Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Article in English | MEDLINE | ID: mdl-33876744

ABSTRACT

Stabilization of messenger RNA is an important step in posttranscriptional gene regulation. In the nucleus and cytoplasm of eukaryotic cells it is generally achieved by 5' capping and 3' polyadenylation, whereas additional mechanisms exist in bacteria and organelles. The mitochondrial mRNAs in the yeast Saccharomyces cerevisiae comprise a dodecamer sequence element that confers RNA stability and 3'-end processing via an unknown mechanism. Here, we isolated the protein that binds the dodecamer and identified it as Rmd9, a factor that is known to stabilize yeast mitochondrial RNA. We show that Rmd9 associates with mRNA around dodecamer elements in vivo and that recombinant Rmd9 specifically binds the element in vitro. The crystal structure of Rmd9 bound to its dodecamer target reveals that Rmd9 belongs to the family of pentatricopeptide (PPR) proteins and uses a previously unobserved mode of specific RNA recognition. Rmd9 protects RNA from degradation by the mitochondrial 3'-exoribonuclease complex mtEXO in vitro, indicating that recognition and binding of the dodecamer element by Rmd9 confers stability to yeast mitochondrial mRNAs.


Subject(s)
Membrane Proteins/metabolism , RNA, Messenger/metabolism , Saccharomyces cerevisiae Proteins/metabolism , 3' Untranslated Regions , Genes, Mitochondrial , Membrane Proteins/chemistry , Membrane Proteins/genetics , Nucleotide Motifs , Protein Binding , Protein Domains , RNA, Messenger/chemistry , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics
2.
Front Behav Neurosci ; 17: 1143373, 2023.
Article in English | MEDLINE | ID: mdl-37465001

ABSTRACT

Introduction: The increasing misuse of both prescription and illicit opioids has culminated in a national healthcare crisis in the United States. Oxycodone is among the most widely prescribed and misused opioid pain relievers and has been associated with a high risk for transition to compulsive opioid use. Here, we sought to examine potential sex differences and estrous cycle-dependent effects on the reinforcing efficacy of oxycodone, as well as on stress-induced or cue-induced oxycodone-seeking behavior, using intravenous (IV) oxycodone self-administration and reinstatement procedures. Methods: In experiment 1, adult male and female Long-Evans rats were trained to self-administer 0.03 mg/kg/inf oxycodone according to a fixed-ratio 1 schedule of reinforcement in daily 2-h sessions, and a dose-response function was subsequently determined (0.003-0.03 mg/kg/inf). In experiment 2, a separate group of adult male and female Long-Evans rats were trained to self-administer 0.03 mg/kg/inf oxycodone for 8 sessions, followed by 0.01 mg/kg/inf oxycodone for 10 sessions. Responding was then extinguished, followed by sequential footshock-induced and cue-induced reinstatement tests. Results: In the dose-response experiment, oxycodone produced a typical inverted U-shape function with 0.01 mg/kg/inf representing the maximally effective dose in both sexes. No sex differences were detected in the reinforcing efficacy of oxycodone. In the second experiment, the reinforcing effects of 0.01-0.03 mg//kg/inf oxycodone were significantly attenuated in females during proestrus/estrus as compared to metestrus/diestrus phases of the estrous cycle. Neither males nor females displayed significant footshock-induced reinstatement of oxycodone seeking, but both sexes exhibited significant cue-induced reinstatement of oxycodone seeking at magnitudes that did not differ either by sex or by estrous cycle phase. Discussion: These results confirm and extend previous work suggesting that sex does not robustly influence the primary reinforcing effects of oxycodone nor the reinstatement of oxycodone-seeking behavior. However, our findings reveal for the first time that the reinforcing efficacy of IV oxycodone varies across the estrous cycle in female rats.

3.
bioRxiv ; 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37333293

ABSTRACT

The increasing misuse of both prescription and illicit opioids has culminated in a national healthcare crisis in the United States. Oxycodone is among the most widely prescribed and misused opioid pain relievers and has been associated with a high risk for transition to compulsive opioid use. Here, we sought to examine potential sex differences and estrous cycle-dependent effects on the reinforcing efficacy of oxycodone, as well as on stress-induced or cue-induced oxycodone-seeking behavior, using intravenous (IV) oxycodone self-administration and reinstatement procedures. In experiment 1, adult male and female Long-Evans rats were trained to self-administer 0.03 mg/kg/inf oxycodone according to a fixed-ratio 1 schedule of reinforcement in daily 2-hr sessions, and a dose-response function was subsequently determined (0.003-0.03 mg/kg/inf). In experiment 2, a separate group of adult male and female Long-Evans rats were trained to self-administer 0.03 mg/kg/inf oxycodone for 8 sessions, followed by 0.01 mg/kg/inf oxycodone for 10 sessions. Responding was then extinguished, followed by sequential footshock-induced and cue-induced reinstatement tests. In the dose-response experiment, oxycodone produced a typical inverted U-shape function with 0.01 mg/kg/inf representing the maximally effective dose in both sexes. No sex differences were detected in the reinforcing efficacy of oxycodone. In the second experiment, the reinforcing effects of 0.01-0.03 mg//kg/inf oxycodone were significantly attenuated in females during proestrus/estrus as compared to metestrus/diestrus phases of the estrous cycle. Neither males nor females displayed significant footshock-induced reinstatement of oxycodone seeking, but both sexes exhibited significant cue-induced reinstatement of oxycodone seeking at magnitudes that did not differ either by sex or by estrous cycle phase. These results confirm and extend previous work suggesting that sex does not robustly influence the primary reinforcing effects of oxycodone nor the reinstatement of oxycodone-seeking behavior. However, our findings reveal for the first time that the reinforcing efficacy of IV oxycodone varies across the estrous cycle in female rats.

4.
Mol Cell Biol ; 34(13): 2360-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24732805

ABSTRACT

DEAD box proteins have been widely implicated in regulation of gene expression. Here, we show that the yeast Saccharomyces cerevisiae DEAD box protein Mss116p, previously known as a mitochondrial splicing factor, also acts as a transcription factor that modulates the activity of the single-subunit mitochondrial RNA polymerase encoded by RPO41. Binding of Mss116p stabilizes paused mitochondrial RNA polymerase elongation complexes in vitro and favors the posttranslocated state of the enzyme, resulting in a lower concentration of nucleotide substrate required to escape the pause; this mechanism of action is similar to that of elongation factors that enhance the processivity of multisubunit RNA polymerases. In a yeast strain in which the RNA splicing-related functions of Mss116p are dispensable, overexpression of RPO41 or MSS116 increases cell survival from colonies that were exposed to low temperature, suggesting a role for Mss116p in enhancing the efficiency of mitochondrial transcription under stress conditions.


Subject(s)
DEAD-box RNA Helicases/isolation & purification , DNA-Directed RNA Polymerases/metabolism , Mitochondria/enzymology , Mitochondrial Proteins/metabolism , Saccharomyces cerevisiae Proteins/isolation & purification , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Transcription, Genetic , Binding Sites/genetics , Cell Survival , DEAD-box RNA Helicases/genetics , DNA-Directed RNA Polymerases/antagonists & inhibitors , DNA-Directed RNA Polymerases/genetics , Escherichia coli/enzymology , Gene Expression Regulation, Fungal , Mitochondria/genetics , Mitochondrial Proteins/antagonists & inhibitors , Mitochondrial Proteins/genetics , Peptide Elongation Factors/genetics , Protein Binding/genetics , RNA/biosynthesis , RNA/genetics , RNA, Fungal/biosynthesis , RNA, Fungal/genetics , RNA, Mitochondrial , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/antagonists & inhibitors , Saccharomyces cerevisiae Proteins/genetics , Stress, Physiological/genetics , Transcription Factors , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL