response by respiratory epithelial cells to persistent IFN-I signaling during SARS-CoV-2 infection. This response may contribute to the deficient alveolar regeneration that has been associated with COVID-19 lung injury and represents a promising area for host-targeted therapeutic development.


Subject(s)
COVID-19 , Epithelial Cells , Interferon Type I , Lung , Humans , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Epithelial Cells/pathology , Epithelial Cells/virology , Interferon Type I/immunology , Lung/pathology , Lung/virology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Cell Line , Cell Proliferation
5.
PLoS Pathog ; 18(3): e1010377, 2022 03.
Article in English | MEDLINE | ID: mdl-35231079

ABSTRACT

SARS-CoV-2 infection is initiated by binding of the viral spike protein to its receptor, ACE2, on the surface of host cells. ACE2 expression is heterogeneous both in vivo and in immortalized cell lines, but the molecular pathways that govern ACE2 expression remain unclear. We now report high-throughput CRISPR screens for functional modifiers of ACE2 surface abundance. In liver-derived HuH7 cells, we identified 35 genes whose disruption was associated with a change in the surface abundance of ACE2. Enriched among these ACE2 regulators were established transcription factors, epigenetic regulators, and functional networks. We further characterized individual HuH7 cell lines with disruption of SMAD4, EP300, PIAS1, or BAMBI and found these genes to regulate ACE2 at the mRNA level and to influence cellular susceptibility to SARS-CoV-2 infection. Orthogonal screening of lung-derived Calu-3 cells revealed a distinct set of ACE2 modifiers comprised of ACE2, KDM6A, MOGS, GPAA1, and UGP2. Collectively, our findings clarify the host factors involved in SARS-CoV-2 entry, highlight the cell type specificity of ACE2 regulatory networks, and suggest potential targets for therapeutic development.


Subject(s)
COVID-19 , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Cell Line , Clustered Regularly Interspaced Short Palindromic Repeats , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism
6.
PLoS Pathog ; 18(10): e1010855, 2022 10.
Article in English | MEDLINE | ID: mdl-36191054

ABSTRACT

Infection of the human gut by Salmonella enterica Typhimurium (STM) results in a localized inflammatory disease that is not mimicked in murine infections. To determine mechanisms by which neutrophils, as early responders to bacterial challenge, direct inflammatory programming of human intestinal epithelium, we established a multi-component human intestinal organoid (HIO) model of STM infection. HIOs were micro-injected with STM and seeded with primary human polymorphonuclear leukocytes (PMN-HIOs). PMNs did not significantly alter luminal colonization of Salmonella, but their presence reduced intraepithelial bacterial burden. Adding PMNs to infected HIOs resulted in substantial accumulation of shed TUNEL+ epithelial cells that was driven by PMN Caspase-1 activity. Inhibition of Caspases-1, -3 or -4 abrogated epithelial cell death and extrusion in the infected PMN-HIOs but only Caspase-1 inhibition significantly increased bacterial burden in the PMN-HIO epithelium. Thus, PMNs promote cell death in human intestinal epithelial cells through multiple caspases as a protective response to infection. IL-1Ɵ was necessary and sufficient to induce cell shedding in the infected HIOs. These data support a critical innate immune function for human neutrophils in amplifying cell death and extrusion of human epithelial cells from the Salmonella-infected intestinal monolayer.


Subject(s)
Neutrophils , Salmonella Infections , Animals , Humans , Mice , Caspases/metabolism , Epithelial Cells , Intestinal Mucosa/microbiology , Salmonella Infections/metabolism , Salmonella typhimurium
7.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Article in English | MEDLINE | ID: mdl-34413211

ABSTRACT

The global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the associated disease COVID-19, requires therapeutic interventions that can be rapidly identified and translated to clinical care. Traditional drug discovery methods have a >90% failure rate and can take 10 to 15 y from target identification to clinical use. In contrast, drug repurposing can significantly accelerate translation. We developed a quantitative high-throughput screen to identify efficacious agents against SARS-CoV-2. From a library of 1,425 US Food and Drug Administration (FDA)-approved compounds and clinical candidates, we identified 17 hits that inhibited SARS-CoV-2 infection and analyzed their antiviral activity across multiple cell lines, including lymph node carcinoma of the prostate (LNCaP) cells and a physiologically relevant model of alveolar epithelial type 2 cells (iAEC2s). Additionally, we found that inhibitors of the Ras/Raf/MEK/ERK signaling pathway exacerbate SARS-CoV-2 infection in vitro. Notably, we discovered that lactoferrin, a glycoprotein found in secretory fluids including mammalian milk, inhibits SARS-CoV-2 infection in the nanomolar range in all cell models with multiple modes of action, including blockage of virus attachment to cellular heparan sulfate and enhancement of interferon responses. Given its safety profile, lactoferrin is a readily translatable therapeutic option for the management of COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Immunologic Factors/pharmacology , Lactoferrin/pharmacology , SARS-CoV-2/drug effects , Virus Internalization/drug effects , Virus Replication/drug effects , Animals , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Caco-2 Cells , Cell Line, Tumor , Chlorocebus aethiops , Dose-Response Relationship, Drug , Drug Discovery , Drug Repositioning/methods , Epithelial Cells , Heparitin Sulfate/antagonists & inhibitors , Heparitin Sulfate/immunology , Heparitin Sulfate/metabolism , Hepatocytes , High-Throughput Screening Assays , Humans , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , Vero Cells , COVID-19 Drug Treatment
8.
J Virol ; 96(22): e0085522, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36342297

ABSTRACT

Human norovirus (HNoV) accounts for one-fifth of all acute viral gastroenteritis worldwide and an economic burden of ~$60 billion globally. The lack of treatment options against HNoV is in part due to the lack of cultivation systems. Recently, a model of infection in biopsy-derived human intestinal enteroids (HIE) has been described: 3D-HIE are first dispersed in 2D-monolayers and differentiated prior to infection, resulting in a labor-intensive, time-consuming procedure. Here, we present an alternative protocol for HNoV infection of 3D-HIE. We found that 3D-HIE differentiated as efficiently as 2D-monolayers. In addition, immunofluorescence-based quantification of UEA-1, a lectin that stains the villus brush border, revealed that ~80% of differentiated 3D-HIE spontaneously undergo polarity inversion, allowing for viral infection without the need for microinjection. Infection with HNoV GII.4-positive stool samples attained a fold-increase over inoculum of ~2 Log10 at 2 days postinfection or up to 3.5 Log10 when ruxolitinib, a JAK1/2-inhibitor, was added. Treatment of GII.4-infected 3D-HIE with the polymerase inhibitor 2'-C-Methylcytidine (2CMC) and other antivirals showed a reduction in viral infection, suggesting that 3D-HIE are an excellent platform to test anti-infectives. The transcriptional host response to HNoV was then investigated by RNA sequencing in infected versus uninfected 3D-HIE in the presence of ruxolitinib to focus on virus-associated signatures while limiting interferon-stimulated gene signatures. The analysis revealed upregulated hormone and neurotransmitter signal transduction pathways and downregulated glycolysis and hypoxia-response pathways upon HNoV infection. Overall, 3D-HIE have proven to be a highly robust model to study HNoV infection, screen antivirals, and to investigate the host response to HNoV infection. IMPORTANCE The human norovirus (HNoV) clinical and socio-economic impact calls for immediate action in the development of anti-infectives. Physiologically relevant in vitro models are hence needed to study HNoV biology, tropism, and mechanisms of viral-associated disease, and also as a platform to identify antiviral agents. Biopsy-derived human intestinal enteroids are a biomimetic of the intestinal epithelium and were recently described as a model that supports HNoV infection. However, the established protocol is time-consuming and labor-intensive. Therefore, we sought to develop a simplified and robust alternative model of infection in 3D enteroids that undergoes differentiation and spontaneous polarity inversion. Advantages of this model are the shorter experimental time, better infection yield, and spatial integrity of the intestinal epithelium. This model is potentially suitable for the study of other pathogens that infect intestinal cells from the apical surface but also for unraveling the interactions between intestinal epithelium and indigenous bacteria of the human microbiome.


Subject(s)
Caliciviridae Infections , Gastroenteritis , Norovirus , Humans , Norovirus/physiology , Pyrazoles , Antiviral Agents/pharmacology
9.
J Virol ; 96(3): e0192321, 2022 02 09.
Article in English | MEDLINE | ID: mdl-34787460

ABSTRACT

Akt (protein kinase B) is a key signaling protein in eukaryotic cells that controls many cellular processes, such as glucose metabolism and cell proliferation, for survival. As obligate intracellular pathogens, viruses modulate host cellular processes, including Akt signaling, for optimal replication. The mechanisms by which viruses modulate Akt and the resulting effects on the infectious cycle differ widely depending on the virus. In this study, we explored the effect of Akt serine 473 phosphorylation (p-Akt) during murine norovirus (MNV) infection. p-Akt increased during infection of murine macrophages with acute MNV-1 and persistent CR3 and CR6 strains. Inhibition of Akt with MK2206, an inhibitor of all three isoforms of Akt (Akt1/2/3), reduced infectious virus progeny of all three virus strains. This reduction was due to decreased viral genome replication (CR3), defective virus assembly (MNV-1), or altered cellular egress (CR3 and CR6) in a virus strain-dependent manner. Collectively, our data demonstrate that Akt activation increases in macrophages during the later stages of the MNV infectious cycle, which may enhance viral infection in unique ways for different virus strains. The data, for the first time, indicate a role for Akt signaling in viral assembly and highlight additional phenotypic differences between closely related MNV strains. IMPORTANCE Human noroviruses (HNoV) are a leading cause of viral gastroenteritis, resulting in high annual economic burden and morbidity, yet there are no small-animal models supporting productive HNoV infection or robust culture systems producing cell culture-derived virus stocks. As a result, research on drug discovery and vaccine development against norovirus infection has been challenging, and no targeted antivirals or vaccines against HNoV are approved. On the other hand, murine norovirus (MNV) replicates to high titers in cell culture and is a convenient and widespread model in norovirus research. Our data demonstrate the importance of Akt signaling during the late stage of the MNV life cycle. Notably, the effect of Akt signaling on genome replication, virus assembly, and cellular egress is virus strain specific, highlighting the diversity of biological phenotypes despite small genetic variability among norovirus strains. This study is the first to demonstrate a role for Akt in viral assembly.


Subject(s)
Caliciviridae Infections/metabolism , Caliciviridae Infections/virology , Macrophages/metabolism , Macrophages/virology , Norovirus/physiology , Proto-Oncogene Proteins c-akt/metabolism , Virus Replication , Animals , Caliciviridae Infections/immunology , Disease Susceptibility , Host-Pathogen Interactions , Macrophage Activation , Macrophages/immunology , Mice , Phosphorylation , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Species Specificity
10.
PLoS Pathog ; 17(10): e1009987, 2021 10.
Article in English | MEDLINE | ID: mdl-34669717

ABSTRACT

Salmonella enterica represents over 2500 serovars associated with a wide-ranging spectrum of disease; from self-limiting gastroenteritis to invasive infections caused by non-typhoidal serovars (NTS) and typhoidal serovars, respectively. Host factors strongly influence infection outcome as malnourished or immunocompromised individuals can develop invasive infections from NTS, however, comparative analyses of serovar-specific host responses have been constrained by reliance on limited model systems. Here we used human intestinal organoids (HIOs), a three-dimensional "gut-like" in vitro system derived from human embryonic stem cells, to elucidate similarities and differences in host responses to NTS and typhoidal serovars. HIOs discriminated between the two most prevalent NTS, Salmonella enterica serovar Typhimurium (STM) and Salmonella enterica serovar Enteritidis (SE), and typhoidal serovar Salmonella enterica serovar Typhi (ST) in epithelial cell invasion, replication and transcriptional responses. Pro-inflammatory signaling and cytokine output was reduced in ST-infected HIOs compared to NTS infections, consistent with early stages of NTS and typhoidal diseases. While we predicted that ST would induce a distinct transcriptional profile from the NTS strains, more nuanced expression profiles emerged. Notably, pathways involved in cell cycle, metabolism and mitochondrial functions were downregulated in STM-infected HIOs and upregulated in SE-infected HIOs. These results correlated with suppression of cellular proliferation and induction of host cell death in STM-infected HIOs and in contrast, elevated levels of reactive oxygen species production in SE-infected HIOs. Collectively, these results suggest that the HIO model is well suited to reveal host transcriptional programming specific to infection by individual Salmonella serovars, and that individual NTS may provoke unique host epithelial responses during intestinal stages of infection.


Subject(s)
Gene Expression Profiling , Intestines/microbiology , Intestines/physiopathology , Salmonella Infections/microbiology , Salmonella Infections/physiopathology , Humans , Organoids , Salmonella enterica , Serogroup , Transcriptome
11.
J Virol ; 95(13): e0017621, 2021 06 10.
Article in English | MEDLINE | ID: mdl-33827952

ABSTRACT

Noroviruses, members of the Caliciviridae family, are the major cause of epidemic gastroenteritis in humans, causing Ć¢ĀˆĀ¼20 million cases annually. These plus-strand RNA viruses have T=3 icosahedral protein capsids with 90 pronounced protruding (P) domain dimers to which antibodies and cellular receptors bind. In the case of mouse norovirus (MNV), bile salts have been shown to enhance receptor (CD300lf) binding to the P domain. We demonstrated previously that the P domains of several genotypes are markedly flexible and "float" over the shell, but the role of this flexibility was unclear. Recently, we demonstrated that bile causes a 90Ā° rotation and collapse of the P domain onto the shell surface. Since bile binds distally to the P-shell interface, it was not at all clear how it could cause such dramatic changes. Here, we present the near-atomic resolution cryo-electron microscopy (cryo-EM) structure of the MNV protruding domain complexed with a neutralizing Fab. On the basis of previous results, we show here that bile salts cause allosteric conformational changes in the P domain that block antibody recognition of the top of the P domain. In addition, bile causes a major rearrangement of the P domain dimers that is likely responsible for the bile-induced collapse of the P domain onto the shell. In the contracted shell conformation, antibodies to the P1 and shell domains are not expected to bind. Therefore, at the site of infection in the gut, the host's own bile allows the virus to escape antibody-mediated neutralization while enhancing cell attachment. IMPORTANCE The major feature of calicivirus capsids is the 90 protruding domains (P domains) that are the site of cell receptor attachment and antibody epitopes. We demonstrated previously that these P domains are highly mobile and that bile causes these "floating" P domains in mouse norovirus (MNV) to contract onto the shell surface. Here, we present the near-atomic cryo-EM structure of the isolated MNV P domain complexed with a neutralizing Fab fragment. Our data show that bile causes two sets of changes. First, bile causes allosteric conformational changes in the epitopes at the top of the P domain that block antibody binding. Second, bile causes the P domain dimer subunits to rotate relative to each other, causing a contraction of the P domain that buries epitopes at the base of the P and shell domains. Taken together, the results show that MNV uses the host's own metabolites to enhance cell receptor binding while simultaneously blocking antibody recognition.


Subject(s)
Antibodies, Viral/immunology , Bile Acids and Salts/metabolism , Immune Evasion/immunology , Norovirus/immunology , Receptors, Virus/metabolism , Animals , Capsid/immunology , Capsid Proteins/metabolism , Cryoelectron Microscopy , Hybridomas , Mice , Protein Binding/physiology , Protein Domains/immunology
12.
J Virol ; 95(22): e0147121, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34468172

ABSTRACT

Human norovirus is the leading cause of gastroenteritis worldwide, with no approved vaccine or antiviral treatment to mitigate infection. These plus-strand RNA viruses have T = 3 icosahedral protein capsids with 90 pronounced protruding (P) domain dimers, to which antibodies and cellular receptors bind. We previously demonstrated that bile binding to the capsid of mouse norovirus (MNV) causes several major conformational changes; the entire P domain rotates by Ć¢ĀˆĀ¼90Ā° and contracts onto the shell, the P domain dimers rotate about each other, and the structural equilibrium of the epitopes at the top of the P domain shifts toward the closed conformation, which favors receptor binding while blocking antibody binding. Here, we demonstrate that MNV undergoes reversible conformational changes at pH 5.0 that are nearly identical to those observed when bile binds. Notably, at low pH or when metals bind, a cluster of acidic resides in the G'-H' loop interact and distort the G'-H' loop, and this may drive C'-D' loop movement toward the closed conformation. Enzyme-linked immunosorbent assays with infectious virus particles at low pH or in the presence of metals demonstrated that all tested antibodies do not bind to this contracted form, akin to what was observed with the MNV-bile complex. Therefore, low pH, cationic metals, and bile salts are physiological triggers in the gut for P domain contraction and structural rearrangement, which synergistically prime the virus for receptor binding while blocking antibody binding. IMPORTANCE The protruding domains on the calicivirus capsids are recognized by cell receptors and antibodies. We demonstrated that MNV P domains are highly mobile, and bile causes contraction onto the shell surface while allosterically blocking antibody binding. We present the near-atomic cryo-electron microscopy structures of infectious MNV at pH 5.0 and pH 7.5. Surprisingly, low pH is sufficient to cause the same conformational changes as when bile binds. A cluster of acidic residues on the G'-H' loop were most likely involved in the pH effects. These residues also bound divalent cations and had the same conformation as observed here at pH 5. Binding assays demonstrated that low pH and metals block antibody binding, and thus the G'-H' loop might be driving the conformational changes. Therefore, low pH, cationic metals, and bile salts in the gut synergistically prime the virus for receptor binding while blocking antibody binding.


Subject(s)
Antibodies, Viral/metabolism , Caliciviridae Infections/virology , Capsid Proteins/metabolism , Norovirus/metabolism , Virion/metabolism , Humans , Protein Binding , Protein Conformation , Protein Domains
13.
J Virol ; 95(15): e0029421, 2021 07 12.
Article in English | MEDLINE | ID: mdl-33980601

ABSTRACT

The pathogenic mechanisms underlying severe SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection remain largely unelucidated. High-throughput sequencing technologies that capture genome and transcriptome information are key approaches to gain detailed mechanistic insights from infected cells. These techniques readily detect both pathogen- and host-derived sequences, providing a means of studying host-pathogen interactions. Recent studies have reported the presence of host-virus chimeric (HVC) RNA in transcriptome sequencing (RNA-seq) data from SARS-CoV-2-infected cells and interpreted these findings as evidence of viral integration in the human genome as a potential pathogenic mechanism. Since SARS-CoV-2 is a positive-sense RNA virus that replicates in the cytoplasm, it does not have a nuclear phase in its life cycle. Thus, it is biologically unlikely to be in a location where splicing events could result in genome integration. Therefore, we investigated the biological authenticity of HVC events. In contrast to true biological events like mRNA splicing and genome rearrangement events, which generate reproducible chimeric sequencing fragments across different biological isolates, we found that HVC events across >100 RNA-seq libraries from patients with coronavirus disease 2019 (COVID-19) and infected cell lines were highly irreproducible. RNA-seq library preparation is inherently error prone due to random template switching during reverse transcription of RNA to cDNA. By counting chimeric events observed when constructing an RNA-seq library from human RNA and spiked-in RNA from an unrelated species, such as the fruit fly, we estimated that Ć¢ĀˆĀ¼1% of RNA-seq reads are artifactually chimeric. In SARS-CoV-2 RNA-seq, we found that the frequency of HVC events was, in fact, not greater than this background "noise." Finally, we developed a novel experimental approach to enrich SARS-CoV-2 sequences from bulk RNA of infected cells. This method enriched viral sequences but did not enrich HVC events, suggesting that the majority of HVC events are, in all likelihood, artifacts of library construction. In conclusion, our findings indicate that HVC events observed in RNA-sequencing libraries from SARS-CoV-2-infected cells are extremely rare and are likely artifacts arising from random template switching of reverse transcriptase and/or sequence alignment errors. Therefore, the observed HVC events do not support SARS-CoV-2 fusion to cellular genes and/or integration into human genomes. IMPORTANCE The pathogenic mechanisms underlying SARS-CoV-2, the virus responsible for COVID-19, are not fully understood. In particular, relatively little is known about the reasons some individuals develop life-threatening or persistent COVID-19. Recent studies identified host-virus chimeric (HVC) reads in RNA-sequencing data from SARS-CoV-2-infected cells and suggested that HVC events support potential "human genome invasion" and "integration" by SARS-CoV-2. This suggestion has fueled concerns about the long-term effects of current mRNA vaccines that incorporate elements of the viral genome. SARS-CoV-2 is a positive-sense, single-stranded RNA virus that does not encode a reverse transcriptase and does not include a nuclear phase in its life cycle, so some doubts have rightfully been expressed regarding the authenticity of HVCs and the role played by endogenous retrotransposons in this phenomenon. Thus, it is important to independently authenticate these HVC events. Here, we provide several lines of evidence suggesting that the observed HVC events are likely artifactual.


Subject(s)
COVID-19/metabolism , Host-Pathogen Interactions , RNA, Viral/metabolism , RNA-Seq , SARS-CoV-2/physiology , Virus Replication , COVID-19/genetics , COVID-19/pathology , Cell Line, Tumor , Humans , RNA, Viral/genetics
14.
PLoS Pathog ; 16(4): e1008242, 2020 04.
Article in English | MEDLINE | ID: mdl-32251490

ABSTRACT

Murine norovirus (MNoV) is an important model of human norovirus (HNoV) and mucosal virus infection more broadly. Viral receptor utilization is a major determinant of cell tropism, host range, and pathogenesis. The bona fide receptor for HNoV is unknown. Recently, we identified CD300lf as a proteinaceous receptor for MNoV. Interestingly, its paralogue CD300ld was also sufficient for MNoV infection in vitro. Here we explored whether CD300lf is the sole physiologic receptor in vivo and whether HNoV can use a CD300 ortholog as an entry receptor. We report that both CD300ld and CD300lf are sufficient for infection by diverse MNoV strains in vitro. We further demonstrate that CD300lf is essential for both oral and parenteral MNoV infection and to elicit anti-MNoV humoral responses in vivo. In mice deficient in STAT1 signaling, CD300lf is required for MNoV-induced lethality. Finally, we demonstrate that human CD300lf (huCD300lf) is not essential for HNoV infection, nor does huCD300lf inhibit binding of HNoV virus-like particles to glycans. Thus, we report huCD300lf is not a receptor for HNoV.


Subject(s)
Caliciviridae Infections/virology , Host Specificity , Host-Pathogen Interactions , Norovirus/metabolism , Receptors, Immunologic/metabolism , Receptors, Virus/metabolism , Animals , HeLa Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Norovirus/growth & development , Receptors, Immunologic/physiology , Viral Tropism
15.
Molecules ; 27(12)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35744940

ABSTRACT

The severity of the COVID-19 pandemic and the pace of its global spread have motivated researchers to opt for repurposing existing drugs against SARS-CoV-2 rather than discover or develop novel ones. For reasons of speed, throughput, and cost-effectiveness, virtual screening campaigns, relying heavily on in silico docking, have dominated published reports. A particular focus as a drug target has been the principal active site (i.e., RNA synthesis) of RNA-dependent RNA polymerase (RdRp), despite the existence of a second, and also indispensable, active site in the same enzyme. Here we report the results of our experimental interrogation of several small-molecule inhibitors, including natural products proposed to be effective by in silico studies. Notably, we find that two antibiotics in clinical use, fidaxomicin and rifabutin, inhibit RNA synthesis by SARS-CoV-2 RdRp in vitro and inhibit viral replication in cell culture. However, our mutagenesis studies contradict the binding sites predicted computationally. We discuss the implications of these and other findings for computational studies predicting the binding of ligands to large and flexible protein complexes and therefore for drug discovery or repurposing efforts utilizing such studies. Finally, we suggest several improvements on such efforts ongoing against SARS-CoV-2 and future pathogens as they arise.


Subject(s)
COVID-19 Drug Treatment , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Discovery , Humans , Molecular Docking Simulation , Pandemics , RNA , RNA-Dependent RNA Polymerase , SARS-CoV-2
16.
J Infect Dis ; 223(1): 23-27, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33089317

ABSTRACT

We describe a case of chronic coronavirus disease 2019 (COVID-19) in a patient with lymphoma and associated B-cell immunodeficiency. Viral cultures and sequence analysis demonstrate ongoing replication of infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for at least 119 days. The patient had 3 admissions related to COVID-19 over a 4-month period and was treated twice with remdesivir and convalescent plasma with resolution of symptoms. The patient's lack of seroconversion and prolonged course illustrate the importance of humoral immunity in resolving SARS-CoV-2 infection. This case highlights challenges in managing immunocompromised hosts, who may act as persistent shedders and sources of transmission.


Subject(s)
COVID-19/virology , SARS-CoV-2/physiology , Virus Replication , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , Antibodies, Viral/blood , COVID-19/diagnosis , Hospitalization , Humans , Immunity, Humoral , Immunocompromised Host , Lymphoma, Mantle-Cell/complications , Male , Middle Aged , Primary Immunodeficiency Diseases/complications , Seroconversion
17.
Biochem Cell Biol ; 99(1): 166-172, 2021 02.
Article in English | MEDLINE | ID: mdl-32348689

ABSTRACT

Human noroviruses cause significant morbidity and mortality worldwide, but lack approved antivirals or vaccines to treat or prevent infections. The recent development of two cell culture systems in human transformed B cells (BJABs) and non-transformed human intestinal enteroid cultures overcomes a main limitation in identifying molecules with anti-norovirus activities. Lactoferrin is an iron-binding glycoprotein found in the milk of most mammals, with broad spectrum antimicrobial activities, including against the related murine norovirus in cell culture. In a Japanese clinical trial, ingestion of lactoferrin reduced the incidence of infectious gastroenteritis in the participants. Because human noroviruses were the most common cause of gastroenteritis in Japan during the clinical trial period, we sought to determine whether lactoferrin could inhibit infection with human norovirus. Our study, using a B cell culture model, demonstrates that lactoferrin reduces human norovirus infection. The mechanism of antiviral action is likely indirect and may involve the induction of innate interferon responses. Therefore, future studies are warranted to test the antiviral efficacy of lactoferrin against human norovirus infection in patients.


Subject(s)
Antiviral Agents/pharmacology , Lactoferrin/metabolism , Norovirus/drug effects , Animals , Antiviral Agents/chemistry , Cattle , Cells, Cultured , Humans , Lactoferrin/chemistry , Microbial Sensitivity Tests , Virus Replication/drug effects
18.
J Gen Virol ; 102(3)2021 03.
Article in English | MEDLINE | ID: mdl-33560198

ABSTRACT

A long-standing paradigm in virology was that non-enveloped viruses induce cell lysis to release progeny virions. However, emerging evidence indicates that some non-enveloped viruses exit cells without inducing cell lysis, while others engage both lytic and non-lytic egress mechanisms. Enteric viruses are transmitted via the faecal-oral route and are important causes of a wide range of human infections, both gastrointestinal and extra-intestinal. Virus cellular egress, when fully understood, may be a relevant target for antiviral therapies, which could minimize the public health impact of these infections. In this review, we outline lytic and non-lytic cell egress mechanisms of non-enveloped enteric RNA viruses belonging to five families: Picornaviridae, Reoviridae, Caliciviridae, Astroviridae and Hepeviridae. We discuss factors that contribute to egress mechanisms and the relevance of these mechanisms to virion stability, infectivity and transmission. Since most data were obtained in traditional two-dimensional cell cultures, we will further attempt to place them into the context of polarized cultures and in vivo pathogenesis. Throughout the review, we highlight numerous knowledge gaps to stimulate future research into the egress mechanisms of these highly prevalent but largely understudied viruses.


Subject(s)
RNA Virus Infections/virology , RNA Viruses/classification , Virion/physiology , Virus Release , Animals , Humans , RNA Viruses/physiology
19.
J Virol ; 94(17)2020 08 17.
Article in English | MEDLINE | ID: mdl-32581099

ABSTRACT

Human norovirus is the leading cause of gastroenteritis worldwide, yet basic questions about its life cycle remain unanswered due to an historical lack of robust experimental systems. Recent studies on the closely related murine norovirus (MNV) have identified CD300LF as an indispensable entry factor for MNV. We compared the MNV susceptibilities of cells from different mouse strains and identified polymorphisms in murine CD300LF which are critical for its function as an MNV receptor. Bone marrow-derived macrophages (BMDMs) from I/LnJ mice were resistant to infection from multiple MNV strains which readily infect BMDMs from C57BL/6J mice. The resistance of I/LnJ BMDMs was specific to MNV, since the cells supported infection of other viruses comparably to C57BL/6J BMDMs. Transduction of I/LnJ BMDMs with C57BL/6J CD300LF made the cells permissible to MNV infection, suggesting that the cause of resistance lies in the entry step of MNV infection. In fact, we mapped this phenotype to a 4-amino-acid difference at the CC' loop of CD300LF; swapping of these amino acids between C57BL/6J and I/LnJ CD300LF proteins made the mutant C57BL/6J CD300LF functionally impaired and the corresponding mutant of I/LnJ CD300LF functional as an MNV entry factor. Surprisingly, expression of the I/LnJ CD300LF in other cell types made the cells infectible by MNV, even though the I/LnJ allele did not function as an MNV receptor in macrophage-like cells. Correspondingly, I/LnJ CD300LF bound MNV virions in permissive cells but not in nonpermissive cells. Collectively, our data suggest the existence of a cell type-specific modifier of MNV entry.IMPORTANCE MNV is a prevalent model system for studying human norovirus, which is the leading cause of gastroenteritis worldwide and thus a sizeable public health burden. Elucidating mechanisms underlying susceptibility of host cells to MNV infection can lead to insights on the roles that specific cell types play during norovirus pathogenesis. Here, we show that different alleles of the proteinaceous receptor for MNV, CD300LF, function in a cell type-dependent manner. In contrast to the C57BL/6J allele, which functions as an MNV entry factor in all tested cell types, including human cells, I/LnJ CD300LF does not function as an MNV entry factor in macrophage-like cells but does allow MNV entry in other cell types. Together, these observations indicate the existence of cell type-specific modifiers of CD300LF-dependent MNV entry.


Subject(s)
Caliciviridae Infections/virology , Disease Resistance/genetics , Polymorphism, Genetic , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Receptors, Virus/genetics , Receptors, Virus/metabolism , Animals , Binding Sites , Gastroenteritis/virology , Macrophages/virology , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Models, Molecular , Norovirus , Protein Conformation , Receptors, Immunologic/chemistry , Sequence Analysis, Protein , Virus Internalization
20.
PLoS Pathog ; 15(10): e1008057, 2019 10.
Article in English | MEDLINE | ID: mdl-31671153

ABSTRACT

Human astroviruses (HAstV) are understudied positive-strand RNA viruses that cause gastroenteritis mostly in children and the elderly. Three clades of astroviruses, classic, MLB-type and VA-type have been reported in humans. One limitation towards a better understanding of these viruses has been the lack of a physiologically relevant cell culture model that supports growth of all clades of HAstV. Herein, we demonstrate infection of HAstV strains belonging to all three clades in epithelium-only human intestinal enteroids (HIE) isolated from biopsy-derived intestinal crypts. A detailed investigation of infection of VA1, a member of the non-canonical HAstV-VA/HMO clade, showed robust replication in HIE derived from different patients and from different intestinal regions independent of the cellular differentiation status. Flow cytometry and immunofluorescence analysis revealed that VA1 infects several cell types, including intestinal progenitor cells and mature enterocytes, in HIE cultures. RNA profiling of VA1-infected HIE uncovered that the host response to infection is dominated by interferon (IFN)-mediated innate immune responses. A comparison of the antiviral host response in non-transformed HIE and transformed human colon carcinoma Caco-2 cells highlighted significant differences between these cells, including an increased magnitude of the response in HIE. Additional studies confirmed the sensitivity of VA1 to exogenous IFNs, and indicated that the endogenous IFN response of HIE to curtail the growth of strains from all three clades. Genotypic variation in the permissiveness of different HIE lines to HAstV could be overcome by pharmacologic inhibition of JAK/STAT signaling. Collectively, our data identify HIE as a universal infection model for HAstV and an improved model of the intestinal epithelium to investigate enteric virus-host interactions.


Subject(s)
Astroviridae Infections/immunology , Astroviridae Infections/veterinary , Intestinal Mucosa/immunology , Intestine, Small/immunology , Mamastrovirus/physiology , Viral Tropism/genetics , Animals , Caco-2 Cells , Cell Line , Chlorocebus aethiops , Enterocytes/virology , Gastroenteritis/virology , Humans , Immunity, Innate/immunology , Interferons/immunology , Intestinal Mucosa/cytology , Intestinal Mucosa/virology , Intestine, Small/cytology , Intestine, Small/virology , Mamastrovirus/genetics , Mamastrovirus/immunology , Vero Cells , Viral Tropism/immunology
SELECTION OF CITATIONS
SEARCH DETAIL