Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 134
Filter
Add more filters

Publication year range
1.
Circ Res ; 131(4): 308-327, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35862101

ABSTRACT

BACKGROUND: Pericytes and vascular smooth muscle cells, collectively known as mural cells, are recruited through PDGFB (platelet-derived growth factor B)-PDGFRB (platelet-derived growth factor receptor beta) signaling. MCs are essential for vascular integrity, and their loss has been associated with numerous diseases. Most of this knowledge is based on studies in which MCs are insufficiently recruited or fully absent upon inducible ablation. In contrast, little is known about the physiological consequences that result from impairment of specific MC functions. Here, we characterize the role of the transcription factor SRF (serum response factor) in MCs and study its function in developmental and pathological contexts. METHODS: We generated a mouse model of MC-specific inducible Srf gene deletion and studied its consequences during retinal angiogenesis using RNA-sequencing, immunohistology, in vivo live imaging, and in vitro techniques. RESULTS: By postnatal day 6, pericytes lacking SRF were morphologically abnormal and failed to properly comigrate with angiogenic sprouts. As a consequence, pericyte-deficient vessels at the retinal sprouting front became dilated and leaky. By postnatal day 12, also the vascular smooth muscle cells had lost SRF, which coincided with the formation of pathological arteriovenous shunts. Mechanistically, we show that PDGFB-dependent SRF activation is mediated via MRTF (myocardin-related transcription factor) cofactors. We further show that MRTF-SRF signaling promotes pathological pericyte activation during ischemic retinopathy. RNA-sequencing, immunohistology, in vivo live imaging, and in vitro experiments demonstrated that SRF regulates expression of contractile SMC proteins essential to maintain the vascular tone. CONCLUSIONS: SRF is crucial for distinct functions in pericytes and vascular smooth muscle cells. SRF directs pericyte migration downstream of PDGFRB signaling and mediates pathological pericyte activation during ischemic retinopathy. In vascular smooth muscle cells, SRF is essential for expression of the contractile machinery, and its deletion triggers formation of arteriovenous shunts. These essential roles in physiological and pathological contexts provide a rationale for novel therapeutic approaches through targeting SRF activity in MCs.


Subject(s)
Pericytes , Retinal Diseases , Animals , Mice , Pericytes/metabolism , Proto-Oncogene Proteins c-sis/metabolism , RNA/metabolism , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , Retinal Diseases/metabolism , Serum Response Factor/genetics , Serum Response Factor/metabolism
2.
Glia ; 68(3): 631-645, 2020 03.
Article in English | MEDLINE | ID: mdl-31696993

ABSTRACT

Astrocytes constitute the main glial component of the mammalian blood brain barrier (BBB). However, in the olfactory bulb (OB), the olfactory nerve layer (ONL) is almost devoid of astrocytes, raising the question which glial cells are part of the BBB. We used mice expressing EGFP in astrocytes and tdTomato in olfactory ensheathing cells (OECs), a specialized type of glial cells in the ONL, to unequivocally identify both glial cell types and investigate their contribution to the BBB in the olfactory bulb. OECs were located exclusively in the ONL, while somata of astrocytes were located in deeper layers and extended processes in the inner sublamina of the ONL. These processes surrounded blood vessels and contained aquaporin-4, an astrocytic protein enriched at the BBB. In the outer sublamina of the ONL, in contrast, blood vessels were surrounded by aquaporin-4-negative processes of OECs. Transcardial perfusion of blood vessels with lanthanum and subsequent visualization by electron microscopy showed that blood vessels enwrapped by OECs possessed intact tight junctions. In acute olfactory bulb preparations, injection of fluorescent glucose 6-NBDG into blood vessels resulted in labeling of OECs, indicating glucose transport from the perivascular space into OECs. In addition, Ca2+ transients in OECs in the outer sublamina evoked vasoconstriction, whereas Ca2+ signaling in OECs of the inner sublamina had no effect on adjacent blood vessels. Our results demonstrate that the BBB in the inner sublamina of the ONL contains astrocytes, while in the outer ONL OECs are part of the BBB.


Subject(s)
Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Olfactory Bulb/metabolism , Olfactory Nerve/pathology , Animals , Astrocytes/metabolism , Mice , Neuroglia/metabolism , Neurons/metabolism , Olfactory Bulb/pathology , Olfactory Nerve/metabolism
3.
Cell Mol Life Sci ; 76(10): 1987-2002, 2019 May.
Article in English | MEDLINE | ID: mdl-30734065

ABSTRACT

At the blood-brain barrier (BBB), claudin (Cldn)-5 is thought to be the dominant tight junction (TJ) protein, with minor contributions from Cldn3 and -12, and occludin. However, the BBB appears ultrastructurally normal in Cldn5 knock-out mice, suggesting that further Cldns and/or TJ-associated marvel proteins (TAMPs) are involved. Microdissected human and murine brain capillaries, quickly frozen to recapitulate the in vivo situation, showed high transcript expression of Cldn5, -11, -12, and -25, and occludin, but also abundant levels of Cldn1 and -27 in man. Protein levels were quantified by a novel epitope dilution assay and confirmed the respective mRNA data. In contrast to the in vivo situation, Cldn5 dominates BBB expression in vitro, since all other TJ proteins are at comparably low levels or are not expressed. Cldn11 was highly abundant in vivo and contributed to paracellular tightness by homophilic oligomerization, but almost disappeared in vitro. Cldn25, also found at high levels, neither tightened the paracellular barrier nor interconnected opposing cells, but contributed to proper TJ strand morphology. Pathological conditions (in vivo ischemia and in vitro hypoxia) down-regulated Cldn1, -3, and -12, and occludin in cerebral capillaries, which was paralleled by up-regulation of Cldn5 after middle cerebral artery occlusion in rats. Cldn1 expression increased after Cldn5 knock-down. In conclusion, this complete Cldn/TAMP profile demonstrates the presence of up to a dozen TJ proteins in brain capillaries. Mouse and human share a similar and complex TJ profile in vivo, but this complexity is widely lost under in vitro conditions.


Subject(s)
Blood-Brain Barrier , Claudin-5/genetics , Tight Junction Proteins/genetics , Tight Junctions/metabolism , Adult , Animals , Brain/blood supply , Brain/metabolism , Cells, Cultured , Claudin-5/metabolism , Female , Gene Expression , HEK293 Cells , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Middle Aged , Protein Isoforms/genetics , Protein Isoforms/metabolism , Tight Junction Proteins/metabolism , Tight Junctions/ultrastructure
4.
Hum Mol Genet ; 25(3): 459-71, 2016 02 01.
Article in English | MEDLINE | ID: mdl-26604148

ABSTRACT

The protease HtrA2 has a protective role inside mitochondria, but promotes apoptosis under stress. We previously identified the G399S HtrA2 mutation in Parkinson's disease (PD) patients and reported mitochondrial dysfunction in vitro. Mitochondrial dysfunction is a common feature of PD and related to neurodegeneration. Complete loss of HtrA2 has been shown to cause neurodegeneration in mice. However, the full impact of HtrA2 overexpression or the G399S mutation is still to be determined in vivo. Here, we report the first HtrA2 G399S transgenic mouse model. Our data suggest that the mutation has a dominant-negative effect. We also describe a toxic effect of wild-type (WT) HtrA2 overexpression. Only low overexpression of the G399S mutation allowed viable animals and we suggest that the mutant protein is likely unstable. This is accompanied by reduced mitochondrial respiratory capacity and sensitivity to apoptotic cell death. Mice overexpressing WT HtrA2 were viable, yet these animals have inhibited mitochondrial respiration and significant induction of apoptosis in the brain leading to motor dysfunction, highlighting the opposing roles of HtrA2. Our data further underscore the importance of HtrA2 as a key mediator of mitochondrial function and its fine regulatory role in cell fate. The location and abundance of HtrA2 is tightly controlled and, therefore, human mutations leading to gain- or loss of function could provide significant risk for PD-related neurodegeneration.


Subject(s)
Electron Transport Chain Complex Proteins/genetics , Mitochondria/genetics , Mitochondrial Proteins/genetics , Mutation , Parkinson Disease/genetics , Serine Endopeptidases/genetics , Animals , Apoptosis , Brain/metabolism , Brain/pathology , Cell Respiration , Disease Models, Animal , Electron Transport Chain Complex Proteins/metabolism , Female , Gene Dosage , Gene Expression Regulation , High-Temperature Requirement A Serine Peptidase 2 , Humans , Male , Mice , Mice, Transgenic , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Proteins/metabolism , Motor Activity , Neurons/metabolism , Neurons/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Phenotype , Serine Endopeptidases/metabolism
5.
Crit Care Med ; 46(1): e91-e94, 2018 01.
Article in English | MEDLINE | ID: mdl-29252954

ABSTRACT

OBJECTIVE: The objective of this report of a fatal propofol-related infusion syndrome in a young adult was to present-to our knowledge for the first time-direct ultrastructural evidence for the central role of mitochondrial damage in the pathogenesis of this syndrome. DATA SOURCES: Histological and electron microscopical analysis of liver, skeletal, and heart muscle obtained by autopsy and blood obtained from patient. STUDY SELECTION: Case report. DATA EXTRACTION: In addition to conventional macroscopical and histological investigations, electron-microscopical analysis of myocardial- and skeletal muscle and liver tissue obtained at autopsy from a young man was performed in order to search for ultrastructural changes of mitochondria. Acylcarnitine concentrations of his blood were determined by ultra-high performance liquid chromatography mass spectrometry. DATA SYNTHESIS: A 19-year-old male was admitted with acute left-side hemiparesis. The patient was intubated, then propofol infusion started, and a craniotomy was performed to remove an intracerebral hematoma. In the postoperative period, the patient presented with elevated intracranial pressure and brain edema. After repeat surgery, the patient showed impaired systolic left ventricular function, increasing fever, anuria, hyperkalemia, and metabolic acidosis, and he finally expired. Electron microscopy revealed dark, electron dense amorphous structures associated with mitochondria in heart muscle and liver tissue obtained at autopsy. Peripheral blood analysis revealed increased levels of acetyl-, propionyl-, butyryl-, malonyl-, and valeryl-carnitine as an indicator for propofol-related infusion syndrome, as well as for propofol-mediated inhibition of free fatty acid uptake into mitochondria, affecting beta-oxidation. CONCLUSIONS: Electron dense bodies found in association with mitochondria in muscle and liver cells probably correspond to accumulation of free fatty acid provide direct morphological evidence for the mitochondrial damage in propofol-related infusion syndrome.


Subject(s)
Mitochondrial Diseases/chemically induced , Mitochondrial Diseases/pathology , Propofol Infusion Syndrome/pathology , Carnitine/analogs & derivatives , Carnitine/blood , Craniotomy , Hematoma, Subdural, Intracranial/surgery , Humans , Infusions, Intravenous , Male , Microscopy, Electron , Mitochondria, Heart/drug effects , Mitochondria, Heart/pathology , Mitochondria, Liver/drug effects , Mitochondria, Liver/pathology , Mitochondria, Muscle/drug effects , Mitochondria, Muscle/pathology , Postoperative Complications/chemically induced , Postoperative Complications/pathology , Young Adult
6.
Neurourol Urodyn ; 37(1): 89-98, 2018 01.
Article in English | MEDLINE | ID: mdl-28370277

ABSTRACT

AIMS: To explore the ultrastructure of interstitial cells in the upper lamina propria of the human bladder, to describe the spatial relationships and to investigate cell-cell contacts. METHODS: Focused ion beam scanning electron microscopy (FIB-SEM), 3-View SEM and confocal laser scanning microscopy were used to analyze the 3D ultrastructure of the upper lamina propria in male and female human bladders. RESULTS: 3View-SEM image stacks as large as 59 × 59 × 17 µm3 (xyz) at a resolution of 16 × 16 × 50 nm3 and high resolution (5 × 5 × 10 nm3 ) FIB-SEM stacks could be analyzed. Interstitial cells with myoid differentiation (mIC) and fibroblast like interstitial cells (fIC) were the major cell types in the upper lamina propria. The flat, sheet-like ICs were oriented strictly parallel to the urothelium. No spindle shaped cells were present. We furthermore identified one branched cell (bIC) with several processes contacting urothelial cells by penetrating the basal membrane. This cell did not make any contacts to other ICs within the upper lamina propria. We found no evidence for the occurrence of telocytes in the upper lamina propria. CONCLUSIONS: Comprehensive 3D-ultrastructural analysis of the human bladder confirmed distinct subtypes of interstitial cells. We provide evidence for a foremost unknown direct connection between a branched interstitial cell and urothelial cells of which the functional role has still to be elucidated. 3D-ultrastructure analyses at high resolution are needed to further define the subpopulations of lamina propria cells and cell-cell interactions.


Subject(s)
Epithelial Cells/ultrastructure , Intercellular Junctions/ultrastructure , Microscopy/methods , Mucous Membrane/ultrastructure , Urinary Bladder/ultrastructure , Urothelium/ultrastructure , Epithelial Cells/cytology , Female , Humans , Imaging, Three-Dimensional , Immunohistochemistry , Male , Microscopy, Confocal , Microscopy, Electron, Scanning , Mucous Membrane/cytology , Urinary Bladder/cytology , Urothelium/cytology
7.
Proc Natl Acad Sci U S A ; 112(32): 9914-9, 2015 Aug 11.
Article in English | MEDLINE | ID: mdl-26221020

ABSTRACT

Intracerebral hemorrhagic stroke and vascular dementia are age- and hypertension-associated manifestations of human cerebral small vessel disease (SVD). Cerebral microvessels are formed by endothelial cells (ECs), which are connected through tight junctions, adherens junctions, and stabilizing basement membrane structures. These endothelial connections ensure both vessel stability and blood-brain barrier (BBB) functions, the latter enabling selective exchange of ions, bioactive molecules, and cells between the bloodstream and brain tissue. Srf(iECKO) mice, permitting conditional EC-specific depletion of the transcription factor Serum Response Factor (SRF), suffer from loss of BBB integrity and intracerebral hemorrhaging. Cerebral microbleeds and larger hemorrhages developed upon postnatal and adult depletion of either SRF or its cofactors Myocardin Related Transcription Factor (MRTF-A/-B), revealing essential requirements of ongoing SRF/MRTF activity for maintenance of cerebral small vessel integrity. In vivo magnetic resonance imaging allowed detection, localization, and time-resolved quantification of BBB permeability and hemorrhage formation in Srf(iECKO) brains. At the molecular level, direct and indirect SRF/MRTF target genes, encoding structural components of tight junctions (Claudins and ZO proteins), adherens junctions (VE-cadherin, α-Actinin), and the basement membrane (Collagen IV), were down-regulated upon SRF depletion. These results identify SRF and its MRTF cofactors as major transcriptional regulators of EC junctional stability, guaranteeing physiological functions of the cerebral microvasculature. We hypothesize that impairments in SRF/MRTF activity contribute to human SVD pathology.


Subject(s)
Cerebral Hemorrhage/complications , Endothelial Cells/metabolism , Serum Response Factor/metabolism , Stroke/etiology , Stroke/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism , Animals , Animals, Newborn , Astrocytes/metabolism , Astrocytes/pathology , Basement Membrane/metabolism , Basement Membrane/pathology , Blood-Brain Barrier/metabolism , Brain/blood supply , Brain/metabolism , Brain/pathology , Brain/physiopathology , Cadherins/metabolism , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/pathology , Cerebral Hemorrhage/physiopathology , Collagen Type IV/metabolism , Down-Regulation , Evans Blue/metabolism , Exploratory Behavior , Extravasation of Diagnostic and Therapeutic Materials , Gene Deletion , Magnetic Resonance Imaging , Mice, Knockout , Microvessels/metabolism , Microvessels/pathology , Motor Activity , Permeability , Serum Response Factor/genetics , Stroke/pathology , Stroke/physiopathology , Tight Junctions/metabolism , Time Factors
8.
Semin Cell Dev Biol ; 38: 16-25, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25433243

ABSTRACT

The blood-brain barrier (BBB) is formed by microvascular endothelial cells sealed by tetraspanning tight junction (TJ) proteins, such as claudins and TAMPs (TJ-associated marvel proteins, occludin and tricellulin). Claudins are the major components of the TJs. At the BBB, claudin-5 dominates the TJs by preventing the paracellular permeation of small molecules. On the other hand, TAMPs regulate the structure and function of the TJs; tricellulin may tighten the barrier for large molecules. This review aims at integrating and summarizing the most relevant and recent work on how the BBB is influenced by claudin-1, -3, -5, -12 and the TAMPs occludin and tricellulin, all of which are four-transmembrane TJ proteins. The exact functions of claudin-1, -3, -12 and TAMPs at this barrier still need to be elucidated.


Subject(s)
Blood-Brain Barrier/cytology , Blood-Brain Barrier/physiology , Membrane Proteins/metabolism , Tight Junctions/physiology , Animals , Biological Transport , Endothelial Cells/metabolism , Humans , Tight Junctions/ultrastructure
9.
Mol Imaging ; 152016.
Article in English | MEDLINE | ID: mdl-27030399

ABSTRACT

OBJECTIVES: To use the superparamagnetic iron oxide (SPIO) contrast agent Resovist (±transfection agent) to label human melanoma cells and determine its effects on cellular viability, microstructure, iron quantity, and magnetic resonance imaging (MRI) detectability. MATERIALS AND METHODS: Human SK-Mel28 melanoma cells were incubated with Resovist (±liposomal transfection agent DOSPER). The cellular iron content was measured, and labeled cells were examined at 1.5 T and 3.0 T. The intracellular and extracellular distributions of the contrast agent were assessed by light and electron microscopy. RESULTS: The incubation of melanoma cells with SPIO does not interfere with cell viability or proliferation. The iron is located both intracellularly and extracellularly as iron clusters associated with the exterior of the cell membrane. Despite thorough washing, the extracellular SPIO remained associated with the cell membrane. The liposomal transfection agent does not change the maximum achievable cellular iron content but promotes a faster iron uptake. The MRI detectability persists for at least 7 days. CONCLUSION: The transfection agent DOSPER facilitates the efficient labeling of human metastatic melanoma cells with Resovist. Our findings raise the possibility that other Resovist-labeled cells may collect associated extracellular nanoparticles. The SPIO may be available to other iron-handling cells and not completely compartmentalized during the labeling procedure.


Subject(s)
Cell Tracking/methods , Contrast Media/pharmacology , Dextrans/pharmacology , Magnetic Resonance Imaging/methods , Melanoma/diagnostic imaging , Skin Neoplasms/diagnostic imaging , Cell Line, Tumor , Cell Membrane/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Fatty Acids, Monounsaturated/pharmacology , Humans , In Vitro Techniques , Iron/analysis , Magnetite Nanoparticles , Melanoma/chemistry , Skin Neoplasms/chemistry , Staining and Labeling
10.
Int J Mol Sci ; 17(9)2016 Aug 26.
Article in English | MEDLINE | ID: mdl-27571065

ABSTRACT

The main water channel of the brain, aquaporin-4 (AQP4), is one of the classical water-specific aquaporins. It is expressed in many epithelial tissues in the basolateral membrane domain. It is present in the membranes of supporting cells in most sensory organs in a specifically adapted pattern: in the supporting cells of the olfactory mucosa, AQP4 occurs along the basolateral aspects, in mammalian retinal Müller cells it is highly polarized. In the cochlear epithelium of the inner ear, it is expressed basolaterally in some cells but strictly basally in others. Within the central nervous system, aquaporin-4 (AQP4) is expressed by cells of the astroglial family, more specifically, by astrocytes and ependymal cells. In the mammalian brain, AQP4 is located in high density in the membranes of astrocytic endfeet facing the pial surface and surrounding blood vessels. At these locations, AQP4 plays a role in the maintenance of ionic homeostasis and volume regulation. This highly polarized expression has not been observed in the brain of fish where astroglial cells have long processes and occur mostly as radial glial cells. In the brain of the zebrafish, AQP4 immunoreactivity is found along the radial extent of astroglial cells. This suggests that the polarized expression of AQP4 was not present at all stages of evolution. Thus, a polarized expression of AQP4 as part of a control mechanism for a stable ionic environment and water balanced occurred at several locations in supporting and glial cells during evolution. This initially basolateral membrane localization of AQP4 is shifted to highly polarized expression in astrocytic endfeet in the mammalian brain and serves as a part of the neurovascular unit to efficiently maintain homeostasis.


Subject(s)
Aquaporin 4/metabolism , Astrocytes/metabolism , Brain/metabolism , Animals , Astrocytes/cytology , Brain/cytology , Ependymoglial Cells/cytology , Ependymoglial Cells/metabolism , Humans , Olfactory Mucosa/cytology , Olfactory Mucosa/metabolism , Water/metabolism
11.
J Biol Chem ; 289(11): 7641-53, 2014 Mar 14.
Article in English | MEDLINE | ID: mdl-24478310

ABSTRACT

The mechanism of tight junction (TJ) assembly and the structure of claudins (Cldn) that form the TJ strands are unclear. This limits the molecular understanding of paracellular barriers and strategies for drug delivery across tissue barriers. Cldn3 and Cldn5 are both common in the blood-brain barrier but form TJ strands with different ultrastructures. To identify the molecular determinants of folding and assembly of these classic claudins, Cldn3/Cldn5 chimeric mutants were generated and analyzed by cellular reconstitution of TJ strands, live cell confocal imaging, and freeze-fracture electron microscopy. A comprehensive screening was performed on the basis of the rescue of mutants deficient for strand formation. Cldn3/Cldn5 residues in transmembrane segment 3, TM3 (Ala-127/Cys-128, Ser-136/Cys-137, Ser-138/Phe-139), and the transition of TM3 to extracellular loop 2, ECL2 (Thr-141/Ile-142) and ECL2 (Asn-148/Asp-149, Leu-150/Thr-151, Arg-157/Tyr-158), were identified to be involved in claudin folding and/or assembly. Blue native PAGE and FRET assays revealed 1% n-dodecyl ß-d-maltoside-resistant cis-dimerization for Cldn5 but not for Cldn3. This homophilic interaction was found to be stabilized by residues in TM3. The resulting subtype-specific cis-dimer is suggested to be a subunit of polymeric TJ strands and contributes to the specific ultrastructure of the TJ detected by freeze-fracture electron microscopy. In particular, the Cldn5-like exoplasmic face-associated and particle-type strands were found to be related to cis-dimerization. These results provide new insight into the mechanisms of paracellular barrier formation by demonstrating that defined non-conserved residues in TM3 and ECL2 of classic claudins contribute to the formation of TJ strands with differing ultrastructures.


Subject(s)
Claudin-3/chemistry , Claudin-5/chemistry , Protein Folding , Tight Junctions/ultrastructure , Amino Acid Sequence , Cell Membrane/metabolism , Electrophoresis, Polyacrylamide Gel , Fluorescence Resonance Energy Transfer , Freeze Fracturing , HEK293 Cells , Humans , Microscopy, Confocal , Molecular Sequence Data , Phenotype , Protein Binding , Protein Multimerization , Sequence Homology, Amino Acid , Spectrometry, Fluorescence
12.
J Cell Sci ; 126(Pt 2): 554-64, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23203797

ABSTRACT

Tight junctions seal the paracellular cleft of epithelia and endothelia, form vital barriers between tissue compartments and consist of tight-junction-associated marvel proteins (TAMPs) and claudins. The function of TAMPs and the interaction with claudins are not understood. We therefore investigated the binding between the TAMPs occludin, tricellulin, and marvelD3 and their interaction with claudins in living tight-junction-free human embryonic kidney-293 cells. In contrast to claudins and occludin, tricellulin and marvelD3 showed no enrichment at cell-cell contacts indicating lack of homophilic trans-interaction between two opposing cell membranes. However, occludin, marvelD3 and tricellulin exhibited homophilic cis-interactions, along one plasma membrane, as measured by fluorescence resonance energy transfer. MarvelD3 also cis-interacted with occludin and tricellulin heterophilically. Classic claudins, such as claudin-1 to -5 may show cis-oligomerization with TAMPs, whereas the non-classic claudin-11 did not. Claudin-1 and -5 improved enrichment of occludin and tricellulin at cell-cell contacts. The low mobile claudin-1 reduced the membrane mobility of the highly mobile occludin and tricellulin, as studied by fluorescence recovery after photobleaching. Co-transfection of claudin-1 with TAMPs led to changes of the tight junction strand network of this claudin to a more physiological morphology, depicted by freeze-fracture electron microscopy. The results demonstrate multilateral interactions between the tight junction proteins, in which claudins determine the function of TAMPs and vice versa, and provide deeper insights into the tight junction assembly.


Subject(s)
Claudins/metabolism , MARVEL Domain Containing 2 Protein/metabolism , Occludin/metabolism , Tight Junctions/metabolism , Animals , Caco-2 Cells , Dogs , HEK293 Cells , Humans , Madin Darby Canine Kidney Cells
13.
Graefes Arch Clin Exp Ophthalmol ; 253(5): 681-9, 2015 May.
Article in English | MEDLINE | ID: mdl-25042819

ABSTRACT

PURPOSE: This study reports the clinicopathologic findings of leaky sites in pathological vessels after submacular removal of choroidal neovascular membranes (CNV). As the site that causes fluid exudation from neovascular vessels is unknown, specific attention was focused on the formation of fenestrations, cellular junctions, and morphologic alteration which can cause endothelial leakage. METHODS: Choroidal neovascular membranes of 15 patients who underwent submacular surgery for CNV were investigated. Five patients received bevacizumab treatment before surgery, and another five received photodynamic therapy before surgery. The remaining five did not receive any other treatment before surgery. All membranes were embedded for transmission electron microscopy. CNVs were analyzed for pathological cell-to-cell connections, fenestrations, or other pathological conditions which can cause leakage of plasma. RESULTS: The morphology of the newly formed blood channels was very variable, and in principle was not different in treated and untreated patients. The sources of leakage in neovascular choroidal vessels were caused by insufficient endothelial cell connections and by capillaries with microvillar projections into the vessel lumen which blocked cellular perfusion but still allowed the flow of plasma. Fenestrations were only infrequently observed. CONCLUSIONS: A newly discovered type of pathological capillary, called a labyrinth capillary, is very likely responsible for the permanent leakage of fluid. Due to the small vessel lumen, thrombocytes cannot enter these capillaries to close the leakages. Fenestrations did not appear to play a significant role in vascular leakiness.


Subject(s)
Capillaries/ultrastructure , Capillary Permeability , Choroid/blood supply , Choroidal Neovascularization/pathology , Endothelium, Vascular/ultrastructure , Aged, 80 and over , Angiogenesis Inhibitors/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Bevacizumab , Choroidal Neovascularization/drug therapy , Humans , Intravitreal Injections , Microscopy, Electron, Transmission , Photochemotherapy , Retrospective Studies , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Wet Macular Degeneration/drug therapy , Wet Macular Degeneration/pathology
14.
Proc Natl Acad Sci U S A ; 109(4): 1245-50, 2012 Jan 24.
Article in English | MEDLINE | ID: mdl-22128336

ABSTRACT

The astrocytic aquaporin-4 (AQP4) water channel is the target of pathogenic antibodies in a spectrum of relapsing autoimmune inflammatory central nervous system disorders of varying severity that is unified by detection of the serum biomarker neuromyelitis optica (NMO)-IgG. Neuromyelitis optica is the most severe of these disorders. The two major AQP4 isoforms, M1 and M23, have identical extracellular residues. This report identifies two novel properties of NMO-IgG as determinants of pathogenicity. First, the binding of NMO-IgG to the ectodomain of astrocytic AQP4 has isoform-specific outcomes. M1 is completely internalized, but M23 resists internalization and is aggregated into larger-order orthogonal arrays of particles that activate complement more effectively than M1 when bound by NMO-IgG. Second, NMO-IgG binding to either isoform impairs water flux directly, independently of antigen down-regulation. We identified, in nondestructive central nervous system lesions of two NMO patients, two previously unappreciated histopathological correlates supporting the clinical relevance of our in vitro findings: (i) reactive astrocytes with persistent foci of surface AQP4 and (ii) vacuolation in adjacent myelin consistent with edema. The multiple molecular outcomes identified as a consequence of NMO-IgG interaction with AQP4 plausibly account for the diverse pathological features of NMO: edema, inflammation, demyelination, and necrosis. Differences in the nature and anatomical distribution of NMO lesions, and in the clinical and imaging manifestations of disease documented in pediatric and adult patients, may be influenced by regional and maturational differences in the ratio of M1 to M23 proteins in astrocytic membranes.


Subject(s)
Aquaporin 4/metabolism , Astrocytes/metabolism , Biomarkers/metabolism , Immunoglobulin G/metabolism , Neuromyelitis Optica/blood , Neuromyelitis Optica/pathology , Animals , Astrocytes/ultrastructure , Biomarkers/blood , Blotting, Western , Cell Membrane/metabolism , Fluorescent Antibody Technique , Freeze Fracturing , Immunoglobulin G/blood , Mice , Microscopy, Electron , Myelin Sheath/pathology , Oocytes/metabolism , Rats , Vacuoles/pathology
16.
J Neuroinflammation ; 10: 31, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23448224

ABSTRACT

BACKGROUND: Bacterial invasion through the blood-cerebrospinal fluid barrier (BCSFB) during bacterial meningitis causes secretion of proinflammatory cytokines/chemokines followed by the recruitment of leukocytes into the CNS. In this study, we analyzed the cellular and molecular mechanisms of polymorphonuclear neutrophil (PMN) and monocyte transepithelial transmigration (TM) across the BCSFB after bacterial infection. METHODS: Using an inverted transwell filter system of human choroid plexus papilloma cells (HIBCPP), we studied leukocyte TM rates, the migration route by immunofluorescence, transmission electron microscopy and focused ion beam/scanning electron microscopy, the secretion of cytokines/chemokines by cytokine bead array and posttranslational modification of the signal regulatory protein (SIRP) α via western blot. RESULTS: PMNs showed a significantly increased TM across HIBCPP after infection with wild-type Neisseria meningitidis (MC58). In contrast, a significantly decreased monocyte transmigration rate after bacterial infection of HIBCPP could be observed. Interestingly, in co-culture experiments with PMNs and monocytes, TM of monocytes was significantly enhanced. Analysis of paracellular permeability and transepithelial electrical resistance confirmed an intact barrier function during leukocyte TM. With the help of the different imaging techniques we could provide evidence for para- as well as for transcellular migrating leukocytes. Further analysis of secreted cytokines/chemokines showed a distinct pattern after stimulation and transmigration of PMNs and monocytes. Moreover, the transmembrane glycoprotein SIRPα was deglycosylated in monocytes, but not in PMNs, after bacterial infection. CONCLUSIONS: Our findings demonstrate that PMNs and monoctyes differentially migrate in a human BCSFB model after bacterial infection. Cytokines and chemokines as well as transmembrane proteins such as SIRPα may be involved in this process.


Subject(s)
Blood-Brain Barrier/physiology , Meningococcal Infections/pathology , Monocytes/physiology , Neutrophil Infiltration/physiology , Transendothelial and Transepithelial Migration/physiology , Antigens, Differentiation/metabolism , Blotting, Western , Cell Line, Tumor , Cell Survival/physiology , Cells, Cultured , Flow Cytometry , Humans , Immunohistochemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Neisseria meningitidis , Papilloma, Choroid Plexus/pathology , Receptors, Immunologic/metabolism
17.
J Autoimmun ; 40: 21-7, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22906356

ABSTRACT

The principal central nervous system (CNS) water channel, aquaporin-4 (AQP4), is confined to astrocytic and ependymal membranes and is the target of a pathogenic autoantibody, neuromyelitis optica (NMO)-IgG. This disease-specific autoantibody unifies a spectrum of relapsing CNS autoimmune inflammatory disorders of which NMO exemplifies the classic phenotype. Multiple sclerosis and other immune-mediated demyelinating disorders of the CNS lack a distinctive biomarker. Two AQP4 isoforms, M1 and M23, exist as homotetrameric and heterotetrameric intramembranous particles (IMPs). Orthogonal arrays of predominantly M23 particles (OAPs) are an ultrastructural characteristic of astrocytic membranes. We used high-titered serum from 32 AQP4-IgG-seropositive patients and 85 controls to investigate the nature and molecular location of AQP4 epitopes that bind NMO-IgG, and the influence of supramolecular structure. NMO-IgG bound to denatured AQP4 monomers (68% of cases), to native tetramers and high order arrays (90% of cases), and to AQP4 in live cell membranes (100% of cases). Disease-specific epitopes reside in extracellular loop C more than in loops A or E. IgG binding to intracellular epitopes lacks disease specificity. These observations predict greater disease sensitivity and specificity for tissue-based and cell-based serological assays employing "native" AQP4 than assays employing denatured AQP4 and fragments. NMO-IgG binds most avidly to plasma membrane surface AQP4 epitopes formed by loop interactions within tetramers and by intermolecular interactions within high order structures. The relative abundance and localization of AQP4 high order arrays in distinct CNS regions may explain the variability in clinical phenotype of NMO spectrum disorders.


Subject(s)
Aquaporin 4/immunology , Astrocytes/immunology , Autoantibodies/immunology , Neuromyelitis Optica/immunology , Aquaporin 4/metabolism , Aquaporin 4/ultrastructure , Cell Membrane/immunology , Cells, Cultured , Crystallography, X-Ray , Epitopes/immunology , Female , Humans , Male , Recombinant Fusion Proteins
18.
Proc Natl Acad Sci U S A ; 107(34): 15258-63, 2010 Aug 24.
Article in English | MEDLINE | ID: mdl-20696909

ABSTRACT

Neurotransmitter release generally is considered to occur at active zones of synapses, and ectopic release of neurotransmitters has been demonstrated in a few instances. However, the mechanism of ectopic neurotransmitter release is poorly understood. We took advantage of the intimate morphological and functional proximity of olfactory receptor axons and specialized glial cells, olfactory ensheathing cells (OECs), to study ectopic neurotransmitter release. Axonal stimulation evoked purinergic and glutamatergic Ca(2+) responses in OECs, indicating ATP and glutamate release. In axons expressing synapto-pHluorin, stimulation evoked an increase in synapto-pHluorin fluorescence, indicative of vesicle fusion. Transmitter release was dependent on Ca(2+) and could be inhibited by bafilomycin A1 and botulinum toxin A. Ca(2+) transients in OECs evoked by ATP, axonal stimulation, and laser photolysis of NP-EGTA resulted in constriction of adjacent blood vessels. Our results indicate that ATP and glutamate are released ectopically by vesicles along axons and mediate neurovascular coupling via glial Ca(2+) signaling.


Subject(s)
Calcium Signaling/physiology , Neuroglia/physiology , Neurotransmitter Agents/metabolism , Olfactory Receptor Neurons/blood supply , Olfactory Receptor Neurons/physiology , Sensory Receptor Cells/physiology , Adenosine Triphosphate/metabolism , Animals , Calcium Channels/drug effects , Calcium Channels/physiology , Diltiazem/pharmacology , Electric Stimulation , Glutamic Acid/metabolism , In Vitro Techniques , Mice , Olfactory Bulb/blood supply , Olfactory Bulb/cytology , Olfactory Bulb/physiology , Synaptic Vesicles/physiology , Vasoconstriction/physiology
19.
Proc Natl Acad Sci U S A ; 107(4): 1425-30, 2010 Jan 26.
Article in English | MEDLINE | ID: mdl-20080584

ABSTRACT

Lumen expansion driven by hydrostatic pressure occurs during many morphogenetic processes. Although it is well established that members of the Claudin family of transmembrane tight junction proteins determine paracellular tightness within epithelial/endothelial barrier systems, functional evidence for their role in the morphogenesis of lumenized organs has been scarce. Here, we identify Claudin5a as a core component of an early cerebral-ventricular barrier system that is required for ventricular lumen expansion in the zebrafish embryonic brain before the establishment of the embryonic blood-brain barrier. Loss of Claudin5a or expression of a tight junction-opening Claudin5a mutant reduces brain ventricular volume expansion without disrupting the polarized organization of the neuroepithelium. Perfusion experiments with the electron-dense small molecule lanthanum nitrate reveal that paracellular tightness of the cerebral-ventricular barrier decreases upon loss of Claudin5a. Genetic analyses show that the apical neuroepithelial localization of Claudin5a depends on epithelial cell polarity and provide evidence for concerted activities between Claudin5a and Na(+),K(+)-ATPase during luminal expansion of brain ventricles. These data establish an essential role of a barrier-forming Claudin in ventricular lumen expansion, thereby contributing to brain morphogenesis.


Subject(s)
Brain/embryology , Brain/metabolism , Membrane Proteins/metabolism , Neuroepithelial Cells/metabolism , Zebrafish Proteins/metabolism , Zebrafish/embryology , Zebrafish/metabolism , Animals , Animals, Genetically Modified , Blood-Brain Barrier , Brain/cytology , Cell Line , Cell Membrane Permeability , Cell Polarity , Claudin-5 , Gene Expression Regulation, Developmental , Membrane Proteins/genetics , Mice , Microscopy, Electron , Mutation , Neuroepithelial Cells/cytology , Tight Junctions/metabolism , Zebrafish/genetics , Zebrafish Proteins/genetics
20.
Proc Natl Acad Sci U S A ; 107(17): 7969-74, 2010 Apr 27.
Article in English | MEDLINE | ID: mdl-20385796

ABSTRACT

Familial Danish dementia (FDD) is a progressive neurodegenerative disease with cerebral deposition of Dan-amyloid (ADan), neuroinflammation, and neurofibrillary tangles, hallmark characteristics remarkably similar to those in Alzheimer's disease (AD). We have generated transgenic (tg) mouse models of familial Danish dementia that exhibit the age-dependent deposition of ADan throughout the brain with associated amyloid angiopathy, microhemorrhage, neuritic dystrophy, and neuroinflammation. Tg mice are impaired in the Morris water maze and exhibit increased anxiety in the open field. When crossed with TauP301S tg mice, ADan accumulation promotes neurofibrillary lesions, in all aspects similar to the Tau lesions observed in crosses between beta-amyloid (Abeta)-depositing tg mice and TauP301S tg mice. Although these observations argue for shared mechanisms of downstream pathophysiology for the sequence-unrelated ADan and Abeta peptides, the lack of codeposition of the two peptides in crosses between ADan- and Abeta-depositing mice points also to distinguishing properties of the peptides. Our results support the concept of the amyloid hypothesis for AD and related dementias, and suggest that different proteins prone to amyloid formation can drive strikingly similar pathogenic pathways in the brain.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Dementia/metabolism , Disease Models, Animal , Membrane Proteins/metabolism , Adaptor Proteins, Signal Transducing , Alzheimer Disease/etiology , Animals , Blotting, Western , Dementia/etiology , Histological Techniques , Immunoassay , Membrane Glycoproteins , Mice , Mice, Transgenic , Neuropsychological Tests
SELECTION OF CITATIONS
SEARCH DETAIL