ABSTRACT
Wnt ligands oligomerize Frizzled (Fzd) and Lrp5/6 receptors to control the specification and activity of stem cells in many species. How Wnt signaling is selectively activated in different stem cell populations, often within the same organ, is not understood. In lung alveoli, we show that distinct Wnt receptors are expressed by epithelial (Fzd5/6), endothelial (Fzd4), and stromal (Fzd1) cells. Fzd5 is uniquely required for alveolar epithelial stem cell activity, whereas fibroblasts utilize distinct Fzd receptors. Using an expanded repertoire of Fzd-Lrp agonists, we could activate canonical Wnt signaling in alveolar epithelial stem cells via either Fzd5 or, unexpectedly, non-canonical Fzd6. A Fzd5 agonist (Fzd5ag) or Fzd6ag stimulated alveolar epithelial stem cell activity and promoted survival in mice after lung injury, but only Fzd6ag promoted an alveolar fate in airway-derived progenitors. Therefore, we identify a potential strategy for promoting regeneration without exacerbating fibrosis during lung injury.
Subject(s)
Lung Injury , Mice , Animals , Wnt Proteins , Frizzled Receptors , Wnt Signaling Pathway , Alveolar Epithelial Cells , Stem CellsABSTRACT
The environmentally widespread polysaccharide chitin is degraded and recycled by ubiquitous bacterial and fungal chitinases. Although vertebrates express active chitinases from evolutionarily conserved loci, their role in mammalian physiology is unclear. We show that distinct lung epithelial cells secrete acidic mammalian chitinase (AMCase), which is required for airway chitinase activity. AMCase-deficient mice exhibit premature morbidity and mortality, concomitant with accumulation of environmentally derived chitin polymers in the airways and expression of pro-fibrotic cytokines. Over time, these mice develop spontaneous pulmonary fibrosis, which is ameliorated by restoration of lung chitinase activity by genetic or therapeutic approaches. AMCase-deficient epithelial cells express fibrosis-associated gene sets linked with cell stress pathways. Mice with lung fibrosis due to telomere dysfunction and humans with interstitial lung disease also accumulate excess chitin polymers in their airways. These data suggest that altered chitin clearance could exacerbate fibrogenic pathways in the setting of lung diseases characterized by epithelial cell dysfunction.
Subject(s)
Aging/pathology , Chitin/toxicity , Chitinases/metabolism , Lung Diseases/pathology , Animals , Aspergillus niger , Chitinases/genetics , Cytokines/metabolism , Epithelial Cells/pathology , Fibrosis/pathology , Gene Knock-In Techniques , Inflammation/pathology , Lung/pathology , Mice , Mice, Knockout , Pyroglyphidae/chemistry , Signal TransductionABSTRACT
Tissue fibrosis is a major cause of mortality that results from the deposition of matrix proteins by an activated mesenchyme. Macrophages accumulate in fibrosis, but the role of specific subgroups in supporting fibrogenesis has not been investigated in vivo. Here, we used single-cell RNA sequencing (scRNA-seq) to characterize the heterogeneity of macrophages in bleomycin-induced lung fibrosis in mice. A novel computational framework for the annotation of scRNA-seq by reference to bulk transcriptomes (SingleR) enabled the subclustering of macrophages and revealed a disease-associated subgroup with a transitional gene expression profile intermediate between monocyte-derived and alveolar macrophages. These CX3CR1+SiglecF+ transitional macrophages localized to the fibrotic niche and had a profibrotic effect in vivo. Human orthologs of genes expressed by the transitional macrophages were upregulated in samples from patients with idiopathic pulmonary fibrosis. Thus, we have identified a pathological subgroup of transitional macrophages that are required for the fibrotic response to injury.
Subject(s)
Idiopathic Pulmonary Fibrosis/immunology , Lung/pathology , Macrophage Activation , Macrophages, Alveolar/immunology , Animals , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, Differentiation, Myelomonocytic/immunology , Antigens, Differentiation, Myelomonocytic/metabolism , Bleomycin/immunology , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/immunology , CX3C Chemokine Receptor 1/metabolism , Cells, Cultured , Disease Models, Animal , Female , Gene Expression Profiling/methods , Humans , Idiopathic Pulmonary Fibrosis/pathology , Lung/cytology , Lung/immunology , Macrophages, Alveolar/metabolism , Male , Mice , Sequence Analysis, RNA/methods , Sialic Acid Binding Immunoglobulin-like Lectins , Single-Cell Analysis/methods , Up-RegulationABSTRACT
Fibroblasts are present throughout the body and function to maintain tissue homeostasis. Recent studies have identified diverse fibroblast subsets in healthy and injured tissues1,2, but the origins and functional roles of injury-induced fibroblast lineages remain unclear. Here we show that lung-specialized alveolar fibroblasts take on multiple molecular states with distinct roles in facilitating responses to fibrotic lung injury. We generate a genetic tool that uniquely targets alveolar fibroblasts to demonstrate their role in providing niches for alveolar stem cells in homeostasis and show that loss of this niche leads to exaggerated responses to acute lung injury. Lineage tracing identifies alveolar fibroblasts as the dominant origin for multiple emergent fibroblast subsets sequentially driven by inflammatory and pro-fibrotic signals after injury. We identify similar, but not completely identical, fibroblast lineages in human pulmonary fibrosis. TGFß negatively regulates an inflammatory fibroblast subset that emerges early after injury and stimulates the differentiation into fibrotic fibroblasts to elicit intra-alveolar fibrosis. Blocking the induction of fibrotic fibroblasts in the alveolar fibroblast lineage abrogates fibrosis but exacerbates lung inflammation. These results demonstrate the multifaceted roles of the alveolar fibroblast lineage in maintaining normal alveolar homeostasis and orchestrating sequential responses to lung injury.
Subject(s)
Acute Lung Injury , Cell Lineage , Fibroblasts , Pneumonia , Pulmonary Alveoli , Pulmonary Fibrosis , Animals , Female , Humans , Male , Mice , Acute Lung Injury/pathology , Acute Lung Injury/metabolism , Cell Differentiation , Fibroblasts/pathology , Fibroblasts/metabolism , Homeostasis , Pneumonia/pathology , Pneumonia/metabolism , Pulmonary Alveoli/pathology , Pulmonary Alveoli/cytology , Pulmonary Alveoli/metabolism , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Stem Cell Niche , Stem Cells/metabolism , Stem Cells/cytology , Stem Cells/pathology , Transforming Growth Factor beta/metabolismABSTRACT
Rationale: Idiopathic pulmonary fibrosis (IPF) causes irreversible fibrosis of the lung parenchyma. Although antifibrotic therapy can slow IPF progression, treatment response is variable. There exists a critical need to develop a precision medicine approach to IPF. Objectives: To identify and validate biologically driven molecular endotypes of IPF. Methods: Latent class analysis (LCA) was independently performed in prospectively recruited discovery (n = 875) and validation (n = 347) cohorts. Twenty-five plasma biomarkers associated with fibrogenesis served as class-defining variables. The association between molecular endotype and 4-year transplant-free survival was tested using multivariable Cox regression adjusted for baseline confounders. Endotype-dependent differential treatment response to future antifibrotic exposure was then assessed in a pooled cohort of patients naive to antifibrotic therapy at the time of biomarker measurement (n = 555). Measurements and Main Results: LCA independently identified two latent classes in both cohorts (P < 0.0001). WFDC2 (WAP four-disulfide core domain protein 2) was the most important determinant of class membership across cohorts. Membership in class 2 was characterized by higher biomarker concentrations and a higher risk of death or transplant (discovery, hazard ratio [HR], 2.02; 95% confidence interval [CI], 1.64-2.48; P < 0.001; validation, HR, 1.95; 95% CI, 1.34-2.82; P < 0.001). In pooled analysis, significant heterogeneity in treatment effect was observed between endotypes (P = 0.030 for interaction), with a favorable antifibrotic response in class 2 (HR, 0.64; 95% CI, 0.45-0.93; P = 0.018) but not in class 1 (HR, 1.19; 95% CI, 0.77-1.84; P = 0.422). Conclusions: In this multicohort study, we identified two novel molecular endotypes of IPF with divergent clinical outcomes and responses to antifibrotic therapy. Pending further validation, these endotypes could enable a precision medicine approach for future IPF clinical trials.
Subject(s)
Biomarkers , Idiopathic Pulmonary Fibrosis , Latent Class Analysis , Humans , Idiopathic Pulmonary Fibrosis/blood , Idiopathic Pulmonary Fibrosis/mortality , Male , Female , Middle Aged , Biomarkers/blood , Aged , Cohort Studies , Prospective StudiesABSTRACT
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by vasoconstriction and remodeling of small pulmonary arteries (PAs). Central to the remodeling process is a switch of pulmonary vascular cells to a proliferative, apoptosis-resistant phenotype. Plasminogen activator inhibitors-1 and -2 (PAI-1 and PAI-2) are the primary physiological inhibitors of urokinase-type and tissue-type plasminogen activators (uPA and tPA), but their roles in PAH are unsettled. Here, we report that: 1) PAI-1, but not PAI-2, is deficient in remodeled small PAs and in early-passage PA smooth muscle and endothelial cells (PASMCs and PAECs) from subjects with PAH compared with controls; 2) PAI-1-/- mice spontaneously develop pulmonary vascular remodeling associated with upregulation of mTORC1 signaling, pulmonary hypertension (PH), and right ventricle (RV) hypertrophy; and 3) pharmacological inhibition of uPA in human PAH PASMCs suppresses proproliferative mTORC1 and SMAD3 signaling, restores PAI-1 levels, reduces proliferation, and induces apoptosis in vitro, and prevents the development of SU5416/hypoxia-induced PH and RV hypertrophy in vivo in mice. These data strongly suggest that downregulation of PAI-1 in small PAs promotes vascular remodeling and PH due to unopposed activation of uPA and consequent upregulation of mTOR and transforming growth factor-ß (TGF-ß) signaling in PASMCs, and call for further studies to determine the potential benefits of targeting the PAI-1/uPA imbalance to attenuate and/or reverse pulmonary vascular remodeling and PH.NEW & NOTEWORTHY This study identifies a novel role for the deficiency of plasminogen activator inhibitor (PAI)-1 and resultant unrestricted uPA activity in PASMC remodeling and PH in vitro and in vivo, provides novel mechanistic link from PAI-1 loss through uPA-induced Akt/mTOR and TGFß-Smad3 upregulation to pulmonary vascular remodeling in PH, and suggests that inhibition of uPA to rebalance the uPA-PAI-1 tandem might provide a novel approach to complement current therapies used to mitigate this pulmonary vascular disease.
Subject(s)
Hypertension, Pulmonary , Muscle, Smooth, Vascular , Plasminogen Activator Inhibitor 1 , Vascular Remodeling , Animals , Plasminogen Activator Inhibitor 1/metabolism , Plasminogen Activator Inhibitor 1/genetics , Humans , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Mice , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Signal Transduction , Male , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Cell Proliferation , Mice, Knockout , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice, Inbred C57BL , Apoptosis , Urokinase-Type Plasminogen Activator/metabolism , Urokinase-Type Plasminogen Activator/genetics , Hypertrophy, Right Ventricular/metabolism , Hypertrophy, Right Ventricular/pathology , Hypertrophy, Right Ventricular/physiopathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Plasminogen Activator Inhibitor 2/metabolism , Plasminogen Activator Inhibitor 2/geneticsABSTRACT
Shortened telomere lengths (TLs) can be caused by single nucleotide polymorphisms and loss-of-function mutations in telomere-related genes (TRG), as well as ageing and lifestyle factors such as smoking. Our objective was to determine if shortened TL is associated with interstitial lung disease (ILD) in individuals with rheumatoid arthritis (RA). This is the largest study to demonstrate and replicate that shortened peripheral blood leukocytes-TL is associated with ILD in patients with RA compared with RA without ILD in a multinational cohort, and short PBL-TL was associated with baseline disease severity in RA-ILD as measured by forced vital capacity percent predicted.
Subject(s)
Arthritis, Rheumatoid , Lung Diseases, Interstitial , Humans , Telomere Shortening , Telomere/genetics , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/complications , Lung Diseases, Interstitial/complications , SmokingABSTRACT
Rationale: Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by limited treatment options and high mortality. A better understanding of the molecular drivers of IPF progression is needed. Objectives: To identify and validate molecular determinants of IPF survival. Methods: A staged genome-wide association study was performed using paired genomic and survival data. Stage I cases were drawn from centers across the United States and Europe and stage II cases from Vanderbilt University. Cox proportional hazards regression was used to identify gene variants associated with differential transplantation-free survival (TFS). Stage I variants with nominal significance (P < 5 × 10-5) were advanced for stage II testing and meta-analyzed to identify those reaching genome-wide significance (P < 5 × 10-8). Downstream analyses were performed for genes and proteins associated with variants reaching genome-wide significance. Measurements and Main Results: After quality controls, 1,481 stage I cases and 397 stage II cases were included in the analysis. After filtering, 9,075,629 variants were tested in stage I, with 158 meeting advancement criteria. Four variants associated with TFS with consistent effect direction were identified in stage II, including one in an intron of PCSK6 (proprotein convertase subtilisin/kexin type 6) reaching genome-wide significance (hazard ratio, 4.11 [95% confidence interval, 2.54-6.67]; P = 9.45 × 10-9). PCSK6 protein was highly expressed in IPF lung parenchyma. PCSK6 lung staining intensity, peripheral blood gene expression, and plasma concentration were associated with reduced TFS. Conclusions: We identified four novel variants associated with IPF survival, including one in PCSK6 that reached genome-wide significance. Downstream analyses suggested that PCSK6 protein plays a potentially important role in IPF progression.
Subject(s)
Genome-Wide Association Study , Idiopathic Pulmonary Fibrosis , Humans , Lung , Proportional Hazards Models , Europe , Serine Endopeptidases , Proprotein ConvertasesABSTRACT
BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic disease characterised by aberrant fibroblast/myofibroblast accumulation and excessive collagen matrix deposition in the alveolar areas of lungs. As the first approved IPF medication, pirfenidone (PFD) significantly decelerates lung function decline while its underlying anti-fibrotic mechanism remains elusive. METHODS: We performed transcriptomic and immunofluorescence analyses of primary human IPF tissues. RESULTS: We showed that myocardin-related transcription factor (MRTF) signalling is activated in myofibroblasts accumulated in IPF lungs. Furthermore, we showed that PFD inhibits MRTF activation in primary human lung fibroblasts at clinically achievable concentrations (half-maximal inhibitory concentration 50-150â µM, maximal inhibition >90%, maximal concentration of PFD in patients <100â µM). Mechanistically, PFD appears to exert its inhibitory effects by promoting the interaction between MRTF and actin indirectly. Finally, PFD-treated IPF lungs exhibit significantly less MRTF activation in fibroblast foci areas than naïve IPF lungs. CONCLUSIONS: Our results suggest MRTF signalling as a direct target for PFD and implicate that some of the anti-fibrotic effects of PFD may be due to MRTF inhibition in lung fibroblasts.
Subject(s)
Idiopathic Pulmonary Fibrosis , Transcription Factors , Humans , Fibrosis , Trans-Activators/pharmacology , Lung/pathology , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Fibroblasts , MyofibroblastsABSTRACT
BACKGROUND: Studies suggest a harmful pharmacogenomic interaction exists between short leukocyte telomere length (LTL) and immunosuppressants in idiopathic pulmonary fibrosis (IPF). It remains unknown if a similar interaction exists in non-IPF interstitial lung disease (ILD). METHODS: A retrospective, multicentre cohort analysis was performed in fibrotic hypersensitivity pneumonitis (fHP), unclassifiable ILD (uILD) and connective tissue disease (CTD)-ILD patients from five centres. LTL was measured by quantitative PCR for discovery and replication cohorts and expressed as age-adjusted percentiles of normal. Inverse probability of treatment weights based on propensity scores were used to assess the association between mycophenolate or azathioprine exposure and age-adjusted LTL on 2-year transplant-free survival using weighted Cox proportional hazards regression incorporating time-dependent immunosuppressant exposure. RESULTS: The discovery and replication cohorts included 613 and 325 patients, respectively. In total, 40% of patients were exposed to immunosuppression and 22% had LTL <10th percentile of normal. fHP and uILD patients with LTL <10th percentile experienced reduced survival when exposed to either mycophenolate or azathioprine in the discovery cohort (mortality hazard ratio (HR) 4.97, 95% CI 2.26-10.92; p<0.001) and replication cohort (mortality HR 4.90, 95% CI 1.74-13.77; p=0.003). Immunosuppressant exposure was not associated with differential survival in patients with LTL ≥10th percentile. There was a significant interaction between LTL <10th percentile and immunosuppressant exposure (discovery pinteraction=0.013; replication pinteraction=0.011). Low event rate and prevalence of LTL <10th percentile precluded subgroup analyses for CTD-ILD. CONCLUSION: Similar to IPF, fHP and uILD patients with age-adjusted LTL <10th percentile may experience reduced survival when exposed to immunosuppression.
Subject(s)
Connective Tissue Diseases , Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Humans , Azathioprine/adverse effects , Retrospective Studies , Immunosuppressive Agents/therapeutic use , Immunosuppression Therapy , TelomereABSTRACT
Rationale: Common genetic variants have been associated with idiopathic pulmonary fibrosis (IPF). Objectives: To determine functional relevance of the 10 IPF-associated common genetic variants we previously identified. Methods: We performed expression quantitative trait loci (eQTL) and methylation quantitative trait loci (mQTL) mapping, followed by co-localization of eQTL and mQTL with genetic association signals and functional validation by luciferase reporter assays. Illumina multi-ethnic genotyping arrays, mRNA sequencing, and Illumina 850k methylation arrays were performed on lung tissue of participants with IPF (234 RNA and 345 DNA samples) and non-diseased controls (188 RNA and 202 DNA samples). Measurements and Main Results: Focusing on genetic variants within 10 IPF-associated genetic loci, we identified 27 eQTLs in controls and 24 eQTLs in cases (false-discovery-rate-adjusted P < 0.05). Among these signals, we identified associations of lead variants rs35705950 with expression of MUC5B and rs2076295 with expression of DSP in both cases and controls. mQTL analysis identified CpGs in gene bodies of MUC5B (cg17589883) and DSP (cg08964675) associated with the lead variants in these two loci. We also demonstrated strong co-localization of eQTL/mQTL and genetic signal in MUC5B (rs35705950) and DSP (rs2076295). Functional validation of the mQTL in MUC5B using luciferase reporter assays demonstrates that the CpG resides within a putative internal repressor element. Conclusions: We have established a relationship of the common IPF genetic risk variants rs35705950 and rs2076295 with respective changes in MUC5B and DSP expression and methylation. These results provide additional evidence that both MUC5B and DSP are involved in the etiology of IPF.
Subject(s)
Idiopathic Pulmonary Fibrosis , Humans , DNA , DNA Methylation/genetics , Gene Expression , Genetic Predisposition to Disease/genetics , Idiopathic Pulmonary Fibrosis/genetics , Mucin-5B/genetics , Quantitative Trait Loci/genetics , RNAABSTRACT
Organoids, which are self-organizing three-dimensional cultures, provide models that replicate specific cellular components of native tissues or facets of organ complexity. We describe a simple method to generate organoid cultures using isolated human tracheobronchial epithelial cells grown in mixed matrix components and supplemented at day 14 with the Wnt pathway agonist R-spondin 2 (RSPO2) and the bone morphogenic protein antagonist Noggin. In contrast to previous reports, our method produces differentiated tracheobronchospheres with externally orientated apical membranes without pretreatments, providing an epithelial model to study cilia formation and function, disease pathogenesis, and interaction of pathogens with the respiratory mucosa. Starting from 3 × 105 cells, organoid yield at day 28 was 1,720 ± 302. Immunocytochemistry confirmed the cellular localization of airway epithelial markers, including CFTR, Na+/K+ ATPase, acetylated-α-tubulin, E-cadherin, and ZO-1. Compared to native tissues, expression of genes related to bronchial differentiation and ion transport were similar in organoid and air-liquid interface (ALI) cultures. In matched primary cultures, mean organoid cilia length was 6.1 ± 0.2 µm, similar to that of 5.7 ± 0.1 µm in ALI cultures, and ciliary beating was vigorous and coordinated with frequencies of 7.7 ± 0.3 Hz in organoid cultures and 5.3 ± 0.8 Hz in ALI cultures. Functional measurement of osmotically induced volume changes in organoids showed low water permeability. The generation of numerous single testable units from minimal starting material complements prior techniques. This culture system may be useful for studying airway biology and pathophysiology, aiding diagnosis of ciliopathies, and potentially for high-throughput drug screening.
Subject(s)
Organoids , Respiratory Mucosa , Bronchi , Cell Differentiation , Cells, Cultured , Epithelial Cells/metabolism , Humans , Organoids/metabolism , Respiratory Mucosa/metabolismABSTRACT
Fibrotic interstitial lung disease (ILD) represents a large group of pulmonary disorders that are often progressive and associated with high morbidity and early mortality. Important advancements in the past 10 years have enabled a better understanding, characterisation, and treatment of these diseases. This Series paper summarises the current approach to treatment of fibrotic ILDs, both pharmacological and non-pharmacological, including recent discoveries and practice-changing clinical trials. We further outline controversies and challenges, with discussion of evolving concepts and future research directions.
Subject(s)
Lung Diseases, Interstitial/drug therapy , Lung Diseases, Interstitial/therapy , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/therapy , HumansABSTRACT
A subset of patients with hypersensitivity pneumonitis (HP) develop lung fibrosis that is clinically similar to idiopathic pulmonary fibrosis (IPF). To address the aetiological determinants of fibrotic HP, we investigated whether the common IPF genetic risk variants were also relevant in study subjects with fibrotic HP. Our findings indicate that common genetic variants in TERC, DSP, MUC5B and IVD were significantly associated with fibrotic HP. These findings provide support for a shared etiology and pathogenesis between fibrotic HP and IPF.
Subject(s)
Alveolitis, Extrinsic Allergic , Idiopathic Pulmonary Fibrosis , Alveolitis, Extrinsic Allergic/genetics , Fibrosis , Humans , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/pathology , Lung/pathology , Risk FactorsABSTRACT
BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal fibrotic interstitial lung disease. Few circulating biomarkers have been identified to have causal effects on IPF. METHODS: To identify candidate IPF-influencing circulating proteins, we undertook an efficient screen of circulating proteins by applying a two-sample Mendelian randomisation (MR) approach with existing publicly available data. For instruments, we used genetic determinants of circulating proteins which reside cis to the encoded gene (cis-single nucleotide polymorphisms (SNPs)), identified by two genome-wide association studies (GWASs) in European individuals (3301 and 3200 subjects). We then applied MR methods to test if the levels of these circulating proteins influenced IPF susceptibility in the largest IPF GWAS (2668 cases and 8591 controls). We validated the MR results using colocalisation analyses to ensure that both the circulating proteins and IPF shared a common genetic signal. RESULTS: MR analyses of 834 proteins found that a 1â sd increase in circulating galactoside 3(4)-l-fucosyltransferase (FUT3) and α-(1,3)-fucosyltransferase 5 (FUT5) was associated with a reduced risk of IPF (OR 0.81, 95% CI 0.74-0.88; p=6.3×10-7 and OR 0.76, 95% CI 0.68-0.86; p=1.1×10-5, respectively). Sensitivity analyses including multiple cis-SNPs provided similar estimates both for FUT3 (inverse variance weighted (IVW) OR 0.84, 95% CI 0.78-0.91; p=9.8×10-6 and MR-Egger OR 0.69, 95% CI 0.50-0.97; p=0.03) and FUT5 (IVW OR 0.84, 95% CI 0.77-0.92; p=1.4×10-4 and MR-Egger OR 0.59, 95% CI 0.38-0.90; p=0.01). FUT3 and FUT5 signals colocalised with IPF signals, with posterior probabilities of a shared genetic signal of 99.9% and 97.7%, respectively. Further transcriptomic investigations supported the protective effects of FUT3 for IPF. CONCLUSIONS: An efficient MR scan of 834 circulating proteins provided evidence that genetically increased circulating FUT3 level is associated with reduced risk of IPF.
Subject(s)
Fucosyltransferases , Idiopathic Pulmonary Fibrosis , Fucosyltransferases/genetics , Genome-Wide Association Study , Humans , Idiopathic Pulmonary Fibrosis/genetics , Mendelian Randomization Analysis/methods , Polymorphism, Single NucleotideABSTRACT
Proteolytic processing of procollagens is a central step during collagen fibril formation. Bone morphogenic protein 1 (BMP1) is a metalloprotease that plays an important role in the cleavage of carboxy-terminal (COOH-terminal) propeptides from procollagens. Although the removal of propeptides is required to generate mature collagen fibrils, the contribution of BMP1 to this proteolytic process and its action site remain to be fully determined. In this study, using postnatal lung fibroblasts as a model system, we showed that genetic ablation of Bmp1 in primary murine lung fibroblasts abrogated COOH-terminal cleavage from type I procollagen as measured by COOH-terminal propeptide of type I procollagen (CICP) production. We also showed that inhibition of BMP1 by siRNA-mediated knockdown or small-molecule inhibitor reduced the vast majority of CICP production and collagen deposition in primary human lung fibroblasts. Furthermore, we discovered and characterized two antibody inhibitors for BMP1. In both postnatal lung fibroblast and organoid cultures, BMP1 blockade prevented CICP production. Together, these findings reveal a nonredundant role of extracellular BMP1 to process CICP in lung fibroblasts and suggest that development of antibody inhibitors is a viable pharmacological approach to target BMP1 proteinase activity in fibrotic diseases.
Subject(s)
Bone Morphogenetic Protein 1/metabolism , Extracellular Fluid/metabolism , Fibroblasts/metabolism , Lung/metabolism , Peptide Fragments/metabolism , Procollagen/metabolism , Proteolysis , Amino Acid Sequence , Animals , Bone Morphogenetic Protein 1/antagonists & inhibitors , Bone Morphogenetic Protein 1/genetics , CHO Cells , Cricetinae , Cricetulus , Extracellular Fluid/drug effects , Fibroblasts/drug effects , HEK293 Cells , Humans , Lung/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Organ Culture Techniques , Organoids , Oxadiazoles/pharmacology , Peptide Fragments/genetics , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Procollagen/genetics , Protease Inhibitors/pharmacology , Proteolysis/drug effects , RabbitsABSTRACT
BACKGROUND: Peripheral blood leucocyte telomere length (PBL-TL) is associated with outcomes in patients with idiopathic pulmonary fibrosis. Whether PBL-TL is associated with progression of systemic sclerosis-associated interstitial lung disease (SSc-ILD) is unknown. METHODS: A retrospective observational cohort study was performed using prospectively collected data from 213 patients with SSc followed at the University of California San Francisco (UCSF) Scleroderma Center. PBL-TL was measured by quantitative PCR of DNA isolated from peripheral blood. Associations between PBL-TL and pulmonary function test trends in patients with SSc-ILD were assessed by longitudinal analysis using Generalised Linear Mixed Models. Findings were validated in a cohort of 61 patients with SSc-ILD enrolled in the Stanford University Scleroderma Center database. RESULTS: Patients with UCSF SSc with ILD were found to have shorter PBL-TL compared with those without ILD (6554±671 base pairs (bp) vs 6782±698 bp, p=0.01). Shorter PBL-TL was associated with the presence of ILD (adjusted OR 2.1 per 1000 bp TL decrease, 95% CI [1.25 to 3.70], p=0.006). PBL-TL was shorter in patients with SSc-ILD lacking SSc-specific autoantibodies compared with seropositive subjects (6237±647 bp vs 6651±653 bp, p=0.004). Shorter PBL-TL was associated with increased risk for lung function deterioration with an average of 67 mL greater loss in per year for every 1000 bp decrease in PBL-TL in the combined SSc-ILD cohorts (longitudinal analysis, adjusted model: 95% CI -104 mL to -33 mL, p<0.001). CONCLUSIONS: These findings suggest that telomere dysfunction may be associated with SSc-ILD progression and that PBL-TL measurement may be useful for stratifying risk for SSc-ILD progression.
Subject(s)
Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Scleroderma, Systemic , Humans , Lung , Lung Diseases, Interstitial/genetics , Retrospective Studies , Scleroderma, Systemic/complications , Scleroderma, Systemic/genetics , TelomereABSTRACT
We recently identified epigallocatechin gallate (EGCG), a trihydroxyphenolic compound, as a dual inhibitor of lysyl oxidase-like2 and transforming growth factor-ß1 (TGFß1) receptor kinase that when given orally to patients with idiopathic pulmonary fibrosis (IPF) reversed profibrotic biomarkers in their diagnostic biopsies. Here, we extend these findings to advanced pulmonary fibrosis using cultured precision-cut lung slices from explants of patients with IPF undergoing transplantation. During these experiments, we were surprised to discover that not only did EGCG attenuate TGFß1 signalling and new collagen accumulation but also activated matrix metalloproteinase-dependent collagen I turnover, raising the possibility of slow fibrosis resolution with continued treatment.
Subject(s)
Amino Acid Oxidoreductases/metabolism , Collagen Type I/metabolism , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Transforming Growth Factor beta1/metabolism , Cells, Cultured , Humans , Idiopathic Pulmonary Fibrosis/pathology , Immunoblotting , Lung/pathology , Signal TransductionABSTRACT
OBJECTIVES: Systemic sclerosis (SSc) is an autoimmune fibrotic disease affecting multiple tissues including the lung. A subset of patients with SSc with lung disease exhibit short telomeres in circulating lymphocytes, but the mechanisms underlying this observation are unclear. METHODS: Sera from the Johns Hopkins and University of California, San Francisco (UCSF) Scleroderma Centers were screened for autoantibodies targeting telomerase and the shelterin proteins using immunoprecipitation and ELISA. We determined the relationship between autoantibodies targeting the shelterin protein TERF1 and telomere length in peripheral leucocytes measured by qPCR and flow cytometry and fluorescent in situ hybridisation (Flow-FISH). We also explored clinical associations of these autoantibodies. RESULTS: In a subset of patients with SSc, we identified autoantibodies targeting telomerase and the shelterin proteins that were rarely present in rheumatoid arthritis, myositis and healthy controls. TERF1 autoantibodies were present in 40/442 (9.0%) patients with SSc and were associated with severe lung disease (OR 2.4, p=0.04, Fisher's exact test) and short lymphocyte telomere length. 6/6 (100%) patients with TERF1 autoantibodies in the Hopkins cohort and 14/18 (78%) patients in the UCSF cohort had a shorter telomere length in lymphocytes or leukocytes, respectively, relative to the expected age-adjusted telomere length. TERF1 autoantibodies were present in 11/152 (7.2%) patients with idiopathic pulmonary fibrosis (IPF), a fibrotic lung disease believed to be mediated by telomere dysfunction. CONCLUSIONS: Autoantibodies targeting telomere-associated proteins in a subset of patients with SSc are associated with short lymphocyte telomere length and lung disease. The specificity of these autoantibodies for SSc and IPF suggests that telomere dysfunction may have a distinct role in the pathogenesis of SSc and pulmonary fibrosis.
Subject(s)
Autoantibodies/immunology , Scleroderma, Systemic/immunology , Telomere-Binding Proteins/immunology , Adult , Aged , Autoantibodies/blood , Autoantigens/immunology , Female , Humans , Idiopathic Pulmonary Fibrosis/blood , Idiopathic Pulmonary Fibrosis/immunology , Male , Middle Aged , Scleroderma, Systemic/blood , Shelterin Complex , Telomere/pathologyABSTRACT
Despite many reports about pulmonary blood vessels in lung fibrosis, the contribution of lymphatics to fibrosis is unknown. We examined the mechanism and consequences of lymphatic remodeling in mice with lung fibrosis after bleomycin injury or telomere dysfunction. Widespread lymphangiogenesis was observed after bleomycin treatment and in fibrotic lungs of prospero homeobox 1-enhanced green fluorescent protein (Prox1-EGFP) transgenic mice with telomere dysfunction. In loss-of-function studies, blocking antibodies revealed that lymphangiogenesis 14 days after bleomycin treatment was dependent on vascular endothelial growth factor (Vegf) receptor 3 signaling, but not on Vegf receptor 2. Vegfc gene and protein expression increased specifically. Extensive extravasated plasma, platelets, and macrophages at sites of lymphatic growth were potential sources of Vegfc. Lymphangiogenesis peaked at 14 to 28 days after bleomycin challenge, was accompanied by doubling of chemokine (C-C motif) ligand 21 in lung lymphatics and tertiary lymphoid organ formation, and then decreased as lung injury resolved by 56 days. In gain-of-function studies, expansion of the lung lymphatic network by transgenic overexpression of Vegfc in club cell secretory protein (CCSP)/VEGF-C mice reduced macrophage accumulation and fibrosis and accelerated recovery after bleomycin treatment. These findings suggest that lymphatics have an overall protective effect in lung injury and fibrosis and fit with a mechanism whereby lung lymphatic network expansion reduces lymph stasis and increases clearance of fluid and cells, including profibrotic macrophages.