Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Proc Natl Acad Sci U S A ; 107(37): 16090-5, 2010 Sep 14.
Article in English | MEDLINE | ID: mdl-20805465

ABSTRACT

DNA replication starts at initiation sites termed replication origins. Metazoan cells contain many more potential origins than are activated (fired) during each S phase. Origin activation is controlled by the ATR checkpoint kinase and its downstream effector kinase Chk1, which suppresses origin firing in response to replication blocks and during normal S phase by inhibiting the cyclin-dependent kinase Cdk2. In addition to increased origin activation, cells deficient in Chk1 activity display reduced rates of replication fork progression. Here we investigate the causal relationship between increased origin firing and reduced replication fork progression. We use the Cdk inhibitor roscovitine or RNAi depletion of Cdc7 to inhibit origin firing in Chk1-inhibited or RNAi-depleted cells. We report that Cdk inhibition and depletion of Cdc7 can alleviate the slow replication fork speeds in Chk1-deficient cells. Our data suggest that increased replication initiation leads to slow replication fork progression and that Chk1 promotes replication fork progression during normal S phase by controlling replication origin activity.


Subject(s)
DNA Replication , DNA/genetics , Protein Kinases/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Checkpoint Kinase 1 , Humans , Protein Kinases/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA Interference , S Phase
2.
Neuro Oncol ; 9(4): 404-11, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17704360

ABSTRACT

We examined DNA damage responses and repair in four human glioma cell lines (A7, U87, T98G, and U373) and normal human astrocytes (NHAs) after clinically relevant radiation doses to establish whether we could identify differences among them that might suggest new approaches to selective radiosensitization. We used phosphorylation of histone H2AX visualized by immunocytochemistry to assess DNA double-strand break (DSB) formation and resolution. Fluorescence immunocytochemistry was used to visualize and quantify repair foci. Western blotting was used to quantify repair protein levels in the different cell lines before and after irradiation and during different cell cycle phases. Mitotic labeling was used to measure cell cycle parameters after irradiation. We found that the glioma cell lines repaired DSBs more slowly and less effectively than did NHAs in the clinically relevant dose range, as assessed by induction and resolution of H2AX phosphorylation, and this was most marked in the three TP53-mutated cell lines (T98G, A7, and U373). The glioma cells also expressed relatively high repair-protein levels compared with NHAs that were not altered by irradiation. High levels of the repair protein Rad51 in these cells persisted throughout the cell cycle, and a marked increase in Rad51 foci formation, which was not restricted to cells in G2/S phase, occurred at early time points after irradiation. TP53-mutated glioma cell lines demonstrated a very prominent dose-responsive G2 checkpoint and were sensitized to radiation by caffeine, which inhibits G2/S phase checkpoint activation. In conclusion, DNA repair events differed in these four glioma cell lines compared with NHAs. In particular, the three TP53-mutated glioma cell lines exhibited markedly increased Rad51 protein levels and marked, dose-dependent Rad51 foci formation after low radiation doses. This suggests that agents that disrupt Rad51-dependent repair or prevent G2 checkpoint activation may selectively sensitize these cells.


Subject(s)
Astrocytes/radiation effects , DNA Breaks, Double-Stranded/radiation effects , DNA Repair/genetics , DNA Repair/radiation effects , Glioma/genetics , Radiation Tolerance/physiology , Blotting, Western , Cell Cycle/genetics , Cell Cycle/radiation effects , Cell Line, Tumor , Dose-Response Relationship, Radiation , Fluorescent Antibody Technique , Humans , Rad51 Recombinase/biosynthesis , Rad51 Recombinase/radiation effects
3.
Cancer Cell ; 28(5): 557-568, 2015 Nov 09.
Article in English | MEDLINE | ID: mdl-26602815

ABSTRACT

Histone H3K36 trimethylation (H3K36me3) is frequently lost in multiple cancer types, identifying it as an important therapeutic target. Here we identify a synthetic lethal interaction in which H3K36me3-deficient cancers are acutely sensitive to WEE1 inhibition. We show that RRM2, a ribonucleotide reductase subunit, is the target of this synthetic lethal interaction. RRM2 is regulated by two pathways here: first, H3K36me3 facilitates RRM2 expression through transcription initiation factor recruitment; second, WEE1 inhibition degrades RRM2 through untimely CDK activation. Therefore, WEE1 inhibition in H3K36me3-deficient cells results in RRM2 reduction, critical dNTP depletion, S-phase arrest, and apoptosis. Accordingly, this synthetic lethality is suppressed by increasing RRM2 expression or inhibiting RRM2 degradation. Finally, we demonstrate that WEE1 inhibitor AZD1775 regresses H3K36me3-deficient tumor xenografts.


Subject(s)
Cell Cycle Proteins/metabolism , Histones/metabolism , Neoplasms/metabolism , Nuclear Proteins/metabolism , Nucleotides/metabolism , Protein-Tyrosine Kinases/metabolism , Amino Acid Sequence , Animals , Base Sequence , Blotting, Western , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Gene Expression Regulation, Neoplastic/drug effects , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/genetics , Humans , Lysine/genetics , Lysine/metabolism , Methylation/drug effects , Mice, Inbred BALB C , Mice, Nude , Molecular Sequence Data , Neoplasms/genetics , Neoplasms/prevention & control , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Nucleotides/genetics , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/genetics , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Pyrimidinones , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Ribonucleoside Diphosphate Reductase/genetics , Ribonucleoside Diphosphate Reductase/metabolism , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Xenograft Model Antitumor Assays
4.
Oncotarget ; 6(37): 39877-90, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26497996

ABSTRACT

Prior studies implicate type 1 IGF receptor (IGF-1R) in mediating chemo-resistance. Here, we investigated whether IGF-1R influences response to temozolomide (TMZ), which generates DNA adducts that are removed by O6-methylguanine-DNA methyltransferase (MGMT), or persist causing replication-associated double-strand breaks (DSBs). Initial assessment in 10 melanoma cell lines revealed that TMZ resistance correlated with MGMT expression (r = 0.79, p = 0.009), and in MGMT-proficient cell lines, with phospho-IGF-1R (r = 0.81, p = 0.038), suggesting that TMZ resistance associates with IGF-1R activation. Next, effects of IGF-1R inhibitors (IGF-1Ri) AZ3801 and linsitinib (OSI-906) were tested on TMZ-sensitivity, cell cycle progression and DSB induction. IGF-1Ri sensitized BRAF wild-type and mutant melanoma cells to TMZ in vitro, an effect that was independent of MGMT. Cells harboring wild-type p53 were more sensitive to IGF-1Ri, and showed schedule-dependent chemo-sensitization that was most effective when IGF-1Ri followed TMZ. This sequence sensitized to clinically-achievable TMZ concentrations and enhanced TMZ-induced apoptosis. Simultaneous or prior IGF-1Ri caused less effective chemo-sensitization, associated with increased G1 population and reduced accumulation of TMZ-induced DSBs. Clinically relevant sequential (TMZ → IGF-1Ri) treatment was tested in mice bearing A375M (V600E BRAF, wild-type p53) melanoma xenografts, achieving peak plasma/tumor IGF-1Ri levels comparable to clinical Cmax, and inducing extensive intratumoral apoptosis. TMZ or IGF-1Ri caused minor inhibition of tumor growth (gradient reduction 13%, 25% respectively), while combination treatment caused supra-additive growth delay (72%) that was significantly different from control (p < 0.01), TMZ (p < 0.01) and IGF-1Ri (p < 0.05) groups. These data highlight the importance of scheduling when combining IGF-1Ri and other targeted agents with drugs that induce replication-associated DNA damage.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Melanoma/drug therapy , Receptor, IGF Type 1/antagonists & inhibitors , Xenograft Model Antitumor Assays , Animals , Apoptosis/drug effects , Blotting, Western , Cell Line, Tumor , Cell Survival/drug effects , DNA Breaks, Double-Stranded/drug effects , Dacarbazine/administration & dosage , Dacarbazine/analogs & derivatives , Dacarbazine/pharmacology , Drug Administration Schedule , Drug Resistance, Neoplasm/drug effects , Drug Synergism , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Imidazoles/administration & dosage , Imidazoles/pharmacology , Melanoma/genetics , Melanoma/metabolism , Mice, Inbred BALB C , Mice, Nude , Mutation , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Pyrazines/administration & dosage , Pyrazines/pharmacology , Receptor, IGF Type 1/metabolism , Survival Analysis , Temozolomide , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
5.
Int J Radiat Oncol Biol Phys ; 58(2): 410-9, 2004 Feb 01.
Article in English | MEDLINE | ID: mdl-14751510

ABSTRACT

PURPOSE: Poly(ADP-ribose) polymerase-1 (PARP-1) is rapidly and directly activated by single-strand breaks and is required for efficient base excision repair. These properties indicate that inhibition of PARP-1 might enhance the cellular response to low doses of radiation. We tested the effect of chemical inhibition of PARP-1 on low-dose clonogenic survival in a number of cell lines and the low-dose radiation response of a PARP-1 knockout murine cell line. METHODS AND MATERIALS: Clonogenic cell survival of V79-379A and CHO-K1 hamster fibroblasts, T98G and U373-MG human glioma cells, and 3T3 mouse embryo fibroblast PARP-1 knockout cells was measured using a precise flow cytometry-based plating assay. Chemical inhibitors of PARP enzymes were tested for their effect on clonogenic survival after a range of ionizing radiation doses. RESULTS: Chemical inhibition of PARP activity induced marked radiosensitization of V79, CHO, and exponentially growing T98G cells in the 0.05-0.3-Gy range. This effect was not seen in U373 cells or in confluent T98G populations. Low-dose radiosensitization was not apparent in PARP-1 knockout cells. CONCLUSION: Low-dose radiosensitization of actively dividing tumor cells by PARP-1 inhibitors suggests that they may have a role in enhancing the efficacy of ultrafractionated or low-dose-rate radiotherapy regimens. We hypothesize that PARP-2 compensates for the absence of PARP-1 in the knockout cell line.


Subject(s)
Cell Survival , Enzyme Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors , Radiation Tolerance , Radiation-Sensitizing Agents/pharmacology , Animals , Benzamides/pharmacology , Cell Line/radiation effects , Cell Line, Tumor/radiation effects , Cricetinae , Humans , Mice , Phenanthrenes/pharmacology , Quinazolines/pharmacology , Radiation Dosage , Tumor Stem Cell Assay
SELECTION OF CITATIONS
SEARCH DETAIL