Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Neuroendocrinology ; 113(11): 1112-1126, 2023.
Article in English | MEDLINE | ID: mdl-36709749

ABSTRACT

INTRODUCTION: There are numerous pharmacologic treatments for opioid use disorder (OUD), but none that directly target the underlying addictive effects of opioids. Oxytocin, a peptide hormone produced in the paraventricular nucleus (PVN) of the hypothalamus, has been investigated as a potential therapeutic for OUD. Promising preclinical and clinical results have been reported, but the brain region(s) and mechanism(s) by which oxytocin impacts reward processes remain undetermined. METHODS: Here, we assess peripherally administered oxytocin's impacts on cued reinstatement of heroin seeking following forced abstinence and its effects on neuronal activation in the PVN and key projection regions. We also examine how designer receptors exclusively activated by designer drug (DREADD)-mediated activation or inhibition of oxytocinergic PVN neurons alters cued heroin seeking and social interaction. RESULTS: As predicted, peripheral oxytocin administration successfully decreased cued heroin seeking on days 1 and 30 of abstinence. Oxytocin administration also led to increased neuronal activity within the PVN and the central amygdala (CeA). Activation of oxytocinergic PVN neurons with an excitatory (Gq) DREADD did not impact cued reinstatement or social interaction. In contrast, suppression with an inhibitory (Gi) DREADD reduced heroin seeking on abstinence day 30 and decreased time spent interacting with a novel conspecific. DISCUSSION: These findings reinforce oxytocin's therapeutic potential for OUD, the basis for which may be driven in part by increased PVN-CeA circuit activity. Our results also suggest that oxytocin has distinct signaling and/or other mechanisms of action to produce these effects, as inhibition, but not activation, of oxytocinergic PVN neurons did not recapitulate the suppression in heroin seeking.


Subject(s)
Oxytocin , Paraventricular Hypothalamic Nucleus , Oxytocin/pharmacology , Heroin/pharmacology , Hypothalamus , Brain
2.
Addict Biol ; 28(5): e13279, 2023 05.
Article in English | MEDLINE | ID: mdl-37186441

ABSTRACT

Relapse to drug seeking involves transient synaptic remodelling that occurs in response to drug-associated cues. This remodelling includes activation of matrix metalloproteinases (MMPs) to initiate catalytic signalling in the extracellular matrix in the nucleus accumbens core (NAcore). We hypothesized that MMP activity would be increased in the NAcore during cue-induced methamphetamine (meth) seeking in a rat model of meth use and relapse. Male and female rats had indwelling jugular catheters and bilateral intracranial cannula targeting the NAcore surgically implanted. Following recovery, rats underwent meth or saline self-administration (6 h/day for 15 days) in which active lever responding was paired with a light + tone stimulus complex, followed by home cage abstinence. Testing occurred after 7 or 30 days of abstinence. On test day, rats were microinjected with a fluorescein isothiocyanate (FITC)-quenched gelatin substrate that fluoresces following cleavage by MMP-2,9, allowing for the quantification of gelatinase activity during cued-relapse testing. MMP-2,9 activity was significantly increased in the NAcore by meth cues presentation after 7 and 30 days of abstinence, indicating that remodelling by MMPs occurs during presentation of meth associated cues. Surprisingly, although cue-induced seeking increased between Days 7 and 30, MMP-2,9 activity did not increase. These findings indicate that although MMP activation is elicited during meth cue-induced seeking, MMP activation did not parallel the meth seeking that occurs during extended drug abstinence.


Subject(s)
Central Nervous System Stimulants , Methamphetamine , Rats , Male , Female , Animals , Methamphetamine/pharmacology , Rats, Sprague-Dawley , Cues , Matrix Metalloproteinase 2 , Drug-Seeking Behavior , Recurrence , Self Administration , Nucleus Accumbens , Central Nervous System Stimulants/pharmacology , Extinction, Psychological
3.
Front Behav Neurosci ; 18: 1384578, 2024.
Article in English | MEDLINE | ID: mdl-38660390

ABSTRACT

Introduction: Empathic behaviors are driven by the ability to understand the emotional states of others along with the motivation to improve it. Evidence points towards forms of empathy, like targeted helping, in many species including rats. There are several variables that may modulate targeted helping, including sex, sensory modalities, and activity of multiple neural substrates. Methods: Using a model of social contact-independent targeted helping, we first tested whether sex differences exist in helping behavior. Next, we explored sex differences in sensory and affective signaling, including direct visualization and an analysis of ultrasonic vocalizations made between animal pairs. Finally, we examined the neural activity in males and females of multiple regions of interest across time. Here, we aim to examine any behavioral differences in our lab's social contact independent targeted helping task between males and females. Results and Discussion: These findings are the first to intimate that, like other prosocial behaviors, males and females may exhibit similar social-independent targeted helping behavior, but the underlying sensory communication in males and females may differ. In addition, this is the first set of experiments that explore the neural correlates of social-independent targeted helping in both males and females. These results lay the groundwork for future studies to explore the similarities and differences that drive targeted helping in both sexes.

4.
Neuropharmacology ; 240: 109711, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37673333

ABSTRACT

Return to methamphetamine (meth) use is part of an overarching addictive disorder hallmarked by cognitive sequela and cortical dysfunction in individuals who use meth chronically. In rats, long access meth self-administration produces object recognition memory deficits due to drug-induced plasticity within the perirhinal cortex (PRH). PRH projections are numerous and include the medial prefrontal cortex (mPFC). To evaluate the role of the PRH-mPFC reciprocal circuit in novel object recognition memory, a rgAAV encoding GFP-tagged Cre recombinase was infused into the PRH or the mPFC and rats were tested for recognition memory. On test day, one group explored both familiar and novel objects. A second group explored only familiar objects. GFP and Fos expression were visualized in the mPFC or PRH. During exploration, PRH neurons receiving input from the mPFC were equally activated by exploration of novel and familiar objects. In contrast, PRH neurons that provide input to the mPFC were disproportionately activated by novel objects. Further, the percent of Fos + cells in the PRH positively correlated with recognition memory. As such, the flow of communication appears to be from the PRH to the mPFC. In agreement with this proposed directionality, chemogenetic inhibition of the PRH-mPFC circuit impaired object recognition memory, whereas chemogenetic activation in animals with a history of long access meth self-administration reversed the meth-induced recognition memory deficit. This finding informs future work aimed at understanding the role of the PRH, mPFC, and their connectivity in meth associated memory deficits. These data suggest a more complex circuitry governing recognition memory than previously indicated with anatomical or lesion studies.


Subject(s)
Methamphetamine , Rats , Animals , Recognition, Psychology , Memory Disorders/metabolism , Prefrontal Cortex/metabolism , Visual Perception
SELECTION OF CITATIONS
SEARCH DETAIL