Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 173
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Biol Chem ; 300(1): 105519, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38042488

ABSTRACT

Corticosteroid-binding globulin (CBG) delivers anti-inflammatory cortisol to inflamed tissues through proteolysis of an exposed reactive center loop (RCL) by neutrophil elastase (NE). We previously demonstrated that RCL-localized Asn347-linked N-glycans impact NE proteolysis, but a comprehensive structure-function characterization of the RCL glycosylation is still required to better understand CBG glycobiology. Herein, we first performed RCL-centric glycoprofiling of serum-derived CBG to elucidate the Asn347-glycans and then used molecular dynamics simulations to study their impact on NE proteolysis. Importantly, we also identified O-glycosylation (di/sialyl T) across four RCL sites (Thr338/Thr342/Thr345/Ser350) of serum CBG close to the NE-targeted Val344-Thr345 cleavage site. A restricted N- and O-glycan co-occurrence pattern on the RCL involving exclusively Asn347 and Thr338 glycosylation was experimentally observed and supported in silico by modeling of a CBG-GalNAc-transferase (GalNAc-T) complex with various RCL glycans. GalNAc-T2 and GalNAc-T3 abundantly expressed by liver and gall bladder, respectively, showed in vitro a capacity to transfer GalNAc (Tn) to multiple RCL sites suggesting their involvement in RCL O-glycosylation. Recombinant CBG was then used to determine roles of RCL O-glycosylation through longitudinal NE-centric proteolysis experiments, which demonstrated that both sialoglycans (disialyl T) and asialoglycans (T) decorating Thr345 inhibit NE proteolysis. Synthetic RCL O-glycopeptides expanded on these findings by showing that Thr345-Tn and Thr342-Tn confer strong and moderate protection against NE cleavage, respectively. Molecular dynamics substantiated that short Thr345-linked O-glycans abrogate NE interactions. In conclusion, we report on biologically relevant CBG RCL glycosylation events, which improve our understanding of mechanisms governing cortisol delivery to inflamed tissues.


Subject(s)
Leukocyte Elastase , Transcortin , Glycosylation , Hydrocortisone/metabolism , Leukocyte Elastase/metabolism , Polysaccharides , Proteolysis , Transcortin/genetics , Transcortin/chemistry , Transcortin/metabolism , Humans
2.
Proc Natl Acad Sci U S A ; 119(41): e2117743119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36191232

ABSTRACT

Sulfated glycans have been found to be associated with various diseases and therefore have significant potential in molecular pathology as biomarkers. Although lectins are useful reagents for detecting glycans, there is a paucity of sulfate-recognizing lectins, and those that exist, such as from Maackia amurensis, display mixed specificities. Recombinant lectin engineering offers an emerging tool for creating novel glycan recognition by altering and/or enhancing endogenous specificities. The present study demonstrated the use of computational approaches in the engineering of a mutated form of E-selectin that displayed highly specific recognition of 6'-sulfo-sialyl Lewis X (6'-sulfo-sLex), with negligible binding to its endogenous nonsulfated ligand, sLex. This new specificity mimics that of the unrelated protein Siglec-8, for which 6'-sulfo-sLex is its preferred ligand. Molecular dynamics simulations and energy calculations predicted that two point mutations (E92A/E107A) would be required to stabilize binding to the sulfated oligosaccharide with E-selectin. In addition to eliminating putative repulsions between the negatively charged side chains and the sulfate moiety, the mutations also abolished favorable interactions with the endogenous ligand. Glycan microarray screening of the recombinantly expressed proteins confirmed the predicted specificity change but also identified the introduction of unexpected affinity for the unfucosylated form of 6'-sulfo-sLex (6'-sulfo-sLacNAc). Three key requirements were demonstrated in this case for engineering specificity for sulfated oligosaccharide: 1) removal of unfavorable interactions with the 6'-sulfate, 2) introduction of favorable interactions for the sulfate, and 3) removal of favorable interactions with the endogenous ligand.


Subject(s)
E-Selectin , Oligosaccharides , E-Selectin/genetics , Ligands , Oligosaccharides/chemistry , Polysaccharides/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins , Sialyl Lewis X Antigen , Sulfates/metabolism
3.
Acc Chem Res ; 56(17): 2313-2328, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37566472

ABSTRACT

ConspectusMonosaccharides adopt multiple conformations in solution, and this structural complexity increases significantly when they are assembled into oligosaccharides and polysaccharides. Characterization of the conformational properties of saccharides in solution by NMR spectroscopy has been hampered by several complicating factors, including difficulty interpreting spectra because of significant signal overlap, population averaging of NMR parameters, and unique properties of the spectra that make accurate measurements of NMR parameters prone to error (e.g., non-first-order effects on J-couplings). Current conformational assignments rely heavily on theoretical calculations, especially molecular dynamics (MD) simulations, to interpret the experimental NMR parameters. While these studies assert that the available experimental data fit the calculated models well, a lack of independent experimental validation of the force fields from which MD models are derived and an inability to test all possible models that might be compatible with the experimental data in an unbiased manner make the approach less than ideal.NMR spin couplings or J-couplings have been used as structure constraints in organic and other types of molecules for more than six decades. The dihedral angle dependence of vicinal (three-bond) 1H-1H spin couplings (3JHH) first described by Karplus led to an explosion of applications for a wide range of conformational problems. Other vicinal J-couplings (e.g., 3JCCOP, 3JHCOP, and 3JCOCH) have been found to exhibit similar dihedral angle dependencies. 3J values have been used to assign the preferred conformation in molecules that are conformationally homogeneous. However, many molecules, particularly those in biological systems, are conformationally flexible, which complicates structural interpretations of J values in solution. Three-state staggered models are often assumed in order to deconvolute the conformationally averaged J values into conformer populations. While widely applied, this approach assumes highly idealized models of molecular torsion angles that are likely to be poor representations of those found in solution. In addition, this treatment often gives negative populations and neglects the presence of librational averaging of molecular torsion angles.Recent work in this research group has focused on the development of a hybrid experimental-computational method, MA'AT analysis, that provides probability distributions of molecular torsion angles in solution that can be superimposed on those obtained by MD. Ensembles of redundant NMR spin couplings, including 3J (vicinal), 2J (geminal), and sometimes 1J (direct) values, are used in conjunction with circular statistics to provide single- and multistate models of these angles. MA'AT analysis provides accurate mean torsion angles and circular standard deviations (CSDs) of each mean angle that describe the librational motion about the angle. Both conformational equilibria and dynamics are revealed by the method. In this Account, the salient features of MA'AT analysis are discussed, including some applications to conformational problems involving saccharides and peptides.

4.
Am J Respir Crit Care Med ; 207(8): 1030-1041, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36378114

ABSTRACT

Rationale: Among patients with sepsis, variation in temperature trajectories predicts clinical outcomes. In healthy individuals, normal body temperature is variable and has decreased consistently since the 1860s. The biologic underpinnings of this temperature variation in disease and health are unknown. Objectives: To establish and interrogate the role of the gut microbiome in calibrating body temperature. Methods: We performed a series of translational analyses and experiments to determine whether and how variation in gut microbiota explains variation in body temperature in sepsis and in health. We studied patient temperature trajectories using electronic medical record data. We characterized gut microbiota in hospitalized patients using 16S ribosomal RNA gene sequencing. We modeled sepsis using intraperitoneal LPS in mice and modulated the microbiome using antibiotics, germ-free, and gnotobiotic animals. Measurements and Main Results: Consistent with prior work, we identified four temperature trajectories in patients hospitalized with sepsis that predicted clinical outcomes. In a separate cohort of 116 hospitalized patients, we found that the composition of patients' gut microbiota at admission predicted their temperature trajectories. Compared with conventional mice, germ-free mice had reduced temperature loss during experimental sepsis. Among conventional mice, heterogeneity of temperature response in sepsis was strongly explained by variation in gut microbiota. Healthy germ-free and antibiotic-treated mice both had lower basal body temperatures compared with control animals. The Lachnospiraceae family was consistently associated with temperature trajectories in hospitalized patients, experimental sepsis, and antibiotic-treated mice. Conclusions: The gut microbiome is a key modulator of body temperature variation in both health and critical illness and is thus a major, understudied target for modulating physiologic heterogeneity in sepsis.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Sepsis , Animals , Mice , Body Temperature , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , RNA, Ribosomal, 16S/genetics
5.
J Fish Dis ; : e13958, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38837770

ABSTRACT

A mouse monoclonal antibody (mAb FL100A) previously prepared against Flavobacterium psychrophilum (Fp) CSF259-93 has now been examined for binding to lipopolysaccharides (LPS) of this strain and Fp 950106-1/1. The corresponding O-polysaccharides (O-PS) of these strains are formed by identical trisaccharide repeats composed of l-Rhamnose (l-Rha), 2-acetamido-2-deoxy-l-fucose (l-FucNAc) and 2-acetamido-4-R1-2,4-dideoxy-d-quinovose (d-Qui2NAc4NR1) where R1 represents a dihydroxyhexanamido moiety. The O-PS loci of these strains are also identical except for the gene (wzy1 or wzy2) that encodes the polysaccharide polymerase. Accordingly, adjacent O-PS repeats are joined through d-Qui2NAc4NR1 and l-Rha by wzy2-dependent α(1-2) linkages in Fp CSF259-93 versus wzy1-dependent ß(1-3) linkages in Fp 950106-1/1. mAb FL100A reacted strongly with Fp CSF259-93 O-PS and LPS but weakly or not at all with Fp 950106-1/1 LPS and O-PS. Importantly, it also labelled cell surface blebs on the former but not the latter strain. Additionally, mAb binding was approximately 5-times stronger to homologous Fp CSF259-93 LPS than to LPS from a strain with a different R-group gene. A conformational epitope for mAb FL100A binding was suggested from molecular dynamic simulations of each O-PS. Thus, Fp CSF259-93 O-PS formed a stable well-defined compact helix in which the R1 groups were displayed in a regular pattern on the helix exterior while unreactive Fp 950106-1/1 O-PS adopted a flexible extended linear conformation. Taken together, the findings establish the specificity of mAb FL100A for Wzy2-linked F. psychrophilum O-PS and LPS.

6.
J Biol Chem ; 298(6): 102047, 2022 06.
Article in English | MEDLINE | ID: mdl-35597280

ABSTRACT

Thrombospondin type-1 repeats (TSRs) are small protein motifs containing six conserved cysteines forming three disulfide bonds that can be modified with an O-linked fucose. Protein O-fucosyltransferase 2 (POFUT2) catalyzes the addition of O-fucose to TSRs containing the appropriate consensus sequence, and the O-fucose modification can be elongated to a Glucose-Fucose disaccharide with the addition of glucose by ß3-glucosyltransferase (B3GLCT). Elimination of Pofut2 in mice results in embryonic lethality in mice, highlighting the biological significance of O-fucose modification on TSRs. Knockout of POFUT2 in HEK293T cells has been shown to cause complete or partial loss of secretion of many proteins containing O-fucosylated TSRs. In addition, POFUT2 is localized to the endoplasmic reticulum (ER) and only modifies folded TSRs, stabilizing their structures. These observations suggest that POFUT2 is involved in an ER quality control mechanism for TSR folding and that B3GLCT also participates in quality control by providing additional stabilization to TSRs. However, the mechanisms by which addition of these sugars result in stabilization are poorly understood. Here, we conducted molecular dynamics (MD) simulations and provide crystallographic and NMR evidence that the Glucose-Fucose disaccharide interacts with specific amino acids in the TSR3 domain in thrombospondin-1 that are within proximity to the O-fucosylation modification site resulting in protection of a nearby disulfide bond. We also show that mutation of these amino acids reduces the stabilizing effect of the sugars in vitro. These data provide mechanistic details regarding the importance of O-fucosylation and how it participates in quality control mechanisms inside the ER.


Subject(s)
Fucose , Fucosyltransferases , Thrombospondin 1 , Animals , Disaccharides , Disulfides , Endoplasmic Reticulum/metabolism , Fucose/metabolism , Fucosyltransferases/metabolism , Galactosyltransferases , Glucose , Glucosyltransferases/metabolism , HEK293 Cells , Humans , Mice , Molecular Dynamics Simulation , Thrombospondin 1/chemistry
7.
Glycobiology ; 33(2): 99-103, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36648443

ABSTRACT

Nonulosonic acids or non-2-ulosonic acids (NulOs) are an ancient family of 2-ketoaldonic acids (α-ketoaldonic acids) with a 9-carbon backbone. In nature, these monosaccharides occur either in a 3-deoxy form (referred to as "sialic acids") or in a 3,9-dideoxy "sialic-acid-like" form. The former sialic acids are most common in the deuterostome lineage, including vertebrates, and mimicked by some of their pathogens. The latter sialic-acid-like molecules are found in bacteria and archaea. NulOs are often prominently positioned at the outermost tips of cell surface glycans, and have many key roles in evolution, biology and disease. The diversity of stereochemistry and structural modifications among the NulOs contributes to more than 90 sialic acid forms and 50 sialic-acid-like variants described thus far in nature. This paper reports the curation of these diverse naturally occurring NulOs at the NCBI sialic acid page (https://www.ncbi.nlm.nih.gov/glycans/sialic.html) as part of the NCBI-Glycans initiative. This includes external links to relevant Carbohydrate Structure Databases. As the amino and hydroxyl groups of these monosaccharides are extensively derivatized by various substituents in nature, the Symbol Nomenclature For Glycans (SNFG) rules have been expanded to represent this natural diversity. These developments help illustrate the natural diversity of sialic acids and related NulOs, and enable their systematic representation in publications and online resources.


Subject(s)
N-Acetylneuraminic Acid , Sialic Acids , Animals , Sialic Acids/chemistry , Polysaccharides/chemistry , Monosaccharides , Cataloging
8.
Anal Chem ; 95(47): 17328-17336, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37956981

ABSTRACT

Cell surface glycans are essential for establishing cell communication, adhesion, and migration. However, it remains challenging to obtain cell surface-specific information about glycoconjugate structures. Acquiring this information is essential for unraveling the functional role of glycans and for exploiting them as clinical targets. To specifically analyze the N-glycoprotein forms expressed at the cell surface, we developed a C18 liquid chromatography (LC)-mass spectrometry (MS)-based glycoproteomics method in combination with highly specific cell surface protein labeling and enrichment using a biotin label. The surface-specificity of the method was validated by MS-based proteomics of subcellular component marker proteins. Using the human keratinocytes N/TERT-1 as a model system, we identified and quantified the glycosylation of hundreds of cell surface N-glycosylation sites. This approach allowed us to study the glycoforms present at the functional relevant cell surface, omitting immaturely glycosylated proteins present in the secretory pathway. Interestingly, the different stages of N-glycan processing at individual sites displayed at the cell surface were found to correlate with their accessibility for ER-residing processing enzymes, as investigated through molecular dynamics simulations. Using the new approach, we compared N-glycosylation sites of proteins expressed on the cell surface to their counterparts in a total cell lysate, showing profound differences in glycosylation between the subcellular components and indicating the relevance of the method for future studies in understanding contextual glycan functions.


Subject(s)
Glycoproteins , Polysaccharides , Humans , Glycosylation , Glycoproteins/chemistry , Mass Spectrometry/methods , Polysaccharides/chemistry
9.
Eur Respir J ; 61(2)2023 02.
Article in English | MEDLINE | ID: mdl-36229047

ABSTRACT

BACKGROUND: Critically ill patients routinely receive antibiotics with activity against anaerobic gut bacteria. However, in other disease states and animal models, gut anaerobes are protective against pneumonia, organ failure and mortality. We therefore designed a translational series of analyses and experiments to determine the effects of anti-anaerobic antibiotics on the risk of adverse clinical outcomes among critically ill patients. METHODS: We conducted a retrospective single-centre cohort study of 3032 critically ill patients, comparing patients who did and did not receive early anti-anaerobic antibiotics. We compared intensive care unit outcomes (ventilator-associated pneumonia (VAP)-free survival, infection-free survival and overall survival) in all patients and changes in gut microbiota in a subcohort of 116 patients. In murine models, we studied the effects of anaerobe depletion in infectious (Klebsiella pneumoniae and Staphylococcus aureus pneumonia) and noninfectious (hyperoxia) injury models. RESULTS: Early administration of anti-anaerobic antibiotics was associated with decreased VAP-free survival (hazard ratio (HR) 1.24, 95% CI 1.06-1.45), infection-free survival (HR 1.22, 95% CI 1.09-1.38) and overall survival (HR 1.14, 95% CI 1.02-1.28). Patients who received anti-anaerobic antibiotics had decreased initial gut bacterial density (p=0.00038), increased microbiome expansion during hospitalisation (p=0.011) and domination by Enterobacteriaceae spp. (p=0.045). Enterobacteriaceae were also enriched among respiratory pathogens in anti-anaerobic-treated patients (p<2.2×10-16). In murine models, treatment with anti-anaerobic antibiotics increased susceptibility to Enterobacteriaceae pneumonia (p<0.05) and increased the lethality of hyperoxia (p=0.0002). CONCLUSIONS: In critically ill patients, early treatment with anti-anaerobic antibiotics is associated with increased mortality. Mechanisms may include enrichment of the gut with respiratory pathogens, but increased mortality is incompletely explained by infections alone. Given consistent clinical and experimental evidence of harm, the widespread use of anti-anaerobic antibiotics should be reconsidered.


Subject(s)
Hyperoxia , Pneumonia, Ventilator-Associated , Animals , Mice , Anti-Bacterial Agents/adverse effects , Cohort Studies , Retrospective Studies , Critical Illness , Pneumonia, Ventilator-Associated/drug therapy , Intensive Care Units
10.
PLoS Biol ; 18(5): e3000713, 2020 05.
Article in English | MEDLINE | ID: mdl-32413038

ABSTRACT

Standard infectious disease practice calls for aggressive drug treatment that rapidly eliminates the pathogen population before resistance can emerge. When resistance is absent, this elimination strategy can lead to complete cure. However, when resistance is already present, removing drug-sensitive cells as quickly as possible removes competitive barriers that may slow the growth of resistant cells. In contrast to the elimination strategy, a containment strategy aims to maintain the maximum tolerable number of pathogens, exploiting competitive suppression to achieve chronic control. Here, we combine in vitro experiments in computer-controlled bioreactors with mathematical modeling to investigate whether containment strategies can delay failure of antibiotic treatment regimens. To do so, we measured the "escape time" required for drug-resistant Escherichia coli populations to eclipse a threshold density maintained by adaptive antibiotic dosing. Populations containing only resistant cells rapidly escape the threshold density, but we found that matched resistant populations that also contain the maximum possible number of sensitive cells could be contained for significantly longer. The increase in escape time occurs only when the threshold density-the acceptable bacterial burden-is sufficiently high, an effect that mathematical models attribute to increased competition. The findings provide decisive experimental confirmation that maintaining the maximum number of sensitive cells can be used to contain resistance when the size of the population is sufficiently large.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Drug Resistance, Bacterial , Microbial Interactions , Models, Biological , Bacterial Infections/drug therapy , Bioreactors , Containment of Biohazards , Escherichia coli , Humans
11.
PLoS Biol ; 18(12): e3000987, 2020 12.
Article in English | MEDLINE | ID: mdl-33332354

ABSTRACT

The antimicrobial resistance crisis has persisted despite broad attempts at intervention. It has been proposed that an important driver of resistance is selection imposed on bacterial populations that are not the intended target of antimicrobial therapy. But to date, there has been limited quantitative measure of the mean and variance of resistance following antibiotic exposure. Here we focus on the important nosocomial pathogen Enterococcus faecium in a hospital system where resistance to daptomycin is evolving despite standard interventions. We hypothesized that the intravenous use of daptomycin generates off-target selection for resistance in transmissible gastrointestinal (carriage) populations of E. faecium. We performed a cohort study in which the daptomycin resistance of E. faecium isolated from rectal swabs from daptomycin-exposed patients was compared to a control group of patients exposed to linezolid, a drug with similar indications. In the daptomycin-exposed group, daptomycin resistance of E. faecium from the off-target population was on average 50% higher than resistance in the control group (n = 428 clones from 22 patients). There was also greater phenotypic diversity in daptomycin resistance within daptomycin-exposed patients. In patients where multiple samples over time were available, a wide variability in temporal dynamics were observed, from long-term maintenance of resistance to rapid return to sensitivity after daptomycin treatment stopped. Sequencing of isolates from a subset of patients supports the argument that selection occurs within patients. Our results demonstrate that off-target gastrointestinal populations rapidly respond to intravenous antibiotic exposure. Focusing on the off-target evolutionary dynamics may offer novel avenues to slow the spread of antibiotic resistance.


Subject(s)
Daptomycin/pharmacology , Drug Resistance, Bacterial/drug effects , Vancomycin-Resistant Enterococci/drug effects , Adaptation, Physiological/drug effects , Adaptation, Physiological/physiology , Adult , Anti-Bacterial Agents/therapeutic use , Cohort Studies , Enterococcus faecium/drug effects , Enterococcus faecium/metabolism , Female , Humans , Male , Microbial Sensitivity Tests , Phylogeny , Vancomycin/pharmacology , Vancomycin-Resistant Enterococci/metabolism
12.
Phys Chem Chem Phys ; 25(36): 24657-24677, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37665626

ABSTRACT

Barrier-to-autointegration factor (Banf1) is a small DNA-bridging protein. The binding status of Banf1 to DNA is regulated by its N-terminal phosphorylation and dephosphorylation, which plays a critical role in cell proliferation. Banf1 can be phosphorylated at Ser4 into mono-phosphorylated Banf1, which is further phosphorylated at Thr3 to form di-phosphorylated Banf1. It was observed decades ago that mono-phosphorylated Banf1 cannot bind to DNA. However, the underlying molecular- and atomic-level mechanisms remain unclear. A clear understanding of these mechanisms will aid in interfering with the cell proliferation process for better global health. Herein, we explored the detailed atomic bases of unphosphorylated Banf1-DNA binding and how mono- and di-phosphorylation of Banf1 impair these atomic bases to eliminate its DNA-binding capability, followed by exploring the DNA-binding capability of mono- and di-phosphorylation Banf1, using comprehensive and systematic molecular modelling and molecular dynamics simulations. This work presented in detail the residue-level binding energies, hydrogen bonds and water bridges between Banf1 and DNA, some of which have not been reported. Moreover, we revealed that mono-phosphorylation of Banf1 causes its N-terminal secondary structure changes, which in turn induce significant changes in Banf1's DNA binding surface, thus eliminating its DNA-binding capability. At the atomic level, we also uncovered the alterations in interactions due to the induction of mono-phosphorylation that result in the N-terminal secondary structure changes of Banf1. Additionally, our modelling showed that phosphorylated Banf1 with their dominant N-terminal secondary structures bind to DNA with a significantly lower affinity and the docked binding pose are not stable in MD simulations. These findings help future studies in predicting effect of mutations in Banf1 on its DNA-binding capability and open a novel avenue for the development of therapeutics such as cancer drugs, targeting cell proliferation by inducing conformational changes in Banf1's N-terminal domain.


Subject(s)
Molecular Dynamics Simulation , Phosphorylation , Molecular Conformation , Cell Proliferation , Hydrogen Bonding
13.
Clin Microbiol Rev ; 34(4): e0032320, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34259567

ABSTRACT

Emerging studies have highlighted the disproportionate role of Candida albicans in influencing both early community assembly of the bacterial microbiome and dysbiosis during allergic diseases and intestinal inflammation. Nonpathogenic colonization of the human gastrointestinal (GI) tract by C. albicans is common, and the role of this single fungal species in modulating bacterial community reassembly after broad-spectrum antibiotics can be readily recapitulated in mouse studies. One of the most notable features of C. albicans-associated dysbiotic states is a marked change in the levels of lactic acid bacteria (LAB). C. albicans and LAB share metabolic niches throughout the GI tract, and in vitro studies have identified various interactions between these microbes. The two predominant LAB affected are Lactobacillus species and Enterococcus species. Lactobacilli can antagonize enterococci and C. albicans, while Enterococcus faecalis and C. albicans have been reported to exhibit a mutualistic relationship. E. faecalis and C. albicans are also causative agents of a variety of life-threatening infections, are frequently isolated together from mixed-species infections, and share certain similarities in clinical presentation-most notably their emergence as opportunistic pathogens following disruption of the microbiota. In this review, we discuss and model the mechanisms used by Lactobacillus species, E. faecalis, and C. albicans to modulate each other's growth and virulence in the GI tract. With multidrug-resistant E. faecalis and C. albicans strains becoming increasingly common in hospital settings, examining the interplay between these three microbes may provide novel insights for enhancing the efficacy of existing antimicrobial therapies.


Subject(s)
Lactobacillales , Opportunistic Infections , Animals , Candida albicans , Enterococcus faecalis , Gastrointestinal Tract , Mice
14.
J Biol Chem ; 296: 100144, 2021.
Article in English | MEDLINE | ID: mdl-33273015

ABSTRACT

Myeloperoxidase (MPO) plays essential roles in neutrophil-mediated immunity via the generation of reactive oxidation products. Complex carbohydrates decorate MPO at discrete sites, but their functional relevance remains elusive. To this end, we have characterised the structure-biosynthesis-activity relationship of neutrophil MPO (nMPO). Mass spectrometry demonstrated that nMPO carries both characteristic under-processed and hyper-truncated glycans. Occlusion of the Asn355/Asn391-glycosylation sites and the Asn323-/Asn483-glycans, located in the MPO dimerisation zone, was found to affect the local glycan processing, thereby providing a molecular basis of the site-specific nMPO glycosylation. Native mass spectrometry, mass photometry and glycopeptide profiling revealed significant molecular complexity of diprotomeric nMPO arising from heterogeneous glycosylation, oxidation, chlorination and polypeptide truncation variants and a previously unreported low-abundance monoprotomer. Longitudinal profiling of maturing, mature, granule-separated and pathogen-stimulated neutrophils demonstrated that nMPO is dynamically expressed during granulopoiesis, unevenly distributed across granules and degranulated upon activation. We also show that proMPO-to-MPO maturation occurs during early/mid-stage granulopoiesis. While similar global MPO glycosylation was observed across conditions, the conserved Asn355-/Asn391-sites displayed elevated glycan hyper-truncation, which correlated with higher enzyme activities of MPO in distinct granule populations. Enzymatic trimming of the Asn355-/Asn391-glycans recapitulated the activity gain and showed that nMPO carrying hyper-truncated glycans at these positions exhibits increased thermal stability, polypeptide accessibility and ceruloplasmin-mediated inhibition potential relative to native nMPO. Finally, molecular modelling revealed that hyper-truncated Asn355-glycans positioned in the MPO-ceruloplasmin interface are critical for uninterrupted inhibition. Here, through an innovative and comprehensive approach, we report novel functional roles of MPO glycans, providing new insight into neutrophil-mediated immunity.


Subject(s)
Cytoplasmic Granules/enzymology , Glycopeptides/metabolism , Neutrophils/enzymology , Peroxidase/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , Glycopeptides/chemistry , Glycosylation , Humans
15.
BMC Med ; 20(1): 387, 2022 10 08.
Article in English | MEDLINE | ID: mdl-36209074

ABSTRACT

BACKGROUND: Varicella zoster virus (VZV) is one of the eight known human herpesviruses. Initial VZV infection results in chickenpox, while viral reactivation following a period of latency manifests as shingles. Separate vaccines exist to protect against both initial infection and subsequent reactivation. Controversy regarding chickenpox vaccination is contentious with most countries not including the vaccine in their childhood immunization schedule due to the hypothesized negative impact on immune-boosting, where VZV reactivation is suppressed through exogenous boosting of VZV antibodies from exposure to natural chickenpox infections. METHODS: Population-level chickenpox and shingles notifications from Thailand, a country that does not vaccinate against either disease, were previously fitted with mathematical models to estimate rates of VZV transmission and reactivation. Here, multiple chickenpox and shingles vaccination scenarios were simulated and compared to a model lacking any vaccination to analyze the long-term impacts of VZV vaccination. RESULTS: As expected, simulations suggested that an introduction of the chickenpox vaccine, at any coverage level, would reduce chickenpox incidence. However, chickenpox vaccine coverage levels above 35% would increase shingles incidence under realistic estimates of shingles coverage with the current length of protective immunity from the vaccine. A trade-off between chickenpox and shingles vaccination coverage was discovered, where mid-level chickenpox coverage levels were identified as the optimal target to minimize total zoster burden. Only in scenarios where shingles vaccine provided lifelong immunity or coverage exceeded current levels could large reductions in both chickenpox and shingles be achieved. CONCLUSIONS: The complicated nature of VZV makes it impossible to select a single vaccination scenario as universal policy. Strategies focused on reducing both chickenpox and shingles incidence, but prioritizing the latter should maximize efforts towards shingles vaccination, while slowly incorporating chickenpox vaccination. Alternatively, countries may wish to minimize VZV complications of both chickenpox and shingles, which would lead to maximizing vaccine coverage levels across both diseases. Balancing the consequences of vaccination to overall health impacts, including understanding the impact of an altered mean age of infection for both chickenpox and shingles, would need to be considered prior to any vaccine introduction.


Subject(s)
Chickenpox , Herpes Zoster Vaccine , Herpes Zoster , Chickenpox/epidemiology , Chickenpox/prevention & control , Chickenpox Vaccine , Child , Herpes Zoster/epidemiology , Herpes Zoster/prevention & control , Herpesvirus 3, Human , Humans , Vaccination , Vaccines, Attenuated
16.
J Proteome Res ; 20(1): 485-497, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33073996

ABSTRACT

Immune checkpoint inhibitors, including PD-L1/PD-1, are key regulators of the immune response and promising targets in cancer immunotherapy. N-glycosylation of PD-L1 affects its interaction with PD-1, but little is known about the distribution of glycoforms at its four NXS/T sequons. We optimized LC-MS/MS methods using collision energy modulation for the site-specific resolution of specific glycan motifs. We demonstrate that PD-L1 on the surface of breast cancer cell line carries mostly complex glycans with a high proportion of polyLacNAc structures at the N219 sequon. Contrary to the full-length protein, the secreted form of PD-L1 expressed in breast MDA-MB-231 or HEK293 cells demonstrated minimum N219 occupancy and low contribution of the polyLacNAc structures. Molecular modeling of PD-L1/PD-1 interaction with N-glycans suggests that glycans at the N219 site of PD-L1 and N74 and N116 of PD-1 may be involved in glycan-glycan interactions, but the impact of this potential interaction on the protein function remains at this point unknown. The interaction of PD-L1 with clinical antibodies is also affected by glycosylation. In conclusion, PD-L1 expressed in the MDA-MB-231 breast cancer cell line carries polyLacNAc glycans mostly at the N219 sequon, which displays the highest variability in occupancy and is most likely to influence the interaction with PD-1.


Subject(s)
B7-H1 Antigen , Tandem Mass Spectrometry , B7-H1 Antigen/genetics , Chromatography, Liquid , Glycosylation , HEK293 Cells , Humans
17.
J Biol Chem ; 295(27): 9223-9243, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32414843

ABSTRACT

Skp1, a subunit of E3 Skp1/Cullin-1/F-box protein ubiquitin ligases, is modified by a prolyl hydroxylase that mediates O2 regulation of the social amoeba Dictyostelium and the parasite Toxoplasma gondii The full effect of hydroxylation requires modification of the hydroxyproline by a pentasaccharide that, in Dictyostelium, influences Skp1 structure to favor assembly of Skp1/F-box protein subcomplexes. In Toxoplasma, the presence of a contrasting penultimate sugar assembled by a different glycosyltransferase enables testing of the conformational control model. To define the final sugar and its linkage, here we identified the glycosyltransferase that completes the glycan and found that it is closely related to glycogenin, an enzyme that may prime glycogen synthesis in yeast and animals. However, the Toxoplasma enzyme catalyzes formation of a Galα1,3Glcα linkage rather than the Glcα1,4Glcα linkage formed by glycogenin. Kinetic and crystallographic experiments showed that the glycosyltransferase Gat1 is specific for Skp1 in Toxoplasma and also in another protist, the crop pathogen Pythium ultimum The fifth sugar is important for glycan function as indicated by the slow-growth phenotype of gat1Δ parasites. Computational analyses indicated that, despite the sequence difference, the Toxoplasma glycan still assumes an ordered conformation that controls Skp1 structure and revealed the importance of nonpolar packing interactions of the fifth sugar. The substitution of glycosyltransferases in Toxoplasma and Pythium by an unrelated bifunctional enzyme that assembles a distinct but structurally compatible glycan in Dictyostelium is a remarkable case of convergent evolution, which emphasizes the importance of the terminal α-galactose and establishes the phylogenetic breadth of Skp1 glycoregulation.


Subject(s)
Galactose/metabolism , SKP Cullin F-Box Protein Ligases/metabolism , Ubiquitin-Protein Ligases/metabolism , Dictyostelium/metabolism , F-Box Proteins/metabolism , Glucosyltransferases/metabolism , Glycoproteins/metabolism , Glycosylation , Glycosyltransferases/metabolism , Hydroxylation , Hydroxyproline/metabolism , Phylogeny , Procollagen-Proline Dioxygenase/genetics , Prolyl Hydroxylases/metabolism , S-Phase Kinase-Associated Proteins/metabolism , SKP Cullin F-Box Protein Ligases/physiology , Toxoplasma/metabolism
18.
PLoS Biol ; 16(6): e2006459, 2018 06.
Article in English | MEDLINE | ID: mdl-29953453

ABSTRACT

Mutation rates can evolve through genetic drift, indirect selection due to genetic hitchhiking, or direct selection on the physicochemical cost of high fidelity. However, for many systems, it has been difficult to disentangle the relative impact of these forces empirically. In RNA viruses, an observed correlation between mutation rate and virulence has led many to argue that their extremely high mutation rates are advantageous because they may allow for increased adaptability. This argument has profound implications because it suggests that pathogenesis in many viral infections depends on rare or de novo mutations. Here, we present data for an alternative model whereby RNA viruses evolve high mutation rates as a byproduct of selection for increased replicative speed. We find that a poliovirus antimutator, 3DG64S, has a significant replication defect and that wild-type (WT) and 3DG64S populations have similar adaptability in 2 distinct cellular environments. Experimental evolution of 3DG64S under selection for replicative speed led to reversion and compensation of the fidelity phenotype. Mice infected with 3DG64S exhibited delayed morbidity at doses well above the lethal level, consistent with attenuation by slower growth as opposed to reduced mutational supply. Furthermore, compensation of the 3DG64S growth defect restored virulence, while compensation of the fidelity phenotype did not. Our data are consistent with the kinetic proofreading model for biosynthetic reactions and suggest that speed is more important than accuracy. In contrast with what has been suggested for many RNA viruses, we find that within-host spread is associated with viral replicative speed and not standing genetic diversity.


Subject(s)
Mutation Rate , RNA Viruses/genetics , RNA Viruses/pathogenicity , Virulence/genetics , 3T3 Cells , Amino Acid Substitution , Animals , Directed Molecular Evolution , Female , Host Microbial Interactions/genetics , Kinetics , Male , Mice , Mice, Transgenic , Models, Genetic , Mutagenesis, Site-Directed , Polymorphism, Single Nucleotide , RNA Viruses/physiology , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Theilovirus/genetics , Theilovirus/pathogenicity , Theilovirus/physiology , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication/genetics
19.
Glycobiology ; 30(2): 74-85, 2020 01 28.
Article in English | MEDLINE | ID: mdl-31616924

ABSTRACT

The O-glycoprotein apolipoprotein E (APOE), the strongest genetic risk factor for Alzheimer's disease, associates with lipoproteins. Cerebrospinal fluid (CSF) APOE binds only high-density lipoproteins (HDLs), while plasma APOE attaches to lipoproteins of diverse sizes with binding fine-tuned by the C-terminal loop. To better understand the O-glycosylation on this critical molecule and differences across tissues, we analyzed the O-glycosylation on APOE isolated from the plasma and CSF of aged individuals. Detailed LC-MS/MS analyses allowed the identification of the glycosite and the attached glycan and site occupancy for all detectable glycosites on APOE and further three-dimensional modeling of physiological glycoforms of APOE. APOE is O-glycosylated at several sites: Thr8, Thr18, Thr194, Ser197, Thr289, Ser290 and Ser296. Plasma APOE held more abundant (20.5%) N-terminal (Thr8) sialylated core 1 (Neu5Acα2-3Galß1-3GalNAcα1-) glycosylation compared to CSF APOE (0.1%). APOE was hinge domain glycosylated (Thr194 and Ser197) in both CSF (27.3%) and plasma (10.3%). CSF APOE held almost 10-fold more abundant C-terminal (Thr289, Ser290 and Ser296) glycosylation (36.8% of CSF peptide283-299 was glycosylated, 3.8% of plasma peptide283-299), with sialylated and disialylated (Neu5Acα2-3Galß1-3(Neu5Acα2-6) GalNAcα1-) core 1 structures. Modeling suggested that C-terminal glycosylation, particularly the branched disialylated structure, could interact across domains including the receptor-binding domain. These data, although limited by sample size, suggest that there are tissue-specific APOE glycoforms. Sialylated glycans, previously shown to improve HDL binding, are more abundant on the lipid-binding domain of CSF APOE and reduced in plasma APOE. This indicates that APOE glycosylation may be implicated in lipoprotein-binding flexibility.


Subject(s)
Alzheimer Disease/blood , Alzheimer Disease/cerebrospinal fluid , Apolipoproteins E/blood , Glycopeptides/cerebrospinal fluid , Aged , Female , Glycosylation , Humans , Male , Middle Aged , Protein Domains
20.
Glycobiology ; 30(10): 830-843, 2020 09 28.
Article in English | MEDLINE | ID: mdl-32188979

ABSTRACT

Collagen undergoes many types of post-translational modifications (PTMs), including intracellular modifications and extracellular modifications. Among these PTMs, glycosylation of hydroxylysine (Hyl) is the most complicated. Experimental studies demonstrated that this PTM ceases once the collagen triple helix is formed and that Hyl-O-glycosylation modulates collagen fibrillogenesis. However, the underlying atomic-level mechanisms of these phenomena remain unclear. In this study, we first adapted the force field parameters for O-linkages between Hyl and carbohydrates and then investigated the influence of Hyl-O-glycosylation on the structure of type I collagen molecule, by performing comprehensive molecular dynamic simulations in explicit solvent of collagen molecule segment with and without the glycosylation of Hyl. Data analysis demonstrated that (i) collagen triple helices remain in a triple-helical structure upon glycosylation of Hyl; (ii) glycosylation of Hyl modulates the peptide backbone conformation and their solvation environment in the vicinity and (iii) the attached sugars are arranged such that their hydrophilic faces are well exposed to the solvent, while their hydrophobic faces point towards the hydrophobic portions of collagen. The adapted force field parameters for O-linkages between Hyl and carbohydrates will aid future computational studies on proteins with Hyl-O-glycosylation. In addition, this work, for the first time, presents the detailed effect of Hyl-O-glycosylation on the structure of human type I collagen at the atomic level, which may provide insights into the design and manufacture of collagenous biomaterials and the development of biomedical therapies for collagen-related diseases.


Subject(s)
Collagen Type I/chemistry , Hydroxylysine/analogs & derivatives , Glycosylation , Hydrogen Bonding , Hydroxylysine/chemistry , Models, Molecular , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL