Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Proc Natl Acad Sci U S A ; 113(43): 12250-12255, 2016 10 25.
Article in English | MEDLINE | ID: mdl-27791012

ABSTRACT

The prognosis of cholangiocarcinoma (CC) is dismal. Notch has been identified as a potential driver; forced exogenous overexpression of Notch1 in hepatocytes results in the formation of biliary tumors. In human disease, however, it is unknown which components of the endogenously signaling pathway are required for tumorigenesis, how these orchestrate cancer, and how they can be targeted for therapy. Here we characterize Notch in human-resected CC, a toxin-driven model in rats, and a transgenic mouse model in which p53 deletion is targeted to biliary epithelia and CC induced using the hepatocarcinogen thioacetamide. We find that across species, the atypical receptor NOTCH3 is differentially overexpressed; it is progressively up-regulated with disease development and promotes tumor cell survival via activation of PI3k-Akt. We use genetic KO studies to show that tumor growth significantly attenuates after Notch3 deletion and demonstrate signaling occurs via a noncanonical pathway independent of the mediator of classical Notch, Recombinant Signal Binding Protein for Immunoglobulin Kappa J Region (RBPJ). These data present an opportunity in this aggressive cancer to selectively target Notch, bypassing toxicities known to be RBPJ dependent.


Subject(s)
Carcinogenesis/genetics , Cholangiocarcinoma/genetics , Neoplasms, Experimental/genetics , Prognosis , Receptor, Notch3/genetics , Animals , Cholangiocarcinoma/pathology , Humans , Immunoglobulin Joining Region/genetics , Mice , Mice, Transgenic , Neoplasms, Experimental/pathology , Phosphatidylinositol 3-Kinases/genetics , Rats , Signal Transduction , Tumor Suppressor Protein p53/genetics
2.
Gastroenterology ; 149(7): 1896-1909.e14, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26344055

ABSTRACT

BACKGROUND & AIMS: Liver regeneration requires functional liver macrophages, which provide an immune barrier that is compromised after liver injury. The numbers of liver macrophages are controlled by macrophage colony-stimulating factor (CSF1). We examined the prognostic significance of the serum level of CSF1 in patients with acute liver injury and studied its effects in mice. METHODS: We measured levels of CSF1 in serum samples collected from 55 patients who underwent partial hepatectomy at the Royal Infirmary Edinburgh between December 2012 and October 2013, as well as from 78 patients with acetaminophen-induced acute liver failure admitted to the Royal Infirmary Edinburgh or the University of Kansas Medical Centre. We studied the effects of increased levels of CSF1 in uninjured mice that express wild-type CSF1 receptor or a constitutive or inducible CSF1-receptor reporter, as well as in chemokine receptor 2 (Ccr2)-/- mice; we performed fate-tracing experiments using bone marrow chimeras. We administered CSF1-Fc (fragment, crystallizable) to mice after partial hepatectomy and acetaminophen intoxication, and measured regenerative parameters and innate immunity by clearance of fluorescent microbeads and bacterial particles. RESULTS: Serum levels of CSF1 increased in patients undergoing liver surgery in proportion to the extent of liver resected. In patients with acetaminophen-induced acute liver failure, a low serum level of CSF1 was associated with increased mortality. In mice, administration of CSF1-Fc promoted hepatic macrophage accumulation via proliferation of resident macrophages and recruitment of monocytes. CSF1-Fc also promoted transdifferentiation of infiltrating monocytes into cells with a hepatic macrophage phenotype. CSF1-Fc increased innate immunity in mice after partial hepatectomy or acetaminophen-induced injury, with resident hepatic macrophage as the main effector cells. CONCLUSIONS: Serum CSF1 appears to be a prognostic marker for patients with acute liver injury. CSF1 might be developed as a therapeutic agent to restore innate immune function after liver injury.


Subject(s)
Cell Transdifferentiation , Colony-Stimulating Factors , Animals , Humans , Immunity, Innate , Liver/drug effects , Liver Failure, Acute/immunology , Macrophages/immunology , Mice , Mice, Inbred C57BL
3.
Proc Natl Acad Sci U S A ; 110(16): 6542-7, 2013 Apr 16.
Article in English | MEDLINE | ID: mdl-23576749

ABSTRACT

Tissue progenitor cells are an attractive target for regenerative therapy. In various organs, bone marrow cell (BMC) therapy has shown promising preliminary results, but to date no definite mechanism has been demonstrated to account for the observed benefit in organ regeneration. Tissue injury and regeneration is invariably accompanied by macrophage infiltration, but their influence upon the progenitor cells is incompletely understood, and direct signaling pathways may be obscured by the multiple roles of macrophages during organ injury. We therefore examined a model without injury; a single i.v. injection of unfractionated BMCs in healthy mice. This induced ductular reactions (DRs) in healthy mice. We demonstrate that macrophages within the unfractionated BMCs are responsible for the production of DRs, engrafting in the recipient liver and localizing to the DRs. Engrafted macrophages produce the cytokine TWEAK (TNF-like weak inducer of apoptosis) in situ. We go on to show that recombinant TWEAK activates DRs and that BMC mediated DRs are TWEAK dependent. DRs are accompanied by liver growth, occur in the absence of liver tissue injury and hepatic progenitor cells can be isolated from the livers of mice with DRs. Overall these results reveal a hitherto undescribed mechanism linking macrophage infiltration to DRs in the liver and highlight a rationale for macrophage derived cell therapy in regenerative medicine.


Subject(s)
Bile Ducts, Intrahepatic/cytology , Bile Ducts, Intrahepatic/growth & development , Bone Marrow Transplantation/methods , Macrophages/metabolism , Regenerative Medicine/methods , Signal Transduction/physiology , Tumor Necrosis Factors/metabolism , Animals , Colony-Forming Units Assay , Cytokine TWEAK , Flow Cytometry , Immunohistochemistry , In Situ Hybridization, Fluorescence , Macrophages/physiology , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Real-Time Polymerase Chain Reaction
4.
Gut ; 64(2): 312-21, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24837171

ABSTRACT

OBJECTIVE: Following chronic liver injury or when hepatocyte proliferation is impaired, ductular reactions containing hepatic progenitor cells (HPCs) appear in the periportal regions and can regenerate the liver parenchyma. HPCs exist in a niche composed of myofibroblasts, macrophages and laminin matrix. Galectin-3 (Gal-3) is a ß-galactoside-binding lectin that binds to laminin and is expressed in injured liver in mice and humans. DESIGN: We examined the role of Gal-3 in HPC activation. HPC activation was studied following dietary induced hepatocellular (choline-deficient ethionine-supplemented diet) and biliary (3,5-diethoxycarbonyl-1,4-dihydrocollidine supplemented diet) injury in wild type and Gal-3(-/-) mice. RESULTS: HPC proliferation was significantly reduced in Gal-3(-/-) mice. Gal-3(-/-) mice failed to form a HPC niche, with reduced laminin formation. HPCs isolated from wild type mice secrete Gal-3 which enhanced adhesion and proliferation of HPCs on laminin in an undifferentiated form. These effects were attenuated in Gal3(-/-) HPCs and in wild type HPCs treated with the Gal-3 inhibitor lactose. Gal-3(-/-) HPCs in vitro showed increased hepatocyte function and prematurely upregulated both biliary and hepatocyte differentiation markers and regulated cell cycle genes leading to arrest in G0/G1. CONCLUSIONS: We conclude that Gal-3 is required for the undifferentiated expansion of HPCs in their niche in injured liver.


Subject(s)
Galectin 3/physiology , Liver/injuries , Stem Cells/pathology , Animals , Cell Adhesion/physiology , Cell Proliferation , Cells, Cultured , Coculture Techniques , Diet/adverse effects , Galectin 3/biosynthesis , Galectin 3/deficiency , Hepatocytes/physiology , Humans , Laminin/metabolism , Liver/metabolism , Liver/pathology , Liver Regeneration/physiology , Macrophages/metabolism , Macrophages/physiology , Male , Mice, Inbred C57BL , Mice, Knockout , Stem Cell Niche/physiology , Stem Cells/metabolism , Stem Cells/physiology , Up-Regulation
5.
Hepatology ; 53(6): 2003-15, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21433043

ABSTRACT

UNLABELLED: Clinical studies of bone marrow (BM) cell therapy for liver cirrhosis are under way but the mechanisms of benefit remain undefined. Cells of the monocyte-macrophage lineage have key roles in the development and resolution of liver fibrosis. Therefore, we tested the therapeutic effects of these cells on murine liver fibrosis. Advanced liver fibrosis was induced in female mice by chronic administration of carbon tetrachloride. Unmanipulated, syngeneic macrophages, their specific BM precursors, or unfractionated BM cells were delivered during liver injury. Mediators of inflammation, fibrosis, and regeneration were measured. Donor cells were tracked by sex-mismatch and green fluorescent protein expression. BM-derived macrophage (BMM) delivery resulted in early chemokine up-regulation with hepatic recruitment of endogenous macrophages and neutrophils. These cells delivered matrix metalloproteinases-13 and -9, respectively, into the hepatic scar. The effector cell infiltrate was accompanied by increased levels of the antiinflammatory cytokine interleukin 10. A reduction in hepatic myofibroblasts was followed by reduced fibrosis detected 4 weeks after macrophage infusion. Serum albumin levels were elevated at this time. Up- regulation of the liver progenitor cell mitogen tumor necrosis factor-like weak inducer of apoptosis (TWEAK) preceded expansion of the progenitor cell compartment. Increased expression of colony stimulating factor-1, insulin-like growth factor-1, and vascular endothelial growth factor also followed BMM delivery. In contrast to the effects of differentiated macrophages, liver fibrosis was not significantly altered by the application of macrophage precursors and was exacerbated by whole BM. CONCLUSION: Macrophage cell therapy improves clinically relevant parameters in experimental chronic liver injury. Paracrine signaling to endogenous cells amplifies the effect. The benefits from this single, defined cell type suggest clinical potential.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Liver Cirrhosis/physiopathology , Liver Cirrhosis/therapy , Liver Regeneration/physiology , Liver/physiopathology , Macrophages/physiology , Macrophages/transplantation , Animals , Carbon Tetrachloride/adverse effects , Chemokines/metabolism , Cytokine TWEAK , Disease Models, Animal , Female , Insulin-Like Growth Factor I/metabolism , Liver/metabolism , Liver/pathology , Liver Cirrhosis/chemically induced , Liver Function Tests , Macrophage Colony-Stimulating Factor/metabolism , Male , Mice , Serum Albumin/metabolism , Tumor Necrosis Factors/metabolism , Vascular Endothelial Growth Factor A/metabolism
6.
Proc Natl Acad Sci U S A ; 105(34): 12301-6, 2008 Aug 26.
Article in English | MEDLINE | ID: mdl-18719101

ABSTRACT

Human embryonic stem cells (hESCs) are a valuable source of pluripotential primary cells. To date, however, their homogeneous cellular differentiation to specific cell types in vitro has proven difficult. Wnt signaling has been shown to play important roles in coordinating development, and we demonstrate that Wnt3a is differentially expressed at critical stages of human liver development in vivo. The essential role of Wnt3a in hepatocyte differentiation from hESCs is paralleled by our in vitro model, demonstrating the importance of a physiologic approach to cellular differentiation. Our studies provide compelling evidence that Wnt3a signaling is important for coordinated hepatocellular function in vitro and in vivo. In addition, we demonstrate that Wnt3a facilitates clonal plating of hESCs exhibiting functional hepatic differentiation. These studies represent an important step toward the use of hESC-derived hepatocytes in high-throughput metabolic analysis of human liver function.


Subject(s)
Activins/physiology , Cell Differentiation , Embryonic Stem Cells/cytology , Endoderm/cytology , Liver/growth & development , Wnt Proteins/physiology , Animals , Gene Expression Regulation, Developmental , Hepatocytes/transplantation , Humans , Liver/cytology , Mice , Mice, SCID , Spleen/cytology , Transplantation, Heterologous , Wnt Proteins/genetics , Wnt3 Protein , Wnt3A Protein
7.
Cloning Stem Cells ; 10(1): 89-106, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18241127

ABSTRACT

Human embryonic stem cells (hESCs) are thought to be susceptible to chromosomal rearrangements as a consequence of single cell dissociation. Compared in this study are two methods of dissociation that do not generate single cell suspensions (collagenase and EDTA) with an enzymatic procedure using trypsin combined with the calcium-specific chelator EGTA (TEG), that does generate a single cell suspension, over 10 passages. Cells passaged by single cell dissociation using TEG retained a normal karyotype. However, cells passaged using EDTA, without trypsin, acquired an isochromosome p7 in three replicates of one experiment. In all of the TEG, collagenase and EDTA-treated cultures, cells retained consistent telomere length and potentiality, demonstrating that single cell dissociation can be used to maintain karyotypically and phenotypically normal hESCs. However, competitive genomic hybridization revealed that subkaryotypic deletions and amplifications could accumulate over time, reinforcing that present culture regimes remain suboptimal. In all cultures the cell surface marker CD30, reportedly expressed on embryonal carcinoma but not karyoptically normal ESCs, was expressed on hESCs with both normal and abnormal karyotype, but was upregulated on the latter.


Subject(s)
Cell Proliferation/drug effects , Collagenases/pharmacology , Embryonic Stem Cells/drug effects , Genome, Human/drug effects , Ki-1 Antigen/metabolism , Cell Culture Techniques , Cell Differentiation , Cells, Cultured , Chromosome Banding , Egtazic Acid/pharmacology , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/physiology , Humans , K562 Cells , Karyotyping , Models, Biological , Trypsin/pharmacology
8.
Methods Mol Biol ; 331: 77-90, 2006.
Article in English | MEDLINE | ID: mdl-16881510

ABSTRACT

Human embryonic stem cells provide both an in vitro model of human development and a potential source of cells for treatment of degenerative, metabolic, or traumatic disorders. This chapter describes techniques for routine maintenance and differentiation of human embryonic stem cells in culture.


Subject(s)
Cell Culture Techniques/methods , Pluripotent Stem Cells/cytology , Animals , Biocompatible Materials , Bone and Bones/cytology , Cell Differentiation , Cell Division , Coculture Techniques/methods , Collagen , Cryopreservation , Culture Media, Conditioned , Drug Combinations , Fibroblasts/cytology , Humans , Karyotyping , Laminin , Mice , Proteoglycans , Trypsin
9.
J Clin Invest ; 125(3): 1269-85, 2015 Mar 02.
Article in English | MEDLINE | ID: mdl-25689248

ABSTRACT

Cholangiocarcinoma (CC) is typically diagnosed at an advanced stage and is refractory to surgical intervention and chemotherapy. Despite a global increase in the incidence of CC, little progress has been made toward the development of treatments for this cancer. Here we utilized human tissue; CC cell xenografts; a p53-deficient transgenic mouse model; and a non-transgenic, chemically induced rat model of CC that accurately reflects both the inflammatory and regenerative background associated with human CC pathology. Using these systems, we determined that the WNT pathway is highly activated in CCs and that inflammatory macrophages are required to establish this WNT-high state in vivo. Moreover, depletion of macrophages or inhibition of WNT signaling with one of two small molecule WNT inhibitors in mouse and rat CC models markedly reduced CC proliferation and increased apoptosis, resulting in tumor regression. Together, these results demonstrate that enhanced WNT signaling is a characteristic of CC and suggest that targeting WNT signaling pathways has potential as a therapeutic strategy for CC.


Subject(s)
Antineoplastic Agents/pharmacology , Benzeneacetamides/pharmacology , Bile Duct Neoplasms/metabolism , Bile Ducts, Intrahepatic/metabolism , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cholangiocarcinoma/metabolism , Pyridines/pharmacology , Pyrimidinones/pharmacology , Wnt Signaling Pathway , Aniline Compounds/pharmacology , Animals , Anisoles/pharmacology , Bile Duct Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cholangiocarcinoma/drug therapy , Clodronic Acid/administration & dosage , Heterocyclic Compounds, 2-Ring/pharmacology , Humans , Keratins/metabolism , Liposomes , Macrophages/drug effects , Macrophages/metabolism , Male , Mice, Nude , Pyrimidines/pharmacology , Rats, Sprague-Dawley , Tamoxifen/pharmacology , Xenograft Model Antitumor Assays , beta Catenin/metabolism
10.
Nat Cell Biol ; 17(8): 971-983, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26192438

ABSTRACT

Hepatocytes and cholangiocytes self-renew following liver injury. Following severe injury hepatocytes are increasingly senescent, but whether hepatic progenitor cells (HPCs) then contribute to liver regeneration is unclear. Here, we describe a mouse model where the E3 ubiquitin ligase Mdm2 is inducibly deleted in more than 98% of hepatocytes, causing apoptosis, necrosis and senescence with nearly all hepatocytes expressing p21. This results in florid HPC activation, which is necessary for survival, followed by complete, functional liver reconstitution. HPCs isolated from genetically normal mice, using cell surface markers, were highly expandable and phenotypically stable in vitro. These HPCs were transplanted into adult mouse livers where hepatocyte Mdm2 was repeatedly deleted, creating a non-competitive repopulation assay. Transplanted HPCs contributed significantly to restoration of liver parenchyma, regenerating hepatocytes and biliary epithelia, highlighting their in vivo lineage potency. HPCs are therefore a potential future alternative to hepatocyte or liver transplantation for liver disease.


Subject(s)
Bile Ducts/transplantation , Cell Lineage , Cell Proliferation , Epithelial Cells/transplantation , Hepatocytes/transplantation , Liver Regeneration , Liver , Stem Cell Transplantation , Stem Cells , Animals , Apoptosis , Bile Ducts/metabolism , Bile Ducts/pathology , Biomarkers/metabolism , Cell Separation , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Genotype , Hepatocytes/metabolism , Hepatocytes/pathology , Liver/metabolism , Liver/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Necrosis , Phenotype , Proto-Oncogene Proteins c-mdm2/deficiency , Proto-Oncogene Proteins c-mdm2/genetics , Stem Cells/metabolism , Stem Cells/pathology , Time Factors
11.
Stem Cells ; 25(1): 10-8, 2007 Jan.
Article in English | MEDLINE | ID: mdl-16960131

ABSTRACT

Although undifferentiated human embryonic stem cells (hESCs) are tumorigenic, this capacity is lost after differentiation, and hESCs are being widely investigated for applications in regenerative medicine. To engineer protection against the unintentional transplantation of undifferentiated cells, we generated hESCs carrying a construct in which the alpha1,3-galactosyltransferase (GalT) open reading frame was transcribed from the hTERT promoter (pmGT). Because the endogenous GalT gene is inactive, GalT expression was limited to undifferentiated cells. A second chimeric construct (pmfGT) differed by replacement of the GalT leader sequence for that of the fucosyltransferase gene. Two subclones containing stable integrations of pmGT and pmfGT (M2 and F11, respectively) were assessed for their response to human serum containing antibodies to the Galalpha1-3Galbeta1-4GlcNAc-R (alpha-gal) epitope. The low-variegation line, M2, and to a lesser extent the more variegated line F11, were sensitive to human serum when exposed in the undifferentiated state. However, M2 cells were largely insensitive after differentiation and retained both a normal karyotype and the ability to differentiate into derivatives of the three germ layers in severe combined immunodeficient mice. These data exemplify a method of protection against residual, undifferentiated hESCs prior to engraftment and may provide ongoing immune surveillance after engraftment against dedifferentiation or against de novo tumorigenesis involving hTERT reactivation. Untransfected H9 cells were not sensitive to the human serum used in this study. Hence, in our system, interactions of hESCs with other circulating antibodies, such as anti-Neu5Gc, were not observed.


Subject(s)
Embryonic Stem Cells/cytology , Embryonic Stem Cells/immunology , Galactosyltransferases/genetics , Oligosaccharides/immunology , ABO Blood-Group System , Animals , Cell Culture Techniques , Cell Differentiation , Cloning, Molecular , DNA Primers , Humans , Immunity, Innate , Karyotyping , Mice , Mice, SCID , Open Reading Frames , Reference Values , Transcription, Genetic , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL