Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sol Phys ; 297(4): 43, 2022.
Article in English | MEDLINE | ID: mdl-35465471

ABSTRACT

The Solar Radiation and Climate Experiment (SORCE) was a NASA mission that operated from 2003 to 2020 to provide key climate-monitoring measurements of total solar irradiance (TSI) and solar spectral irradiance (SSI). This 17-year mission made TSI and SSI observations during the declining phase of Solar Cycle 23, during all of Solar Cycle 24, and at the very beginning of Solar Cycle 25. The SORCE solar-variability results include comparisons of the solar irradiance observed during Solar Cycles 23 and 24 and the solar-cycle minima levels in 2008 - 2009 and 2019 - 2020. The differences between these two minima are very small and are not significantly above the estimate of instrument stability over the 11-year period. There are differences in the SSI variability for Solar Cycles 23 and 24, notably for wavelengths longer than 250 nm. Consistency comparisons with SORCE variability on solar-rotation timescales and solar-irradiance model predictions suggest that the SORCE Solar Cycle 24 SSI results might be more accurate than the SORCE Solar Cycle 23 results. The SORCE solar-variability results have been useful for many Sun-climate studies and will continue to serve as a reference for comparisons with future missions studying solar variability.

2.
Sol Phys ; 297(6): 69, 2022.
Article in English | MEDLINE | ID: mdl-35663641

ABSTRACT

The Solar Radiation and Climate Experiment/Spectral Irradiance Monitor (SORCE/SIM) instrument was launched on 25 January 2003 with mission termination occurring on 25 February 2020. The SORCE/SIM provides a unique data set of the variability in solar spectral irradiance (SSI) during the descending phase of Solar Cycle 23 (SC23) from April 2003 to February 2009, the weaker solar-maximum conditions of SC24, and the quiescent SC24/SC25 minimum. The determination of the magnitude and phase of SSI variations rely on the unambiguous determination of the effects of the space environment and solar-exposure-related degradation mechanisms. The instrument-only corrections for SIM are based on a comparison of two functionally identical (mirror image) prism spectrometers with four independent detectors in each spectrometer channel. The degradation correction is strictly instrumental in its methodology and makes no assumptions about the magnitude, slope, or wavelength dependence of the SSI variability.

3.
Sol Phys ; 296(8): 127, 2021.
Article in English | MEDLINE | ID: mdl-34776547

ABSTRACT

The Solar Radiation and Climate Experiment (SORCE) was a NASA mission that operated from 2003 to 2020 to provide key climate-monitoring measurements of total solar irradiance (TSI) and solar spectral irradiance (SSI). Three important accomplishments of the SORCE mission are i) the continuation of the 42-year-long TSI climate data record, ii) the continuation of the ultraviolet SSI record, and iii) the initiation of the near-ultraviolet, visible, and near-infrared SSI records. All of the SORCE instruments functioned well over the 17-year mission, which far exceeded its five-year prime mission goal. The SORCE spacecraft, having mostly redundant subsystems, was also robust over the mission. The end of the SORCE mission was a planned passivation of the spacecraft following a successful two-year overlap with the NASA Total and Spectral Solar Irradiance Sensor (TSIS) mission, which continues the TSI and SSI climate records. There were a couple of instrument anomalies and a few spacecraft anomalies during SORCE's long mission, but operational changes and updates to flight software enabled SORCE to remain productive to the end of its mission. The most challenging of the anomalies was the degradation of the battery capacity that began to impact operations in 2009 and was the cause for the largest SORCE data gap (August 2013 - February 2014). An overview of the SORCE mission is provided with a couple of science highlights and a discussion of flight anomalies that impacted the solar observations. Companion articles about the SORCE instruments and their final science data-processing algorithms provide additional details about the instrument measurements over the duration of the mission.

4.
Sol Phys ; 293(5): 76, 2018.
Article in English | MEDLINE | ID: mdl-30996490

ABSTRACT

The solar spectral irradiance (SSI) dataset is a key record for studying and understanding the energetics and radiation balance in Earth's environment. Understanding the long-term variations of the SSI over timescales of the 11-year solar activity cycle and longer is critical for many Sun-Earth research topics. Satellite measurements of the SSI have been made since the 1970s, most of them in the ultraviolet, but recently also in the visible and near-infrared. A limiting factor for the accuracy of previous solar variability results is the uncertainties for the instrument degradation corrections, which need fairly large corrections relative to the amount of solar cycle variability at some wavelengths. The primary objective of this investigation has been to separate out solar cycle variability and any residual uncorrected instrumental trends in the SSI measurements from the Solar Radiation and Climate Experiment (SORCE) mission and the Thermosphere, Mesosphere, Ionosphere, Energetic, and Dynamics (TIMED) mission. A new technique called the Multiple Same-Irradiance-Level (MuSIL) analysis has been developed, which examines an SSI time series at different levels of solar activity to provide long-term trends in an SSI record, and the most common result is a downward trend that most likely stems from uncorrected instrument degradation. This technique has been applied to each wavelength in the SSI records from SORCE (2003 - present) and TIMED (2002 - present) to provide new solar cycle variability results between 27 nm and 1600 nm with a resolution of about 1 nm at most wavelengths. This technique, which was validated with the highly accurate total solar irradiance (TSI) record, has an estimated relative uncertainty of about 5% of the measured solar cycle variability. The MuSIL results are further validated with the comparison of the new solar cycle variability results from different solar cycles.

5.
Sol Phys ; 293(2): 21, 2018.
Article in English | MEDLINE | ID: mdl-31258201

ABSTRACT

The Miniature X-ray Solar Spectrometer (MinXSS) CubeSat is the first solar science oriented CubeSat mission flown for the NASA Science Mission Directorate, with the main objective of measuring the solar soft X-ray (SXR) flux and a science goal of determining its influence on Earth's ionosphere and thermosphere. These observations can also be used to investigate solar quiescent, active region, and flare properties. The MinXSS X-ray instruments consist of a spectrometer, called X123, with a nominal 0.15 keV full-width at half-maximum (FWHM) resolution at 5.9 keV and a broadband X-ray photometer, called XP. Both instruments are designed to obtain measurements from 0.5 - 30 keV at a nominal time cadence of 10 s. A description of the MinXSS instruments, performance capabilities, and relation to the Geostationary Operational Environmental Satellite (GOES) 0.1 - 0.8 nm flux is given in this article. Early MinXSS results demonstrate the capability of measuring variations of the solar spectral soft X-ray (SXR) flux between 0.8 - 12 keV from at least GOES A5-M5 ( 5 × 10 - 8 - 5 × 10 - 5 W m - 2 ) levels and of inferring physical properties (temperature and emission measure) from the MinXSS data alone. Moreover, coronal elemental abundances can be inferred, specifically for Fe, Ca, Si, Mg, S, Ar, and Ni, when the count rate is sufficiently high at each elemental spectral feature. Additionally, temperature response curves and emission measure loci demonstrate the MinXSS sensitivity to plasma emission at different temperatures. MinXSS observations coupled with those from other solar observatories can help address some of the most compelling questions in solar coronal physics. Finally, simultaneous observations by MinXSS and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) can provide the most spectrally complete soft X-ray solar flare photon flux measurements to date.

6.
Sol Phys ; 290: 2649-2676, 2015.
Article in English | MEDLINE | ID: mdl-27445419

ABSTRACT

A different approach to studying solar spectral irradiance (SSI) variations, without the need for long-term (multi-year) instrument degradation corrections, is examining the total energy of the irradiance variation during 6-month periods. This duration is selected because a solar active region typically appears suddenly and then takes 5 to 7 months to decay and disperse back into the quiet-Sun network. The solar outburst energy, which is defined as the irradiance integrated over the 6-month period and thus includes the energy from all phases of active region evolution, could be considered the primary cause for the irradiance variations. Because solar cycle variation is the consequence of multiple active region outbursts, understanding the energy spectral variation may provide a reasonable estimate of the variations for the 11-year solar activity cycle. The moderate-term (6-month) variations from the Solar Radiation and Climate Experiment (SORCE) instruments can be decomposed into positive (in-phase with solar cycle) and negative (out-of-phase) contributions by modeling the variations using the San Fernando Observatory (SFO) facular excess and sunspot deficit proxies, respectively. These excess and deficit variations are fit over 6-month intervals every 2 months over the mission, and these fitted variations are then integrated over time for the 6-month energy. The dominant component indicates which wavelengths are in-phase and which are out-of-phase with solar activity. The results from this study indicate out-of-phase variations for the 1400 - 1600 nm range, with all other wavelengths having in-phase variations.

7.
Nat Commun ; 6: 6491, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25849045

ABSTRACT

Solar magnetism displays a host of variational timescales of which the enigmatic 11-year sunspot cycle is most prominent. Recent work has demonstrated that the sunspot cycle can be explained in terms of the intra- and extra-hemispheric interaction between the overlapping activity bands of the 22-year magnetic polarity cycle. Those activity bands appear to be driven by the rotation of the Sun's deep interior. Here we deduce that activity band interaction can qualitatively explain the 'Gnevyshev Gap'­a well-established feature of flare and sunspot occurrence. Strong quasi-annual variability in the number of flares, coronal mass ejections, the radiative and particulate environment of the heliosphere is also observed. We infer that this secondary variability is driven by surges of magnetism from the activity bands. Understanding the formation, interaction and instability of these activity bands will considerably improve forecast capability in space weather and solar activity over a range of timescales.

8.
Science ; 302(5652): 1949-52, 2003 Dec 12.
Article in English | MEDLINE | ID: mdl-14671299

ABSTRACT

Comet C/2002 X5 (Kudo-Fujikawa) was observed near its perihelion of 0.19 astronomical unit by the Ultraviolet Coronagraph Spectrometer aboard the Solar and Heliospheric Observatory spacecraft. Images of the comet reconstructed from high-resolution spectra reveal a quasi-spherical cloud of neutral hydrogen and a variable tail of C+ and C2+ that disconnects from the comet and subsequently regenerates. The high abundance of C2+ and C+, at least 24% relative to water, cannot be explained by photodissociation of carbon monoxide and is instead attributed to the evaporation and subsequent photoionization of atomic carbon from organic refractory compounds present in the cometary dust grains. This result serves to strengthen the connection between comets and the material from which the Solar System formed.


Subject(s)
Carbon , Meteoroids , Hydrogen , Ions , Spectrum Analysis , Water
SELECTION OF CITATIONS
SEARCH DETAIL