Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Cell ; 179(2): 417-431.e19, 2019 Oct 03.
Article in English | MEDLINE | ID: mdl-31585081

ABSTRACT

Severe asthma patients with low type 2 inflammation derive less clinical benefit from therapies targeting type 2 cytokines and represent an unmet need. We show that mast cell tryptase is elevated in severe asthma patients independent of type 2 biomarker status. Active ß-tryptase allele count correlates with blood tryptase levels, and asthma patients carrying more active alleles benefit less from anti-IgE treatment. We generated a noncompetitive inhibitory antibody against human ß-tryptase, which dissociates active tetramers into inactive monomers. A 2.15 Å crystal structure of a ß-tryptase/antibody complex coupled with biochemical studies reveal the molecular basis for allosteric destabilization of small and large interfaces required for tetramerization. This anti-tryptase antibody potently blocks tryptase enzymatic activity in a humanized mouse model, reducing IgE-mediated systemic anaphylaxis, and inhibits airway tryptase in Ascaris-sensitized cynomolgus monkeys with favorable pharmacokinetics. These data provide a foundation for developing anti-tryptase as a clinical therapy for severe asthma.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Asthma/therapy , Mast Cells/enzymology , Mast Cells/immunology , Tryptases/antagonists & inhibitors , Tryptases/immunology , Adolescent , Allosteric Regulation/immunology , Animals , Cell Line , Female , Humans , Macaca fascicularis , Male , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, SCID , Rabbits
3.
J Transl Med ; 19(1): 517, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34930320

ABSTRACT

BACKGROUND: Over the past decade, human Interleukin 33 (hIL-33) has emerged as a key contributor to the pathogenesis of numerous inflammatory diseases. Despite the existence of several commercial hIL-33 assays spanning multiple platform technologies, their ability to provide accurate hIL-33 concentration measurements and to differentiate between active (reduced) and inactive (oxidized) hIL-33 in various matrices remains uncertain. This is especially true for lower sample volumes, matrices with low hIL-33 concentrations, and matrices with elevated levels of soluble Interleukin 1 Receptor-Like 1 (sST2), an inactive form of ST2 that competes with membrane bound ST2 for hIL-33 binding. RESULTS: We tested the performance of several commercially available hIL-33 detection assays in various human matrices and found that most of these assays lacked the sensitivity to accurately detect reduced hIL-33 at biologically relevant levels (sub-to-low pg/mL), especially in the presence of human sST2 (hsST2), and/or lacked sufficient target specificity. To address this, we developed and validated a sensitive and specific enzyme-linked immunosorbent assay (ELISA) capable of detecting reduced and total hIL-33 levels even in the presence of high concentrations of sST2. By incorporating the immuno-polymerase chain reaction (iPCR) platform, we further increased the sensitivity of this assay for the reduced form of hIL-33 by ~ 52-fold. Using this hIL-33 iPCR assay, we detected hIL-33 in postmortem human vitreous humor (VH) samples from donors with age-related macular degeneration (AMD) and found significantly increased hIL-33 levels when compared to control individuals. No statistically significant difference was observed in aqueous humor (AH) from AMD donors nor in plasma and nasosorption fluid (NF) from asthma patients compared to control individuals. CONCLUSIONS: Unlike existing commercial hIL-33 assays, our hIL-33 bioassays are highly sensitive and specific and can accurately quantify hIL-33 in various human clinical matrices, including those with high levels of hsST2. Our results provide a proof of concept of the utility of these assays in clinical trials targeting the hIL-33/hST2 pathway.


Subject(s)
Asthma , Macular Degeneration , Biological Assay , Biomarkers , Drug Development , Enzyme-Linked Immunosorbent Assay/methods , Humans , Interleukin-33 , Sensitivity and Specificity
4.
J Biol Chem ; 293(3): 906-919, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29191832

ABSTRACT

Anti-hinge antibodies (AHAs) are an autoantibody subclass that, following proteolytic cleavage, recognize cryptic epitopes exposed in the hinge regions of immunoglobulins (Igs) and do not bind to the intact Ig counterpart. AHAs have been postulated to exacerbate chronic inflammatory disorders such as inflammatory bowel disease and rheumatoid arthritis. On the other hand, AHAs may protect against invasive microbial pathogens and cancer. However, despite more than 50 years of study, the origin and specific B cell compartments that express AHAs remain elusive. Recent research on serum AHAs suggests that they arise during an active immune response, in contrast to previous proposals that they derive from the preexisting immune repertoire in the absence of antigenic stimuli. We report here the isolation and characterization of AHAs from memory B cells, although anti-hinge-reactive B cells were also detected in the naive B cell compartment. IgG AHAs cloned from a single human donor exhibited restricted specificity for protease-cleaved F(ab')2 fragments and did not bind the intact IgG counterpart. The cloned IgG-specific AHA-variable regions were mutated from germ line-derived sequences and displayed a high sequence variability, confirming that these AHAs underwent class-switch recombination and somatic hypermutation. Consistent with previous studies of serum AHAs, several of these clones recognized a linear, peptide-like epitope, but one clone was unique in recognizing a conformational epitope. All cloned AHAs could restore immune effector functions to proteolytically generated F(ab')2 fragments. Our results confirm that a diverse set of epitope-specific AHAs can be isolated from a single human donor.


Subject(s)
Autoantibodies/metabolism , B-Lymphocytes/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Autoantibodies/immunology , B-Lymphocytes/immunology , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Humans , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Matrix Metalloproteinase 3/metabolism , Matrix Metalloproteinase 7/metabolism
5.
J Biol Chem ; 291(11): 5986-5996, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-26797127

ABSTRACT

FGF21 is a stress-induced hormone with potent anti-obesity, insulin-sensitizing, and hepatoprotective properties. Although proteolytic cleavage of recombinant human FGF21 in preclinical species has been observed previously, the regulation of endogenously produced FGF21 is not well understood. Here we identify fibroblast activation protein (FAP) as the enzyme that cleaves and inactivates human FGF21. A selective chemical inhibitor, immunodepletion, or genetic deletion of Fap stabilized recombinant human FGF21 in serum. In addition, administration of a selective FAP inhibitor acutely increased circulating intact FGF21 levels in cynomolgus monkeys. On the basis of our findings, we propose selective FAP inhibition as a potential therapeutic approach to increase endogenous FGF21 activity for the treatment of obesity, type 2 diabetes, non-alcoholic steatohepatitis, and related metabolic disorders.


Subject(s)
Fibroblast Growth Factors/metabolism , Gelatinases/metabolism , Membrane Proteins/metabolism , Serine Endopeptidases/metabolism , Amino Acid Sequence , Animals , Endopeptidases , Fibroblast Growth Factors/chemistry , Gelatinases/genetics , Gene Deletion , HEK293 Cells , Humans , Macaca fascicularis , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Sequence Data , Proteolysis , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Serine Endopeptidases/genetics
6.
MAbs ; 16(1): 2362789, 2024.
Article in English | MEDLINE | ID: mdl-38845069

ABSTRACT

Bispecific antibodies, including bispecific IgG, are emerging as an important new class of antibody therapeutics. As a result, we, as well as others, have developed engineering strategies designed to facilitate the efficient production of bispecific IgG for clinical development. For example, we have extensively used knobs-into-holes (KIH) mutations to facilitate the heterodimerization of antibody heavy chains and more recently Fab mutations to promote cognate heavy/light chain pairing for efficient in vivo assembly of bispecific IgG in single host cells. A panel of related monospecific and bispecific IgG1 antibodies was constructed and assessed for immunogenicity risk by comparison with benchmark antibodies with known low (Avastin and Herceptin) or high (bococizumab and ATR-107) clinical incidence of anti-drug antibodies. Assay methods used include dendritic cell internalization, T cell proliferation, and T cell epitope identification by in silico prediction and MHC-associated peptide proteomics. Data from each method were considered independently and then together for an overall integrated immunogenicity risk assessment. In toto, these data suggest that the KIH mutations and in vitro assembly of half antibodies do not represent a major risk for immunogenicity of bispecific IgG1, nor do the Fab mutations used for efficient in vivo assembly of bispecifics in single host cells. Comparable or slightly higher immunogenicity risk assessment data were obtained for research-grade preparations of trastuzumab and bevacizumab versus Herceptin and Avastin, respectively. These data provide experimental support for the common practice of using research-grade preparations of IgG1 as surrogates for immunogenicity risk assessment of their corresponding pharmaceutical counterparts.


Subject(s)
Antibodies, Bispecific , Immunoglobulin G , Antibodies, Bispecific/immunology , Antibodies, Bispecific/genetics , Humans , Immunoglobulin G/immunology , Immunoglobulin G/genetics , Risk Assessment , Trastuzumab/immunology , Trastuzumab/genetics , Animals , Bevacizumab/immunology , Bevacizumab/genetics , Mutation
7.
Bioanalysis ; 14(10): 703-713, 2022 May.
Article in English | MEDLINE | ID: mdl-35593734

ABSTRACT

Aim: Immunogenicity risk assessment assays are powerful tools that assess the relative immunogenicity of potential biotherapeutics. We detail here the development of a novel assay that measures the degree of antibody internalization by antigen-presenting cells as a predictor of immunogenicity. Results & methodology: The assay uses the fluorescence signal from the antibody bound to the outside of the cell as well as inside the cell to determine internalization. To calculate the amount of internalized antibody, the fluorescent signal from the outside was subtracted from the fluorescent signal from the inside, which is referred to as the internalization index. Conclusion: This assay format demonstrated that antibody-based biotherapeutics with higher clinical immunogenicity internalized to a higher degree than therapeutic antibodies with lower clinical immunogenicity.


Subject(s)
Antibodies , Dendritic Cells , Risk Assessment
8.
Sci Transl Med ; 13(605)2021 08 04.
Article in English | MEDLINE | ID: mdl-34349032

ABSTRACT

Transforming growth factor-ß (TGFß) is a key driver of fibrogenesis. Three TGFß isoforms (TGFß1, TGFß2, and TGFß3) in mammals have distinct functions in embryonic development; however, the postnatal pathological roles and activation mechanisms of TGFß2 and TGFß3 have not been well characterized. Here, we show that the latent forms of TGFß2 and TGFß3 can be activated by integrin-independent mechanisms and have lower activation thresholds compared to TGFß1. Unlike TGFB1, TGFB2 and TGFB3 expression is increased in human lung and liver fibrotic tissues compared to healthy control tissues. Thus, TGFß2 and TGFß3 may play a pathological role in fibrosis. Inducible conditional knockout mice and anti-TGFß isoform-selective antibodies demonstrated that TGFß2 and TGFß3 are independently involved in mouse fibrosis models in vivo, and selective TGFß2 and TGFß3 inhibition does not lead to the increased inflammation observed with pan-TGFß isoform inhibition. A cocrystal structure of a TGFß2-anti-TGFß2/3 antibody complex reveals an allosteric isoform-selective inhibitory mechanism. Therefore, inhibiting TGFß2 and/or TGFß3 while sparing TGFß1 may alleviate fibrosis without toxicity concerns associated with pan-TGFß blockade.


Subject(s)
Transforming Growth Factor beta2 , Transforming Growth Factor beta3 , Animals , Disease Models, Animal , Female , Fibrosis , Humans , Mice , Protein Isoforms/metabolism , Transforming Growth Factor beta2/metabolism , Transforming Growth Factor beta3/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL