Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 169(1): 6-12, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28340351

ABSTRACT

Genome sequencing has revolutionized the diagnosis of genetic diseases. Close collaborations between basic scientists and clinical genomicists are now needed to link genetic variants with disease causation. To facilitate such collaborations, we recommend prioritizing clinically relevant genes for functional studies, developing reference variant-phenotype databases, adopting phenotype description standards, and promoting data sharing.


Subject(s)
Biomedical Research , Genomics , Animals , DNA Mutational Analysis , Databases, Genetic , Disease/genetics , Human Genome Project , Humans , Information Dissemination , Models, Animal
2.
Mod Pathol ; 37(6): 100492, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614322

ABSTRACT

Juxtaglomerular cell tumor (JGCT) is a rare neoplasm, part of the family of mesenchymal tumors of the kidney. Although the pathophysiological and clinical correlates of JGCT are well known, as these tumors are an important cause of early-onset arterial hypertension refractory to medical treatment, their molecular background is unknown, with only few small studies investigating their karyotype. Herein we describe a multi-institutional cohort of JGCTs diagnosed by experienced genitourinary pathologists, evaluating clinical presentation and outcome, morphologic diversity, and, importantly, the molecular features. Ten JGCTs were collected from 9 institutions, studied by immunohistochemistry, and submitted to whole exome sequencing. Our findings highlight the morphologic heterogeneity of JGCT, which can mimic several kidney tumor entities. Three cases showed concerning histologic features, but the patient course was unremarkable, which suggests that morphologic evaluation alone cannot reliably predict the clinical behavior. Gain-of-function variants in RAS GTPases were detected in JGCTs, with no evidence of additional recurrent genomic alterations. In conclusion, we present the largest series of JGCT characterized by whole exome sequencing, highlighting the putative role of the MAPK-RAS pathway.


Subject(s)
Exome Sequencing , Juxtaglomerular Apparatus , Kidney Neoplasms , Humans , Male , Female , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Adult , Juxtaglomerular Apparatus/pathology , Middle Aged , Young Adult , ras Proteins/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis , Mutation , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/physiology , Adolescent
3.
Genet Med ; 26(9): 101166, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38767059

ABSTRACT

PURPOSE: The function of FAM177A1 and its relationship to human disease is largely unknown. Recent studies have demonstrated FAM177A1 to be a critical immune-associated gene. One previous case study has linked FAM177A1 to a neurodevelopmental disorder in 4 siblings. METHODS: We identified 5 individuals from 3 unrelated families with biallelic variants in FAM177A1. The physiological function of FAM177A1 was studied in a zebrafish model organism and human cell lines with loss-of-function variants similar to the affected cohort. RESULTS: These individuals share a characteristic phenotype defined by macrocephaly, global developmental delay, intellectual disability, seizures, behavioral abnormalities, hypotonia, and gait disturbance. We show that FAM177A1 localizes to the Golgi complex in mammalian and zebrafish cells. Intersection of the RNA sequencing and metabolomic data sets from FAM177A1-deficient human fibroblasts and whole zebrafish larvae demonstrated dysregulation of pathways associated with apoptosis, inflammation, and negative regulation of cell proliferation. CONCLUSION: Our data shed light on the emerging function of FAM177A1 and defines FAM177A1-related neurodevelopmental disorder as a new clinical entity.

4.
PLoS Comput Biol ; 19(1): e1010749, 2023 01.
Article in English | MEDLINE | ID: mdl-36602970

ABSTRACT

With an increasing amount of biological data available publicly, there is a need for a guide on how to successfully download and use this data. The 10 simple rules for using public biological data are: (1) use public data purposefully in your research; (2) evaluate data for your use case; (3) check data reuse requirements and embargoes; (4) be aware of ethics for data reuse; (5) plan for data storage and compute requirements; (6) know what you are downloading; (7) download programmatically and verify integrity; (8) properly cite data; (9) make reprocessed data and models Findable, Accessible, Interoperable, and Reusable (FAIR) and share; and (10) make pipelines and code FAIR and share. These rules are intended as a guide for researchers wanting to make use of available data and to increase data reuse and reproducibility.


Subject(s)
Information Storage and Retrieval , Reproducibility of Results
5.
Hum Mutat ; 43(9): 1149-1161, 2022 09.
Article in English | MEDLINE | ID: mdl-35544951

ABSTRACT

The Dedicator of Cytokinesis (DOCK) family (DOCK1-11) of genes are essential mediators of cellular migration, growth, and fusion in a variety of cell types and tissues. Recent advances in whole-genome sequencing of patients with undiagnosed genetic disorders have identified several rare pathogenic variants in DOCK genes. We conducted a systematic review and performed a patient database and literature search of reported DOCK pathogenic variants that have been identified in association with clinical pathologies such as global developmental delay, immune cell dysfunction, muscle hypotonia, and muscle ataxia among other categories. We then categorized these pathogenic DOCK variants and their associated clinical phenotypes under several unique categories: developmental, cardiovascular, metabolic, cognitive, or neuromuscular. Our systematic review of DOCK variants aims to identify and analyze potential DOCK-regulated networks associated with neuromuscular diseases and other disease pathologies, which may identify novel therapeutic strategies and targets. This systematic analysis and categorization of human-associated pathologies with DOCK pathogenic variants is the first report to the best of our knowledge for a unique class in this understudied gene family that has important implications in furthering personalized genomic medicine, clinical diagnoses, and improve targeted therapeutic outcomes across many clinical pathologies.


Subject(s)
Guanine Nucleotide Exchange Factors , Intellectual Disability , Ataxia , Genomics , Guanine Nucleotide Exchange Factors/genetics , Humans , Intellectual Disability/genetics , Multigene Family , Muscle Hypotonia/genetics , Transcription Factors
6.
J Allergy Clin Immunol ; 148(2): 585-598, 2021 08.
Article in English | MEDLINE | ID: mdl-33771552

ABSTRACT

BACKGROUND: Biallelic variants in IL6ST, encoding GP130, cause a recessive form of hyper-IgE syndrome (HIES) characterized by high IgE level, eosinophilia, defective acute phase response, susceptibility to bacterial infections, and skeletal abnormalities due to cytokine-selective loss of function in GP130, with defective IL-6 and IL-11 and variable oncostatin M (OSM) and IL-27 levels but sparing leukemia inhibitory factor (LIF) signaling. OBJECTIVE: Our aim was to understand the functional and structural impact of recessive HIES-associated IL6ST variants. METHODS: We investigated a patient with HIES by using exome, genome, and RNA sequencing. Functional assays assessed IL-6, IL-11, IL-27, OSM, LIF, CT-1, CLC, and CNTF signaling. Molecular dynamics simulations and structural modeling of GP130 cytokine receptor complexes were performed. RESULTS: We identified a patient with compound heterozygous novel missense variants in IL6ST (p.Ala517Pro and the exon-skipping null variant p.Gly484_Pro518delinsArg). The p.Ala517Pro variant resulted in a more profound IL-6- and IL-11-dominated signaling defect than did the previously identified recessive HIES IL6ST variants p.Asn404Tyr and p.Pro498Leu. Molecular dynamics simulations suggested that the p.Ala517Pro and p.Asn404Tyr variants result in increased flexibility of the extracellular membrane-proximal domains of GP130. We propose a structural model that explains the cytokine selectivity of pathogenic IL6ST variants that result in recessive HIES. The variants destabilized the conformation of the hexameric cytokine receptor complexes, whereas the trimeric LIF-GP130-LIFR complex remained stable through an additional membrane-proximal interaction. Deletion of this membrane-proximal interaction site in GP130 consequently caused additional defective LIF signaling and Stüve-Wiedemann syndrome. CONCLUSION: Our data provide a structural basis to understand clinical phenotypes in patients with IL6ST variants.


Subject(s)
Cytokine Receptor gp130 , Job Syndrome , Molecular Dynamics Simulation , Mutation, Missense , Child , Cytokine Receptor gp130/chemistry , Cytokine Receptor gp130/genetics , Cytokine Receptor gp130/immunology , Cytokines/genetics , Cytokines/immunology , Genes, Recessive , Humans , Job Syndrome/genetics , Job Syndrome/immunology , Male , RNA-Seq , Signal Transduction/genetics , Signal Transduction/immunology , Exome Sequencing
7.
N Engl J Med ; 379(22): 2131-2139, 2018 11 29.
Article in English | MEDLINE | ID: mdl-30304647

ABSTRACT

BACKGROUND: Many patients remain without a diagnosis despite extensive medical evaluation. The Undiagnosed Diseases Network (UDN) was established to apply a multidisciplinary model in the evaluation of the most challenging cases and to identify the biologic characteristics of newly discovered diseases. The UDN, which is funded by the National Institutes of Health, was formed in 2014 as a network of seven clinical sites, two sequencing cores, and a coordinating center. Later, a central biorepository, a metabolomics core, and a model organisms screening center were added. METHODS: We evaluated patients who were referred to the UDN over a period of 20 months. The patients were required to have an undiagnosed condition despite thorough evaluation by a health care provider. We determined the rate of diagnosis among patients who subsequently had a complete evaluation, and we observed the effect of diagnosis on medical care. RESULTS: A total of 1519 patients (53% female) were referred to the UDN, of whom 601 (40%) were accepted for evaluation. Of the accepted patients, 192 (32%) had previously undergone exome sequencing. Symptoms were neurologic in 40% of the applicants, musculoskeletal in 10%, immunologic in 7%, gastrointestinal in 7%, and rheumatologic in 6%. Of the 382 patients who had a complete evaluation, 132 received a diagnosis, yielding a rate of diagnosis of 35%. A total of 15 diagnoses (11%) were made by clinical review alone, and 98 (74%) were made by exome or genome sequencing. Of the diagnoses, 21% led to recommendations regarding changes in therapy, 37% led to changes in diagnostic testing, and 36% led to variant-specific genetic counseling. We defined 31 new syndromes. CONCLUSIONS: The UDN established a diagnosis in 132 of the 382 patients who had a complete evaluation, yielding a rate of diagnosis of 35%. (Funded by the National Institutes of Health Common Fund.).


Subject(s)
Genetic Testing , Rare Diseases/genetics , Sequence Analysis, DNA , Adult , Animals , Child , Diagnosis, Differential , Drosophila , Exome , Female , Genetic Testing/economics , Health Care Costs/statistics & numerical data , Humans , Male , Models, Animal , National Institutes of Health (U.S.) , Rare Diseases/diagnosis , Syndrome , United States
8.
Hum Mol Genet ; 27(14): 2454-2465, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29726930

ABSTRACT

The 17 genes of the T-box family are transcriptional regulators that are involved in all stages of embryonic development, including craniofacial, brain, heart, skeleton and immune system. Malformation syndromes have been linked to many of the T-box genes. For example, haploinsufficiency of TBX1 is responsible for many structural malformations in DiGeorge syndrome caused by a chromosome 22q11.2 deletion. We report four individuals with an overlapping spectrum of craniofacial dysmorphisms, cardiac anomalies, skeletal malformations, immune deficiency, endocrine abnormalities and developmental impairments, reminiscent of DiGeorge syndrome, who are heterozygotes for TBX2 variants. The p.R20Q variant is shared by three affected family members in an autosomal dominant manner; the fourth unrelated individual has a de novo p.R305H mutation. Bioinformatics analyses indicate that these variants are rare and predict them to be damaging. In vitro transcriptional assays in cultured cells show that both variants result in reduced transcriptional repressor activity of TBX2. We also show that the variants result in reduced protein levels of TBX2. Heterologous over-expression studies in Drosophila demonstrate that both p.R20Q and p.R305H function as partial loss-of-function alleles. Hence, these and other data suggest that TBX2 is a novel candidate gene for a new multisystem malformation disorder.


Subject(s)
Developmental Disabilities/genetics , DiGeorge Syndrome/genetics , Genetic Predisposition to Disease , T-Box Domain Proteins/genetics , Adult , Animals , Cardiovascular Abnormalities/genetics , Cardiovascular Abnormalities/physiopathology , Cardiovascular System/physiopathology , Child , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/physiopathology , Developmental Disabilities/physiopathology , DiGeorge Syndrome/physiopathology , Disease Models, Animal , Drosophila melanogaster , Female , Gene Expression Regulation, Developmental , Haploinsufficiency/genetics , Heart Defects, Congenital/genetics , Heart Defects, Congenital/physiopathology , Humans , Mice , Pedigree , Pregnancy , Young Adult , Zebrafish
9.
BMC Bioinformatics ; 20(1): 496, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31615419

ABSTRACT

BACKGROUND: When applying genomic medicine to a rare disease patient, the primary goal is to identify one or more genomic variants that may explain the patient's phenotypes. Typically, this is done through annotation, filtering, and then prioritization of variants for manual curation. However, prioritization of variants in rare disease patients remains a challenging task due to the high degree of variability in phenotype presentation and molecular source of disease. Thus, methods that can identify and/or prioritize variants to be clinically reported in the presence of such variability are of critical importance. METHODS: We tested the application of classification algorithms that ingest variant annotations along with phenotype information for predicting whether a variant will ultimately be clinically reported and returned to a patient. To test the classifiers, we performed a retrospective study on variants that were clinically reported to 237 patients in the Undiagnosed Diseases Network. RESULTS: We treated the classifiers as variant prioritization systems and compared them to four variant prioritization algorithms and two single-measure controls. We showed that the trained classifiers outperformed all other tested methods with the best classifiers ranking 72% of all reported variants and 94% of reported pathogenic variants in the top 20. CONCLUSIONS: We demonstrated how freely available binary classification algorithms can be used to prioritize variants even in the presence of real-world variability. Furthermore, these classifiers outperformed all other tested methods, suggesting that they may be well suited for working with real rare disease patient datasets.


Subject(s)
Algorithms , Genetic Diseases, Inborn/diagnosis , Genomics/methods , Mutation , Rare Diseases/diagnosis , Genetic Diseases, Inborn/genetics , Genetic Predisposition to Disease , Genome, Human , Humans , Phenotype , Polymorphism, Genetic , Precision Medicine/methods , Rare Diseases/genetics , Retrospective Studies , Sequence Analysis, DNA/methods , Software
10.
J Pediatr Gastroenterol Nutr ; 69(1): e13-e18, 2019 07.
Article in English | MEDLINE | ID: mdl-31232887

ABSTRACT

Very early onset inflammatory bowel disease (VEO-IBD) represents a diagnostic and treatment challenge. Here we present a case of VEO-IBD secondary to a mutation in BIRC4 gene, which encodes X-linked inhibitor of apoptosis protein (XIAP), in a 17-month-old boy with severe failure to thrive, intractable diarrhea, and hepatosplenomegaly. Endoscopy and histology identified only mild duodenitis and ileitis, but severe pancolitis with crypt abscesses and epithelium apoptosis. Minimal improvement in symptoms was achieved with total parenteral nutrition (TPN), intravenous (IV) corticosteroids, and tacrolimus, whereas induction and maintenance therapy with adalimumab led to complete remission. After 6 months, the patient developed hemophagocytic lymphohistiocytosis and eventually died due to multisystem organ failure. A review of the literature revealed that some patients with VEO-IBD secondary to XIAP deficiency develop symptoms that are refractory to medical and surgical management, while initial reports suggest that allogeneic hematopoietic stem cell transplantation (HSCT), with reduced intensity conditioning, can successfully induce long-lasting remission and may even be curative. We propose that in patients with XIAP deficiency a constellation of symptoms including colitis at an early age, severe failure to thrive, and splenomegaly/hepatosplenomegaly can identify a subgroup of patients at high risk of experiencing medically refractory IBD phenotype and increased mortality. Hematopoietic stem cell transplant should be considered early in these high-risk patients, as it may resolve both their intestinal inflammation and a risk of developing life threatening hemophagocytic lymphohistiocytosis .


Subject(s)
Inflammatory Bowel Diseases/genetics , Lymphohistiocytosis, Hemophagocytic/genetics , X-Linked Inhibitor of Apoptosis Protein/genetics , Fatal Outcome , Humans , Infant , Inflammatory Bowel Diseases/therapy , Male , Remission Induction , Risk Factors , X-Linked Inhibitor of Apoptosis Protein/deficiency
11.
J Genet Couns ; 28(2): 213-228, 2019 04.
Article in English | MEDLINE | ID: mdl-30964584

ABSTRACT

There are approximately 7,000 rare diseases affecting 25-30 million Americans, with 80% estimated to have a genetic basis. This presents a challenge for genetics practitioners to determine appropriate testing, make accurate diagnoses, and conduct up-to-date patient management. Exome sequencing (ES) is a comprehensive diagnostic approach, but only 25%-41% of the patients receive a molecular diagnosis. The remaining three-fifths to three-quarters of patients undergoing ES remain undiagnosed. The Stanford Center for Undiagnosed Diseases (CUD), a clinical site of the Undiagnosed Diseases Network, evaluates patients with undiagnosed and rare diseases using a combination of methods including ES. Frequently these patients have non-diagnostic ES results, but strategic follow-up techniques identify diagnoses in a subset. We present techniques used at the CUD that can be adopted by genetics providers in clinical follow-up of cases where ES is non-diagnostic. Solved case examples illustrate different types of non-diagnostic results and the additional techniques that led to a diagnosis. Frequent approaches include segregation analysis, data reanalysis, genome sequencing, additional variant identification, careful phenotype-disease correlation, confirmatory testing, and case matching. We also discuss prioritization of cases for additional analyses.


Subject(s)
Exome Sequencing , Rare Diseases/diagnosis , Undiagnosed Diseases/genetics , Exome , Female , Follow-Up Studies , Humans , Male , Phenotype , Rare Diseases/genetics , Sequence Analysis, DNA
12.
Physiol Genomics ; 50(8): 563-579, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29727589

ABSTRACT

Genomic sequencing has undergone massive expansion in the past 10 yr, from a rarely used research tool into an approach that has broad applications in a clinical setting. From rare disease to cancer, genomics is transforming our knowledge of biology. The transition from targeted gene sequencing, to whole exome sequencing, to whole genome sequencing has only been made possible due to rapid advancements in technologies and informatics that have plummeted the cost per base of DNA sequencing and analysis. The tools of genomics have resolved the etiology of disease for previously undiagnosable conditions, identified cancer driver gene variants, and have impacted the understanding of pathophysiology for many diseases. However, this expansion of use has also highlighted research's current voids in knowledge. The lack of precise animal models for gene-to-function association, lack of tools for analysis of genomic structural changes, skew in populations used for genetic studies, publication biases, and the "Unknown Proteome" all contribute to voids needing filled for genomics to work in a fast-paced clinical setting. The future will hold the tools to fill in these voids, with new data sets and the continual development of new technologies allowing for expansion of genomic medicine, ushering in the days to come for precision medicine. In this review we highlight these and other points in hopes of advancing and guiding precision medicine into the future for optimal success.


Subject(s)
Disease/genetics , Exome Sequencing/methods , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Neoplasms/genetics , Sequence Analysis, DNA/methods , Animals , Computational Biology/methods , Computational Biology/trends , Forecasting , Genomics/trends , High-Throughput Nucleotide Sequencing/trends , Humans , Precision Medicine/methods , Precision Medicine/trends , Sequence Analysis, DNA/trends , Exome Sequencing/trends
13.
Hum Mol Genet ; 24(1): 154-66, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25149474

ABSTRACT

Chromosome 8q24 locus contains regulatory variants that modulate genetic risk to various cancers including prostate cancer (PC). However, the biological mechanism underlying this regulation is not well understood. Here, we developed a chromosome conformation capture (3C)-based multi-target sequencing technology and systematically examined three PC risk regions at the 8q24 locus and their potential regulatory targets across human genome in six cell lines. We observed frequent physical contacts of this risk locus with multiple genomic regions, in particular, inter-chromosomal interaction with CD96 at 3q13 and intra-chromosomal interaction with MYC at 8q24. We identified at least five interaction hot spots within the predicted functional regulatory elements at the 8q24 risk locus. We also found intra-chromosomal interaction genes PVT1, FAM84B and GSDMC and inter-chromosomal interaction gene CXorf36 in most of the six cell lines. Other gene regions appeared to be cell line-specific, such as RRP12 in LNCaP, USP14 in DU-145 and SMIN3 in lymphoblastoid cell line. We further found that the 8q24 functional domains more likely interacted with genomic regions containing genes enriched in critical pathways such as Wnt signaling and promoter motifs such as E2F1 and TCF3. This result suggests that the risk locus may function as a regulatory hub by physical interactions with multiple genes important for prostate carcinogenesis. Further understanding genetic effect and biological mechanism of these chromatin interactions will shed light on the newly discovered regulatory role of the risk locus in PC etiology and progression.


Subject(s)
Chromosomes, Human, Pair 8/genetics , Genetic Association Studies/methods , Genetic Loci , Prostatic Neoplasms/genetics , Cell Line, Tumor , Chromatin/genetics , Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing , Humans , Male , Sequence Analysis, DNA
14.
Am J Med Genet A ; 173(9): 2557-2561, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28686325

ABSTRACT

Segmental infantile hemangiomas (IH) can be associated with congenital anomalies in a regional distribution. PHACE refers to large cervicofacial segmental IH in association with congenital anomalies of the aortic arch and medium-sized arteries of the head and neck, as well as structural anomalies of the posterior fossa and eye. A subset of PHACE patients have arterial anomalies that progress to moyamoya vasculopathy (MMV). MMV is defined as stenosis of the supraclinoid segment of the internal carotid arteries and/or their major branches, with subsequent development of a compensatory collateral vessel network. We describe a patient with MMV and segmental IH on the back and lower body who meets diagnostic criteria for PHACE based on a posterior segment eye anomaly and cerebral arterial anomalies. Whole exome sequencing demonstrated two inherited heterozygous variants in RNF213. Variants in RNF213 are associated with increased susceptibility to MMV. Our findings suggest that RNF213 variants may play a role in the development of MMV in patients with hemangioma syndromes associated with congenital cerebral arterial anomalies.


Subject(s)
Abnormalities, Multiple/genetics , Adenosine Triphosphatases/genetics , Moyamoya Disease/genetics , Ubiquitin-Protein Ligases/genetics , Vascular Diseases/genetics , Abnormalities, Multiple/physiopathology , Aorta, Thoracic/physiopathology , Aortic Coarctation/genetics , Aortic Coarctation/physiopathology , Child , Female , Humans , Male , Moyamoya Disease/physiopathology , Vascular Diseases/physiopathology
15.
Nucleic Acids Res ; 43(Database issue): D743-50, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25355511

ABSTRACT

The Rat Genome Database (RGD, http://rgd.mcw.edu) provides the most comprehensive data repository and informatics platform related to the laboratory rat, one of the most important model organisms for disease studies. RGD maintains and updates datasets for genomic elements such as genes, transcripts and increasingly in recent years, sequence variations, as well as map positions for multiple assemblies and sequence information. Functional annotations for genomic elements are curated from published literature, submitted by researchers and integrated from other public resources. Complementing the genomic data catalogs are those associated with phenotypes and disease, including strains, QTL and experimental phenotype measurements across hundreds of strains. Data are submitted by researchers, acquired through bulk data pipelines or curated from published literature. Innovative software tools provide users with an integrated platform to query, mine, display and analyze valuable genomic and phenomic datasets for discovery and enhancement of their own research. This update highlights recent developments that reflect an increasing focus on: (i) genomic variation, (ii) phenotypes and diseases, (iii) data related to the environment and experimental conditions and (iv) datasets and software tools that allow the user to explore and analyze the interactions among these and their impact on disease.


Subject(s)
Databases, Genetic , Genetic Variation , Genomics , Phenotype , Rats/genetics , Animals , Disease/genetics , Environment , Genome , Internet , Molecular Sequence Annotation
16.
Genesis ; 53(8): 547-60, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26097192

ABSTRACT

InterMine is a data integration warehouse and analysis software system developed for large and complex biological data sets. Designed for integrative analysis, it can be accessed through a user-friendly web interface. For bioinformaticians, extensive web services as well as programming interfaces for most common scripting languages support access to all features. The web interface includes a useful identifier look-up system, and both simple and sophisticated search options. Interactive results tables enable exploration, and data can be filtered, summarized, and browsed. A set of graphical analysis tools provide a rich environment for data exploration including statistical enrichment of sets of genes or other entities. InterMine databases have been developed for the major model organisms, budding yeast, nematode worm, fruit fly, zebrafish, mouse, and rat together with a newly developed human database. Here, we describe how this has facilitated interoperation and development of cross-organism analysis tools and reports. InterMine as a data exploration and analysis tool is also described. All the InterMine-based systems described in this article are resources freely available to the scientific community.


Subject(s)
Databases, Factual , Software , Animals , Computational Biology/methods , Databases, Genetic , Genomics , Humans , Internet , Systems Integration , User-Computer Interface
17.
Brief Bioinform ; 14(4): 520-6, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23434633

ABSTRACT

The Rat Genome Database (RGD) was started >10 years ago to provide a core genomic resource for rat researchers. Currently, RGD combines genetic, genomic, pathway, phenotype and strain information with a focus on disease. RGD users are provided with access to structured and curated data from the molecular level through the organismal level. Those users access RGD from all over the world. End users are not only rat researchers but also researchers working with mouse and human data. Translational research is supported by RGD's comparative genetics/genomics data in disease portals, in GBrowse, in VCMap and on gene report pages. The impact of RGD also goes beyond the traditional biomedical researcher, as the influence of RGD reaches bioinformaticians, tool developers and curators. Import of RGD data into other publicly available databases expands the influence of RGD to a larger set of end users than those who avail themselves of the RGD website. The value of RGD continues to grow as more types of data and more tools are added, while reaching more types of end users.


Subject(s)
Databases, Genetic , Genome , Animals , Humans , Mice , Phenotype , Rats
18.
Hum Genomics ; 8: 17, 2014 Sep 30.
Article in English | MEDLINE | ID: mdl-25265995

ABSTRACT

BACKGROUND: Biological systems are exquisitely poised to respond and adjust to challenges, including damage. However, sustained damage can overcome the ability of the system to adjust and result in a disease phenotype, its underpinnings many times elusive. Unraveling the molecular mechanisms of systems biology, of how and why it falters, is essential for delineating the details of the path(s) leading to the diseased state and for designing strategies to revert its progression. An important aspect of this process is not only to define the function of a gene but to identify the context within which gene functions act. It is within the network, or pathway context, that the function of a gene fulfills its ultimate biological role. Resolving the extent to which defective function(s) affect the proceedings of pathway(s) and how altered pathways merge into overpowering the system's defense machinery are key to understanding the molecular aspects of disease and envisioning ways to counteract it. A network-centric approach to diseases is increasingly being considered in current research. It also underlies the deployment of disease pathways at the Rat Genome Database Pathway Portal. The portal is presented with an emphasis on disease and altered pathways, associated drug pathways, pathway suites, and suite networks. RESULTS: The Pathway Portal at the Rat Genome Database (RGD) provides an ever-increasing collection of interactive pathway diagrams and associated annotations for metabolic, signaling, regulatory, and drug pathways, including disease and altered pathways. A disease pathway is viewed from the perspective of networks whose alterations are manifested in the affected phenotype. The Pathway Ontology (PW), built and maintained at RGD, facilitates the annotations of genes, the deployment of pathway diagrams, and provides an overall navigational tool. Pathways that revolve around a common concept and are globally connected are presented within pathway suites; a suite network combines two or more pathway suites. CONCLUSIONS: The Pathway Portal is a rich resource that offers a range of pathway data and visualization, including disease pathways and related pathway suites. Viewing a disease pathway from the perspective of underlying altered pathways is an aid for dissecting the molecular mechanisms of disease.


Subject(s)
Databases, Genetic , Gene Regulatory Networks/genetics , Genome , Metabolic Networks and Pathways/genetics , Systems Biology/methods , Animals , Disease Models, Animal , Female , Male , Molecular Sequence Annotation , Phenotype , Rats , Signal Transduction , User-Computer Interface
19.
Pharmacogenomics ; 25(4): 207-216, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38506331

ABSTRACT

Aim: The study aim was to determine caregiver interest and planned utilization of pharmacogenomic (PGx) results for their child with Prader-Willi syndrome. Methods: Caregivers consented to PGx testing for their child and completed a survey before receiving results. Results: Of all caregivers (n = 48), 93.8% were highly interested in their child's upcoming PGx results. Most (97.9%) planned to share results with their child's medical providers. However, only 47.9% of caregivers were confident providers would utilize the PGx results. Conclusion: Caregivers are interested in utilizing PGx but are uncertain providers will use these results in their child's care. More information about provider comfort with PGx utilization is needed to understand how PGx education would benefit providers and ultimately patients with PGx results.


Subject(s)
Pharmacogenetics , Prader-Willi Syndrome , Child , Humans , Pharmacogenetics/methods , Caregivers , Prader-Willi Syndrome/drug therapy , Prader-Willi Syndrome/genetics , Surveys and Questionnaires , Pharmacogenomic Testing
20.
J Cyst Fibros ; 23(4): 754-757, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38383231

ABSTRACT

Vitamin D sufficiency has been difficult to achieve consistently in patients with cystic fibrosis (CF), even with robust oral supplements. To assess vitamin D status and resistance to supplementation, we studied 80 adults using 25-hydroxyvitamin D (25OHD) determinations and whole genome sequencing to construct polygenic risk scores (PRS) that aggregate variants associated with vitamin D status. The results revealed that 30 % of patients were below the threshold of 30 ng/mL and thus should be regarded as insufficient despite normal vitamin E status, a reflection of adherence to fat soluble vitamin supplementation. The PRS values were significantly correlated with 25OHD concentrations, confirming our results in children with CF, and indicating that genetic factors play a role and have implications for therapy.


Subject(s)
Cystic Fibrosis , Dietary Supplements , Vitamin D Deficiency , Vitamin D , Humans , Cystic Fibrosis/genetics , Cystic Fibrosis/drug therapy , Vitamin D/blood , Vitamin D/analogs & derivatives , Male , Adult , Female , Vitamin D Deficiency/blood , Vitamins/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL