Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Cell ; 145(7): 1075-87, 2011 Jun 24.
Article in English | MEDLINE | ID: mdl-21683433

ABSTRACT

In the ubiquitin-proteasome system (UPS), E2 enzymes mediate the conjugation of ubiquitin to substrates and thereby control protein stability and interactions. The E2 enzyme hCdc34 catalyzes the ubiquitination of hundreds of proteins in conjunction with the cullin-RING (CRL) superfamily of E3 enzymes. We identified a small molecule termed CC0651 that selectively inhibits hCdc34. Structure determination revealed that CC0651 inserts into a cryptic binding pocket on hCdc34 distant from the catalytic site, causing subtle but wholesale displacement of E2 secondary structural elements. CC0651 analogs inhibited proliferation of human cancer cell lines and caused accumulation of the SCF(Skp2) substrate p27(Kip1). CC0651 does not affect hCdc34 interactions with E1 or E3 enzymes or the formation of the ubiquitin thioester but instead interferes with the discharge of ubiquitin to acceptor lysine residues. E2 enzymes are thus susceptible to noncatalytic site inhibition and may represent a viable class of drug target in the UPS.


Subject(s)
Amino Acids/pharmacology , Biphenyl Compounds/pharmacology , Ubiquitin-Protein Ligase Complexes/antagonists & inhibitors , Allosteric Site , Amino Acid Sequence , Anaphase-Promoting Complex-Cyclosome , DNA Mutational Analysis , Humans , Models, Molecular , Molecular Sequence Data , Sequence Alignment , Ubiquitin-Conjugating Enzymes , Ubiquitin-Protein Ligase Complexes/chemistry , Ubiquitin-Protein Ligase Complexes/genetics
2.
Nat Chem Biol ; 16(11): 1170-1178, 2020 11.
Article in English | MEDLINE | ID: mdl-32778845

ABSTRACT

The RAF family kinases function in the RAS-ERK pathway to transmit signals from activated RAS to the downstream kinases MEK and ERK. This pathway regulates cell proliferation, differentiation and survival, enabling mutations in RAS and RAF to act as potent drivers of human cancers. Drugs targeting the prevalent oncogenic mutant BRAF(V600E) have shown great efficacy in the clinic, but long-term effectiveness is limited by resistance mechanisms that often exploit the dimerization-dependent process by which RAF kinases are activated. Here, we investigated a proteolysis-targeting chimera (PROTAC) approach to BRAF inhibition. The most effective PROTAC, termed P4B, displayed superior specificity and inhibitory properties relative to non-PROTAC controls in BRAF(V600E) cell lines. In addition, P4B displayed utility in cell lines harboring alternative BRAF mutations that impart resistance to conventional BRAF inhibitors. This work provides a proof of concept for a substitute to conventional chemical inhibition to therapeutically constrain oncogenic BRAF.


Subject(s)
Antineoplastic Agents , Protein Kinase Inhibitors , Proto-Oncogene Proteins B-raf , Thalidomide , Ubiquitin , Animals , Female , Humans , Mice , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Design , Drug Resistance, Neoplasm , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase Kinases/metabolism , Models, Molecular , Molecular Structure , Molecular Targeted Therapy , Mutation , Phosphorylation/drug effects , Protein Binding , Protein Kinase Inhibitors/pharmacology , Proteolysis , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Signal Transduction , Structure-Activity Relationship , Thalidomide/analogs & derivatives , Thalidomide/chemistry , Ubiquitin/chemistry
3.
Am J Pathol ; 188(10): 2177-2194, 2018 10.
Article in English | MEDLINE | ID: mdl-30121256

ABSTRACT

Chronic bladder obstruction and bladder smooth muscle cell (SMC) stretch provide fibrotic and mechanical environments that can lead to epigenetic change. Therefore, we examined the role of DNA methylation in bladder pathology and transcriptional control. Sprague-Dawley female rats underwent partial bladder obstruction by ligation of a silk suture around the proximal urethra next to a 0.9-mm steel rod. Sham operation comprised passing the suture around the urethra. After 2 weeks, rats were randomized to normal saline or DNA methyltransferase inhibitor, 5-aza-2-deoxycytidine (DAC) at 1 mg/kg, three times/week intraperitoneally. After 6 weeks, bladders were weighed and divided for histology and RNA analysis by high-throughput real-time quantitative PCR arrays. DAC treatment during obstruction in vivo profoundly augmented brain-derived neurotrophic factor (BDNF) expression compared with the obstruction with vehicle group, which was statistically correlated with pathophysiologic parameters. BDNF, cysteine rich angiogenic inducer 61 (CYR61), and connective tissue growth factor (CTGF) expression clustered tightly together using Pearson's correlation analysis. Their promoters were associated with the TEA domain family member 1 (TEAD1) and Yes-associated protein 1/WW domain containing transcription regulator 1 pathways. Interestingly, DAC treatment increased BDNF expression in bladder SMCs (P < 0.0002). Stretch-induced BDNF was inhibited by the YAP/WWTR1 inhibitor verteporfin. Verteporfin improved the SMC phenotype (proliferative markers and SMC marker expression), in part by reducing BDNF. Expression of BDNF is limited by DNA methylation and associated with pathophysiologic changes during partial bladder outlet obstruction and SMC phenotypic change in vitro.


Subject(s)
Brain-Derived Neurotrophic Factor/antagonists & inhibitors , DNA Methylation/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Proto-Oncogene Proteins c-yes/metabolism , Urinary Bladder Neck Obstruction/physiopathology , Animals , Cells, Cultured , Connective Tissue Growth Factor/metabolism , Cysteine-Rich Protein 61/metabolism , Female , Myocytes, Smooth Muscle/physiology , Rats, Sprague-Dawley , Stress, Mechanical , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Verteporfin/pharmacology , WW Domains/physiology
4.
PLoS Genet ; 9(3): e1003380, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23555292

ABSTRACT

Yap is a transcriptional co-activator that regulates cell proliferation and apoptosis downstream of the Hippo kinase pathway. We investigated Yap function during mouse kidney development using a conditional knockout strategy that specifically inactivated Yap within the nephrogenic lineage. We found that Yap is essential for nephron induction and morphogenesis, surprisingly, in a manner independent of regulation of cell proliferation and apoptosis. We used microarray analysis to identify a suite of novel Yap-dependent genes that function during nephron formation and have been implicated in morphogenesis. Previous in vitro studies have indicated that Yap can respond to mechanical stresses in cultured cells downstream of the small GTPases RhoA. We find that tissue-specific inactivation of the Rho GTPase Cdc42 causes a severe defect in nephrogenesis that strikingly phenocopies loss of Yap. Ablation of Cdc42 decreases nuclear localization of Yap, leading to a reduction of Yap-dependent gene expression. We propose that Yap responds to Cdc42-dependent signals in nephron progenitor cells to activate a genetic program required to shape the functioning nephron.


Subject(s)
Adaptor Proteins, Signal Transducing , Cell Proliferation , Kidney , Morphogenesis , Phosphoproteins , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Apoptosis , Cell Cycle Proteins , Kidney/growth & development , Kidney/metabolism , Mice , Phosphoproteins/genetics , Phosphoproteins/metabolism , Signal Transduction , YAP-Signaling Proteins , cdc42 GTP-Binding Protein/genetics , cdc42 GTP-Binding Protein/metabolism
5.
Mol Syst Biol ; 9: 696, 2013 Oct 08.
Article in English | MEDLINE | ID: mdl-24104479

ABSTRACT

Improved efforts are necessary to define the functional product of cancer mutations currently being revealed through large-scale sequencing efforts. Using genome-scale pooled shRNA screening technology, we mapped negative genetic interactions across a set of isogenic cancer cell lines and confirmed hundreds of these interactions in orthogonal co-culture competition assays to generate a high-confidence genetic interaction network of differentially essential or differential essentiality (DiE) genes. The network uncovered examples of conserved genetic interactions, densely connected functional modules derived from comparative genomics with model systems data, functions for uncharacterized genes in the human genome and targetable vulnerabilities. Finally, we demonstrate a general applicability of DiE gene signatures in determining genetic dependencies of other non-isogenic cancer cell lines. For example, the PTEN(-/-) DiE genes reveal a signature that can preferentially classify PTEN-dependent genotypes across a series of non-isogenic cell lines derived from the breast, pancreas and ovarian cancers. Our reference network suggests that many cancer vulnerabilities remain to be discovered through systematic derivation of a network of differentially essential genes in an isogenic cancer cell model.


Subject(s)
Breast Neoplasms/genetics , Epistasis, Genetic , Genes, Essential , Neoplasm Proteins/genetics , Ovarian Neoplasms/genetics , PTEN Phosphohydrolase/genetics , Pancreatic Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Coculture Techniques , Female , Gene Regulatory Networks , Genome, Human , Humans , Mutation , Neoplasm Proteins/metabolism , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , PTEN Phosphohydrolase/deficiency , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
6.
Blood ; 119(5): 1200-7, 2012 Feb 02.
Article in English | MEDLINE | ID: mdl-22160482

ABSTRACT

Gene regulatory networks that govern hematopoietic stem cells (HSCs) and leukemia-initiating cells (L-ICs) are deeply entangled. Thus, the discovery of compounds that target L-ICs while sparing HSC is an attractive but difficult endeavor. Presently, most screening approaches fail to counter-screen compounds against normal hematopoietic stem/progenitor cells (HSPCs). Here, we present a multistep in vitro and in vivo approach to identify compounds that can target L-ICs in acute myeloid leukemia (AML). A high-throughput screen of 4000 compounds on novel leukemia cell lines derived from human experimental leukemogenesis models yielded 80 hits, of which 10 were less toxic to HSPC. We characterized a single compound, kinetin riboside (KR), on AML L-ICs and HSPCs. KR demonstrated comparable efficacy to standard therapies against blast cells in 63 primary leukemias. In vitro, KR targeted the L-IC-enriched CD34(+)CD38(-) AML fraction, while sparing HSPC-enriched fractions, although these effects were mitigated on HSC assayed in vivo. KR eliminated L-ICs in 2 of 4 primary AML samples when assayed in vivo and highlights the importance of in vivo L-IC and HSC assays to measure function. Overall, we provide a novel approach to screen large drug libraries for the discovery of anti-L-IC compounds for human leukemias.


Subject(s)
Adenosine/therapeutic use , High-Throughput Screening Assays/methods , Kinetin/therapeutic use , Leukemia/drug therapy , Leukemia/pathology , Neoplastic Stem Cells/drug effects , Small Molecule Libraries/analysis , Adenosine/analysis , Adenosine/isolation & purification , Adenosine/pharmacology , Animals , Antineoplastic Agents/analysis , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Humans , Kinetin/analysis , Kinetin/isolation & purification , Kinetin/pharmacology , Mice , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Neoplastic Stem Cells/pathology , Treatment Outcome , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
7.
Infect Control Hosp Epidemiol ; 44(2): 328-331, 2023 02.
Article in English | MEDLINE | ID: mdl-34706787

ABSTRACT

The severe acute respiratory coronavirus virus 2 (SARS-CoV-2) delta variant is highly transmissible, and current vaccines may have reduced effectiveness in preventing symptomatic infection. Using epidemiological and genomic analyses, we investigated an outbreak of the variant in an acute-care setting among partially and fully vaccinated individuals. Effective outbreak control was achieved using standard measures.


Subject(s)
COVID-19 , Virus Diseases , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/prevention & control , Canada/epidemiology , Health Personnel , Disease Outbreaks , Hospitals
8.
Blood ; 116(18): 3593-603, 2010 Nov 04.
Article in English | MEDLINE | ID: mdl-20644115

ABSTRACT

To identify known drugs with previously unrecognized anticancer activity, we compiled and screened a library of such compounds to identify agents cytotoxic to leukemia cells. From these screens, we identified ivermectin, a derivative of avermectin B1 that is licensed for the treatment of the parasitic infections, strongyloidiasis and onchocerciasis, but is also effective against other worm infestations. As a potential antileukemic agent, ivermectin induced cell death at low micromolar concentrations in acute myeloid leukemia cell lines and primary patient samples preferentially over normal hematopoietic cells. Ivermectin also delayed tumor growth in 3 independent mouse models of leukemia at concentrations that appear pharmacologically achievable. As an antiparasitic, ivermectin binds and activates chloride ion channels in nematodes, so we tested the effects of ivermectin on chloride flux in leukemia cells. Ivermectin increased intracellular chloride ion concentrations and cell size in leukemia cells. Chloride influx was accompanied by plasma membrane hyperpolarization, but did not change mitochondrial membrane potential. Ivermectin also increased reactive oxygen species generation that was functionally important for ivermectin-induced cell death. Finally, ivermectin synergized with cytarabine and daunorubicin that also increase reactive oxygen species production. Thus, given its known toxicology and pharmacology, ivermectin could be rapidly advanced into clinical trial for leukemia.


Subject(s)
Antineoplastic Agents/therapeutic use , Antiparasitic Agents/therapeutic use , Cell Survival/drug effects , Ivermectin/therapeutic use , Leukemia/drug therapy , Animals , Antineoplastic Agents/pharmacology , Antiparasitic Agents/pharmacology , Calcium/metabolism , Cell Death/drug effects , Cell Line, Tumor , Cell Membrane/drug effects , Cell Size/drug effects , Chlorides/metabolism , Cytarabine/pharmacology , Daunorubicin/pharmacology , Drug Synergism , Gene Expression Regulation, Leukemic/drug effects , Humans , Ivermectin/pharmacology , Mice , Mice, SCID , Reactive Oxygen Species/metabolism , Tumor Cells, Cultured
9.
Sci Rep ; 12(1): 14438, 2022 08 24.
Article in English | MEDLINE | ID: mdl-36002557

ABSTRACT

The lack of therapeutic options to fight Covid-19 has contributed to the current global pandemic. Despite the emergence of effective vaccines, development of broad-spectrum antiviral treatment remains a significant challenge, in which antimicrobial photodynamic therapy (aPDT) may play a role, especially at early stages of infection. aPDT of the nares with methylene blue (MB) and non-thermal light has been successfully utilized to inactivate both bacterial and viral pathogens in the perioperative setting. Here, we investigated the effect of MB-aPDT to inactivate human betacoronavirus OC43 and SARS-CoV-2 in vitro and in a proof-of-principle COVID-19 clinical trial to test, in a variety of settings, the practicality, technical feasibility, and short-term efficacy of the method. aPDT yielded inactivation of up to 6-Logs in vitro, as measured by RT-qPCR and infectivity assay. From a photo-physics perspective, the in vitro results suggest that the response is not dependent on the virus itself, motivating potential use of aPDT for local destruction of SARS-CoV-2 and its variants. In the clinical trial we observed variable effects on viral RNA in nasal-swab samples as assessed by RT-qPCR attributed to aPDT-induced RNA fragmentation causing falsely-elevated counts. However, the viral infectivity in clinical nares swabs was reduced in 90% of samples and undetectable in 70% of samples. This is the first demonstration based on quantitative clinical viral infectivity measurements that MB-aPDT is a safe, easily delivered and effective front-line technique that can reduce local SARS-CoV-2 viral load.


Subject(s)
COVID-19 Drug Treatment , Disinfection , Nose , Photochemotherapy , Anti-Infective Agents/adverse effects , Anti-Infective Agents/pharmacology , Disinfection/methods , Feasibility Studies , Humans , Methylene Blue/adverse effects , Methylene Blue/pharmacology , Nose/virology , Pandemics , RNA, Viral/analysis , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Treatment Outcome , Viral Load/drug effects
10.
Sci Rep ; 11(1): 4523, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33633238

ABSTRACT

Mitochondrial health plays a crucial role in human brain development and diseases. However, the evaluation of mitochondrial health in the brain is not incorporated into clinical practice due to ethical and logistical concerns. As a result, the development of targeted mitochondrial therapeutics remains a significant challenge due to the lack of appropriate patient-derived brain tissues. To address these unmet needs, we developed cerebral organoids (COs) from induced pluripotent stem cells (iPSCs) derived from human peripheral blood mononuclear cells (PBMCs) and monitored mitochondrial health from the primary, reprogrammed and differentiated stages. Our results show preserved mitochondrial genetics, function and treatment responses across PBMCs to iPSCs to COs, and measurable neuronal activity in the COs. We expect our approach will serve as a model for more widespread evaluation of mitochondrial health relevant to a wide range of human diseases using readily accessible patient peripheral (PBMCs) and stem-cell derived brain tissue samples.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Mitochondria/metabolism , Neurogenesis , Biomarkers , Cell Culture Techniques , Cellular Reprogramming/genetics , Electrophysiological Phenomena , Fluorescent Antibody Technique , Mitochondria/genetics , Mitochondria/ultrastructure , Organoids , Synapses/physiology , Synaptic Transmission
11.
Nat Commun ; 12(1): 724, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33526784

ABSTRACT

Recent advances in cell-free synthetic biology have given rise to gene circuit-based sensors with the potential to provide decentralized and low-cost molecular diagnostics. However, it remains a challenge to deliver this sensing capacity into the hands of users in a practical manner. Here, we leverage the glucose meter, one of the most widely available point-of-care sensing devices, to serve as a universal reader for these decentralized diagnostics. We describe a molecular translator that can convert the activation of conventional gene circuit-based sensors into a glucose output that can be read by off-the-shelf glucose meters. We show the development of new glucogenic reporter systems, multiplexed reporter outputs and detection of nucleic acid targets down to the low attomolar range. Using this glucose-meter interface, we demonstrate the detection of a small-molecule analyte; sample-to-result diagnostics for typhoid, paratyphoid A/B; and show the potential for pandemic response with nucleic acid sensors for SARS-CoV-2.


Subject(s)
Biosensing Techniques/methods , Gene Regulatory Networks/genetics , Glucose/analysis , Nucleic Acids/analysis , Point-of-Care Systems , Point-of-Care Testing , Biosensing Techniques/instrumentation , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Glucose/metabolism , Humans , Nucleic Acids/genetics , Pandemics , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Typhoid Fever/blood , Typhoid Fever/diagnosis , Typhoid Fever/microbiology
12.
Blood ; 112(3): 760-9, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18502826

ABSTRACT

D-cyclins are regulators of cell division that act in a complex with cyclin-dependent kinases to commit cells to a program of DNA replication. D-cyclins are overexpressed in many tumors, including multiple myeloma and leukemia, and contribute to disease progression and chemoresistance. To better understand the role and impact of D-cyclins in hematologic malignancies, we conducted a high throughput screen for inhibitors of the cyclin D2 promoter and identified the drug cyproheptadine. In myeloma and leukemia cells, cyproheptadine decreased expression of cyclins D1, D2, and D3 and arrested these cells in the G(0)/G(1) phase. After D-cyclin suppression, cyproheptadine induced apoptosis in myeloma and leukemia cell lines and primary patient samples preferentially over normal hematopoietic cells. In mouse models of myeloma and leukemia, cyproheptadine inhibited tumor growth without significant toxicity. Cyproheptadine-induced apoptosis was preceded by activation of the mitochondrial pathway of caspase activation and was independent of the drug's known activity as an H1 histamine and serotonin receptor antagonist. Thus, cyproheptadine represents a lead for a novel therapeutic agent for the treatment of malignancy. Because the drug is well tolerated and already approved in multiple countries for clinical use as an antihistamine and appetite stimulant, it could be moved directly into clinical trials for cancer.


Subject(s)
Cyclins/genetics , Cyproheptadine/pharmacology , Gene Expression Regulation/drug effects , Leukemia, Myeloid, Acute/drug therapy , Multiple Myeloma/drug therapy , Animals , Apoptosis/drug effects , Cell Line , Cell Line, Tumor , Cyclin D1/genetics , Cyclin D2 , Cyclin D3 , Cyproheptadine/therapeutic use , Drug Screening Assays, Antitumor , Humans , Leukemia, Myeloid, Acute/pathology , Mice , Multiple Myeloma/pathology
14.
Physiol Genomics ; 29(2): 109-17, 2007 Apr 24.
Article in English | MEDLINE | ID: mdl-17190851

ABSTRACT

Protein complexes mediated by protein-protein interactions are essential for many cellular functions. Transforming growth factor (TGF)-beta signaling involves a cascade of protein-protein interactions and malfunctioning of this pathway has been implicated in human diseases. Using an in silico approach, we analyzed the naturally occurring human genetic variations from the proteins involved in the TGF-beta signaling (10 TGF-beta proteins and 242 other proteins interacting with them) to identify the ones that have potential biological consequences. All proteins were searched in the dbSNP database for the presence of nonsynonymous single nucleotide polymorphisms (nsSNPs). A total of 118 validated nsSNPs from 63 proteins were retrieved and analyzed in terms of 1) evolutionary conservation status, 2) being located in a functional protein domain or motif, and 3) altering putative protein motif or phosphorylation sites. Our results indicated the presence of 31 nsSNPs that occurred at evolutionarily conserved residues, 37 nsSNPs were located in protein domains, motifs, or repeats, and 46 nsSNPs were predicted to either create or abolish putative protein motifs or phosphorylation sites. We undertook this study to analyze the human genetic variations that can affect the protein function and the TGF-beta signaling. The nsSNPs reported in here can be characterized by experimental approaches to elucidate their exact biological roles and whether they are related to human disease.


Subject(s)
Genetic Variation , Polymorphism, Single Nucleotide , Proteins/genetics , Signal Transduction/genetics , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Computational Biology , Conserved Sequence/genetics , Databases, Genetic , Humans , Protein Structure, Tertiary
15.
Cancer Res ; 64(18): 6402-9, 2004 Sep 15.
Article in English | MEDLINE | ID: mdl-15374947

ABSTRACT

Transforming growth factor (TGF)-beta1 is associated with tumor progression and resistance to chemotherapy in established cancers, as well as host immune suppression. Here, we show that the serum glycoprotein alpha2-HS-glycoprotein (AHSG) blocks TGF-beta1 binding to cell surface receptors, suppresses TGF-beta signal transduction, and inhibits TGF-beta-induced epithelial-mesenchymal transition, suggesting that AHSG may play a role in tumor progression. In 66 consecutive sporadic human colorectal cancer specimens, we observed a 3-fold depletion of ASHG in tumor compared with normal tissue, whereas levels of other abundant plasma proteins, albumin and transferrin, were equivalent. Using the Multiple intestinal neoplasia/+ (Min/+) mouse model of intestinal tumorigenesis, we found twice as many intestinal polyps overall, twice as many large polyps (>3 mm diameter), and more progression to invasive adenocarcinoma in Min/+ Ahsg-/- mice than in littermates expressing Ahsg. Phosphorylated Smad2 was more abundant in the intestinal mucosa and tumors of Min/+ mice lacking Ahsg, demonstrating increased TGF-beta signaling in vivo. Furthermore, TGF-beta-mediated suppression of immune cell function was exaggerated in Ahsg-/- animals, as shown by inhibition of macrophage activation and reduction in 12-O-tetradecanoylphorbol 13-acetate-induced cutaneous inflammation. Reconstitution of Ahsg-/- mice with bovine Ahsg suppressed endogenous TGF-beta-dependent signaling to wild-type levels, suggesting that therapeutic enhancement of AHSG levels may benefit patients whose tumors are driven by TGF-beta.


Subject(s)
Blood Proteins/physiology , Colorectal Neoplasms/pathology , Transforming Growth Factor beta/antagonists & inhibitors , Adult , Aged , Aged, 80 and over , Animals , Binding, Competitive , Blood Proteins/deficiency , Blood Proteins/genetics , Blood Proteins/pharmacology , Cattle , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Colorectal Neoplasms/metabolism , Female , Humans , Macrophage Activation/physiology , Macrophages, Peritoneal/immunology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Protein Serine-Threonine Kinases , Receptor, Transforming Growth Factor-beta Type II , Receptors, Transforming Growth Factor beta/metabolism , Signal Transduction/physiology , Transforming Growth Factor beta/immunology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/physiology , Transforming Growth Factor beta1 , alpha-2-HS-Glycoprotein
16.
Oncotarget ; 7(3): 2765-79, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26624983

ABSTRACT

Targeting Bruton's tyrosine kinase (BTK) with the small molecule BTK inhibitor ibrutinib has significantly improved patient outcomes in several B-cell malignancies, with minimal toxicity. Given the reported expression and constitutive activation of BTK in acute myeloid leukemia (AML) cells, there has been recent interest in investigating the anti-AML activity of ibrutinib. We noted that ibrutinib had limited single-agent toxicity in a panel of AML cell lines and primary AML samples, and therefore sought to identify ibrutinib-sensitizing drugs. Using a high-throughput combination chemical screen, we identified that the poly(ADP-ribose) glycohydrolase (PARG) inhibitor ethacridine lactate synergized with ibrutinib in TEX and OCI-AML2 leukemia cell lines. The combination of ibrutinib and ethacridine induced a synergistic increase in reactive oxygen species that was functionally important to explain the observed cell death. Interestingly, synergistic cytotoxicity of ibrutinib and ethacridine was independent of the inhibitory effect of ibrutinib against BTK, as knockdown of BTK did not sensitize TEX and OCI-AML2 cells to ethacridine treatment. Thus, our findings indicate that ibrutinib may have a BTK-independent role in AML and that PARG inhibitors may have utility as part of a combination therapy for this disease.


Subject(s)
Apoptosis/drug effects , Ethacridine/pharmacology , Glycoside Hydrolases/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/genetics , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase , Animals , Cell Line, Tumor , Drug Synergism , Drug Therapy, Combination , Humans , Hydrolyzable Tannins/pharmacology , Jurkat Cells , Mice , Mice, SCID , Piperidines , RNA Interference , RNA, Small Interfering/genetics , Reactive Oxygen Species/metabolism
17.
J Cell Biol ; 211(6): 1177-92, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26668327

ABSTRACT

Vascular endothelial (VE)-cadherin transfers intracellular signals contributing to vascular hemostasis. Signaling through VE-cadherin requires association and activity of different intracellular partners. Yes-associated protein (YAP)/TAZ transcriptional cofactors are important regulators of cell growth and organ size. We show that EPS8, a signaling adapter regulating actin dynamics, is a novel partner of VE-cadherin and is able to modulate YAP activity. By biochemical and imaging approaches, we demonstrate that EPS8 associates with the VE-cadherin complex of remodeling junctions promoting YAP translocation to the nucleus and transcriptional activation. Conversely, in stabilized junctions, 14-3-3-YAP associates with the VE-cadherin complex, whereas Eps8 is excluded. Junctional association of YAP inhibits nuclear translocation and inactivates its transcriptional activity both in vitro and in vivo in Eps8-null mice. The absence of Eps8 also increases vascular permeability in vivo, but did not induce other major vascular defects. Collectively, we identified novel components of the adherens junction complex, and we introduce a novel molecular mechanism through which the VE-cadherin complex controls YAP transcriptional activity.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Antigens, CD/metabolism , Cadherins/metabolism , Endothelium, Vascular/metabolism , Phosphoproteins/metabolism , Signal Transduction , Adaptor Proteins, Signal Transducing/deficiency , Animals , Binding Sites , Cell Cycle Proteins , Cell Line , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Binding , Protein Transport , YAP-Signaling Proteins
18.
J Clin Invest ; 123(1): 315-28, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23202731

ABSTRACT

Despite efforts to understand and treat acute myeloid leukemia (AML), there remains a need for more comprehensive therapies to prevent AML-associated relapses. To identify new therapeutic strategies for AML, we screened a library of on- and off-patent drugs and identified the antimalarial agent mefloquine as a compound that selectively kills AML cells and AML stem cells in a panel of leukemia cell lines and in mice. Using a yeast genome-wide functional screen for mefloquine sensitizers, we identified genes associated with the yeast vacuole, the homolog of the mammalian lysosome. Consistent with this, we determined that mefloquine disrupts lysosomes, directly permeabilizes the lysosome membrane, and releases cathepsins into the cytosol. Knockdown of the lysosomal membrane proteins LAMP1 and LAMP2 resulted in decreased cell viability, as did treatment of AML cells with known lysosome disrupters. Highlighting a potential therapeutic rationale for this strategy, leukemic cells had significantly larger lysosomes compared with normal cells, and leukemia-initiating cells overexpressed lysosomal biogenesis genes. These results demonstrate that lysosomal disruption preferentially targets AML cells and AML progenitor cells, providing a rationale for testing lysosomal disruption as a novel therapeutic strategy for AML.


Subject(s)
Intracellular Membranes/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Lysosomes/metabolism , Neoplastic Stem Cells/metabolism , Animals , Antimalarials/pharmacokinetics , Antimalarials/pharmacology , Cell Survival/drug effects , Female , Gene Knockdown Techniques , Genome-Wide Association Study , Humans , Intracellular Membranes/pathology , K562 Cells , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Lysosomal-Associated Membrane Protein 2 , Lysosomal Membrane Proteins/genetics , Lysosomal Membrane Proteins/metabolism , Lysosomes/genetics , Lysosomes/physiology , Male , Mefloquine/pharmacokinetics , Mefloquine/pharmacology , Mice , Neoplastic Stem Cells/pathology , Permeability/drug effects , Saccharomyces cerevisiae/genetics
19.
Sci Transl Med ; 3(67): 67ra7, 2011 Jan 26.
Article in English | MEDLINE | ID: mdl-21270338

ABSTRACT

Head and neck cancer (HNC) is the eighth most common malignancy worldwide, comprising a diverse group of cancers affecting the head and neck region. Despite advances in therapeutic options over the last few decades, treatment toxicities and overall clinical outcomes have remained disappointing, thereby underscoring a need to develop novel therapeutic approaches in HNC treatment. Uroporphyrinogen decarboxylase (UROD), a key regulator of heme biosynthesis, was identified from an RNA interference-based high-throughput screen as a tumor-selective radiosensitizing target for HNC. UROD knockdown plus radiation induced caspase-mediated apoptosis and cell cycle arrest in HNC cells in vitro and suppressed the in vivo tumor-forming capacity of HNC cells, as well as delayed the growth of established tumor xenografts in mice. This radiosensitization appeared to be mediated by alterations in iron homeostasis and increased production of reactive oxygen species, resulting in enhanced tumor oxidative stress. Moreover, UROD was significantly overexpressed in HNC patient biopsies. Lower preradiation UROD mRNA expression correlated with improved disease-free survival, suggesting that UROD could potentially be used to predict radiation response. UROD down-regulation also radiosensitized several different models of human cancer, as well as sensitized tumors to chemotherapeutic agents, including 5-fluorouracil, cisplatin, and paclitaxel. Thus, our study has revealed UROD as a potent tumor-selective sensitizer for both radiation and chemotherapy, with potential relevance to many human malignancies.


Subject(s)
Gene Knockdown Techniques , Head and Neck Neoplasms/enzymology , Head and Neck Neoplasms/radiotherapy , Radiation-Sensitizing Agents/metabolism , Radiation-Sensitizing Agents/therapeutic use , Uroporphyrinogen Decarboxylase/genetics , Uroporphyrinogen Decarboxylase/metabolism , Animals , Antineoplastic Agents/therapeutic use , Apoptosis/radiation effects , Disease Models, Animal , Female , Head and Neck Neoplasms/drug therapy , Homeostasis , Humans , Iron/metabolism , Isoenzymes/genetics , Isoenzymes/metabolism , Mice , Mice, Inbred BALB C , Mice, Knockout , Mice, SCID , Neoplasm Transplantation , Oxidative Stress , RNA Interference
20.
Cancer Res ; 71(24): 7628-39, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22009536

ABSTRACT

Excessive signaling from the Wnt pathway is associated with numerous human cancers. Using a high throughput screen designed to detect inhibitors of Wnt/ß-catenin signaling, we identified a series of acyl hydrazones that act downstream of the ß-catenin destruction complex to inhibit both Wnt-induced and cancer-associated constitutive Wnt signaling via destabilization of ß-catenin. We found that these acyl hydrazones bind iron in vitro and in intact cells and that chelating activity is required to abrogate Wnt signaling and block the growth of colorectal cancer cell lines with constitutive Wnt signaling. In addition, we found that multiple iron chelators, desferrioxamine, deferasirox, and ciclopirox olamine similarly blocked Wnt signaling and cell growth. Moreover, in patients with AML administered ciclopirox olamine, we observed decreased expression of the Wnt target gene AXIN2 in leukemic cells. The novel class of acyl hydrazones would thus be prime candidates for further development as chemotherapeutic agents. Taken together, our results reveal a critical requirement for iron in Wnt signaling and they show that iron chelation serves as an effective mechanism to inhibit Wnt signaling in humans.


Subject(s)
Hydrazones/pharmacology , Iron/metabolism , Wnt Proteins/antagonists & inhibitors , Wnt Signaling Pathway/drug effects , beta Catenin/metabolism , Acute Disease , Administration, Oral , Benzoates/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Ciclopirox , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Deferasirox , Deferoxamine/pharmacology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , Humans , Hydrazones/chemistry , Iron Chelating Agents/pharmacology , Leukemia, Myeloid/drug therapy , Leukemia, Myeloid/genetics , Leukemia, Myeloid/pathology , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic/genetics , Pyridones/administration & dosage , Pyridones/therapeutic use , Reverse Transcriptase Polymerase Chain Reaction , Triazoles/pharmacology , Wnt Proteins/genetics , Wnt Proteins/metabolism , beta Catenin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL