Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters

Publication year range
1.
Proteins ; 91(4): 485-496, 2023 04.
Article in English | MEDLINE | ID: mdl-36306263

ABSTRACT

The N-terminal half of the giant cytoskeletal protein obscurin is comprised of more than 50 Ig-like domains, arranged in tandem. Domains 18-51 are connected to each other through short 5-residue linkers, and this arrangement has been previously shown to form a semi-flexible rod in solution. Domains 1-18 generally have slightly longer ~7 residue interdomain linkers, and the multidomain structure and motion conferred by this kind of linker is understudied. Here, we use NMR, SAXS, and MD to show that these longer linkers are associated with significantly more domain/domain flexibility, with the resulting multidomain structure being moderately compact. Further examination of the relationship between interdomain flexibility and linker length shows there is a 5 residue "sweet spot" linker length that results in dual-domain systems being extended, and conversely that both longer or shorter linkers result in a less extended structure. This detailed knowledge of the obscurin N terminus structure and flexibility allowed for mathematical modeling of domains 1-18, which suggests that this region likely forms tangles if left alone in solution. Given how infrequently protein tangles occur in nature, and given the pathological outcomes that occur when tangles do arise, our data suggest that obscurin is likely either significantly scaffolded or else externally extended in the cell.


Subject(s)
X-Ray Diffraction , Scattering, Small Angle , Magnetic Resonance Spectroscopy
2.
Blood ; 138(21): 2117-2128, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34115847

ABSTRACT

Shwachman-Diamond syndrome (SDS; OMIM #260400) is caused by variants in SBDS (Shwachman-Bodian-Diamond syndrome gene), which encodes a protein that plays an important role in ribosome assembly. Recent reports suggest that recessive variants in EFL1 are also responsible for SDS. However, the precise genetic mechanism that leads to EFL1-induced SDS remains incompletely understood. Here we present 3 unrelated Korean SDS patients who carry biallelic pathogenic variants in EFL1 with biased allele frequencies, resulting from a bone marrow-specific somatic uniparental disomy in chromosome 15. The recombination events generated cells that were homozygous for the relatively milder variant, allowing for the evasion of catastrophic physiologic consequences. However, the milder EFL1 variant was still solely able to impair 80S ribosome assembly and induce SDS features in cell line and animal models. The loss of EFL1 resulted in a pronounced inhibition of terminal oligopyrimidine element-containing ribosomal protein transcript 80S assembly. Therefore, we propose a more accurate pathogenesis mechanism of EFL1 dysfunction that eventually leads to aberrant translational control and ribosomopathy.


Subject(s)
Peptide Elongation Factors/genetics , Ribonucleoprotein, U5 Small Nuclear/genetics , Shwachman-Diamond Syndrome/genetics , Uniparental Disomy/genetics , Adult , Alleles , Animals , Child , Child, Preschool , Female , Humans , Male , Mice, Inbred C57BL , Models, Molecular , Point Mutation
4.
Int J Mol Sci ; 24(14)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37511485

ABSTRACT

The intercalated disk is a cardiac specific structure composed of three main protein complexes-adherens junctions, desmosomes, and gap junctions-that work in concert to provide mechanical stability and electrical synchronization to the heart. Each substructure is regulated through a variety of mechanisms including proteolysis. Calpain proteases, a class of cysteine proteases dependent on calcium for activation, have recently emerged as important regulators of individual intercalated disk components. In this review, we will examine how calcium homeostasis regulates normal calpain function. We will also explore how calpains modulate gap junctions, desmosomes, and adherens junctions activity by targeting specific proteins, and describe the molecular mechanisms of how calpain dysregulation leads to structural and signaling defects within the heart. We will then examine how changes in calpain activity affects cardiomyocytes, and how such changes underlie various heart diseases.


Subject(s)
Calcium , Calpain , Calpain/metabolism , Calcium/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Adherens Junctions/metabolism
5.
Ann Neurol ; 86(1): 129-142, 2019 07.
Article in English | MEDLINE | ID: mdl-31025394

ABSTRACT

OBJECTIVE: To define a distinct, dominantly inherited, mild skeletal myopathy associated with prominent and consistent tremor in two unrelated, three-generation families. METHODS: Clinical evaluations as well as exome and panel sequencing analyses were performed in affected and nonaffected members of two families to identify genetic variants segregating with the phenotype. Histological assessment of a muscle biopsy specimen was performed in 1 patient, and quantitative tremor analysis was carried out in 2 patients. Molecular modeling studies and biochemical assays were performed for both mutations. RESULTS: Two novel missense mutations in MYBPC1 (p.E248K in family 1 and p.Y247H in family 2) were identified and shown to segregate perfectly with the myopathy/tremor phenotype in the respective families. MYBPC1 encodes slow myosin binding protein-C (sMyBP-C), a modular sarcomeric protein playing structural and regulatory roles through its dynamic interaction with actin and myosin filaments. The Y247H and E248K mutations are located in the NH2 -terminal M-motif of sMyBP-C. Both mutations result in markedly increased binding of the NH2 terminus to myosin, possibly interfering with normal cross-bridge cycling as the first muscle-based step in tremor genesis. The clinical tremor features observed in all mutation carriers, together with the tremor physiology studies performed in family 2, suggest amplification by an additional central loop modulating the clinical tremor phenomenology. INTERPRETATION: Here, we link two novel missense mutations in MYBPC1 with a dominant, mild skeletal myopathy invariably associated with a distinctive tremor. The molecular, genetic, and clinical studies are consistent with a unique sarcomeric origin of the tremor, which we classify as "myogenic tremor." ANN NEUROL 2019.


Subject(s)
Carrier Proteins/genetics , Muscular Diseases/diagnosis , Muscular Diseases/genetics , Mutation, Missense/genetics , Tremor/diagnosis , Tremor/genetics , Adult , Carrier Proteins/chemistry , Female , Humans , Male , Middle Aged , Pedigree , Protein Structure, Secondary , Protein Structure, Tertiary
6.
Hum Mutat ; 40(8): 1115-1126, 2019 08.
Article in English | MEDLINE | ID: mdl-31264822

ABSTRACT

Encoding the slow skeletal muscle isoform of myosin binding protein-C, MYBPC1 is associated with autosomal dominant and recessive forms of arthrogryposis. The authors describe a novel association for MYBPC1 in four patients from three independent families with skeletal muscle weakness, myogenic tremors, and hypotonia with gradual clinical improvement. The patients carried one of two de novo heterozygous variants in MYBPC1, with the p.Leu263Arg variant seen in three individuals and the p.Leu259Pro variant in one individual. Both variants are absent from controls, well conserved across vertebrate species, predicted to be damaging, and located in the M-motif. Protein modeling studies suggested that the p.Leu263Arg variant affects the stability of the M-motif, whereas the p.Leu259Pro variant alters its structure. In vitro biochemical and kinetic studies demonstrated that the p.Leu263Arg variant results in decreased binding of the M-motif to myosin, which likely impairs the formation of actomyosin cross-bridges during muscle contraction. Collectively, our data substantiate that damaging variants in MYBPC1 are associated with a new form of an early-onset myopathy with tremor, which is a defining and consistent characteristic in all affected individuals, with no contractures. Recognition of this expanded myopathic phenotype can enable identification of individuals with MYBPC1 variants without arthrogryposis.


Subject(s)
Arthrogryposis/genetics , Carrier Proteins/genetics , Mutation , Neuromuscular Diseases/genetics , Whole Genome Sequencing/methods , Adult , Carrier Proteins/chemistry , Child , Fathers , Female , Humans , Infant , Male , Models, Molecular , Pedigree , Phenotype , Protein Conformation
7.
J Mol Cell Cardiol ; 111: 27-39, 2017 10.
Article in English | MEDLINE | ID: mdl-28826662

ABSTRACT

The intercalated disc of cardiac muscle embodies a highly-ordered, multifunctional network, essential for the synchronous contraction of the heart. Over 200 known proteins localize to the intercalated disc. The challenge now lies in their characterization as it relates to the coupling of neighboring cells and whole heart function. Using molecular, biochemical and imaging techniques, we characterized for the first time two small obscurin isoforms, obscurin-40 and obscurin-80, which are enriched at distinct locations of the intercalated disc. Both proteins bind specifically and directly to select phospholipids via their pleckstrin homology (PH) domain. Overexpression of either isoform or the PH-domain in cardiomyocytes results in decreased cell adhesion and size via reduced activation of the PI3K/AKT/mTOR pathway that is intimately linked to cardiac hypertrophy. In addition, obscurin-80 and obscurin-40 are significantly reduced in acute (myocardial infarction) and chronic (pressure overload) murine cardiac-stress models underscoring their key role in maintaining cardiac homeostasis. Our novel findings implicate small obscurins in the maintenance of cardiomyocyte size and coupling, and the development of heart failure by antagonizing the PI3K/AKT/mTOR pathway.


Subject(s)
Cell Size , Guanine Nucleotide Exchange Factors/metabolism , Muscle Proteins/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Acute Disease , Alternative Splicing/genetics , Animals , Cell Adhesion , Cells, Cultured , Chronic Disease , Disease Models, Animal , Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/genetics , Heart Failure/metabolism , Heart Failure/pathology , Mice, Inbred C57BL , Muscle Proteins/chemistry , Muscle Proteins/genetics , Phosphatidylinositol Phosphates/metabolism , Protein Domains , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Serine-Threonine Kinases , Rho Guanine Nucleotide Exchange Factors
8.
Proc Natl Acad Sci U S A ; 109(7): 2308-13, 2012 Feb 14.
Article in English | MEDLINE | ID: mdl-22308359

ABSTRACT

ThnT is a pantetheine hydrolase from the DmpA/OAT superfamily involved in the biosynthesis of the ß-lactam antibiotic thienamycin. We performed a structural and mechanistic investigation into the cis-autoproteolytic activation of ThnT, a process that has not previously been subject to analysis within this superfamily of enzymes. Removal of the γ-methyl of the threonine nucleophile resulted in a rate deceleration that we attribute to a reduction in the population of the reactive rotamer. This phenomenon is broadly applicable and constitutes a rationale for the evolutionary selection of threonine nucleophiles in autoproteolytic systems. Conservative substitution of the nucleophile (T282C) allowed determination of a 1.6-Å proenzyme ThnT crystal structure, which revealed a level of structural flexibility not previously observed within an autoprocessing active site. We assigned the major conformer as a nonreactive state that is unable to populate a reactive rotamer. Our analysis shows the system is activated by a structural rearrangement that places the scissile amide into an oxyanion hole and forces the nucleophilic residue into a forbidden region of Ramachandran space. We propose that conformational strain may drive autoprocessing through the destabilization of nonproductive states. Comparison of our data with previous reports uncovered evidence that many inactivated structures display nonreactive conformations. For penicillin and cephalosporin acylases, this discrepancy between structure and function may be resolved by invoking the presence of a hidden conformational state, similar to that reported here for ThnT.


Subject(s)
Amidohydrolases/metabolism , Amidohydrolases/chemistry , Crystallography, X-Ray , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/metabolism , Models, Molecular , Protein Conformation , Proteolysis
9.
Gene ; 910: 148339, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38438057

ABSTRACT

Dominant missense variants in MYBPC1 encoding slow Myosin Binding Protein-C (sMyBP-C) have been increasingly linked to arthrogryposis syndromes and congenital myopathy with tremor. Herein, we describe novel compound heterozygous variants - NM_002465.4:[c.2486_2492del];[c.2663A > G] - present in fibronectin-III (Fn-III) C7 and immunoglobulin (Ig) C8 domains, respectively, manifesting as severe, early-onset distal arthrogryposis type-1, with the carrier requiring intensive care and several surgical interventions at an early age. Computational modeling predicts that the c.2486_2492del p.(Lys829IlefsTer7) variant destabilizes the structure of the Fn-III C7 domain, while the c.2663A > G p.(Asp888Gly) variant causes minimal structural alterations in the Ig C8 domain. Although the parents of the proband are heterozygous carriers for a single variant, they exhibit no musculoskeletal defects, suggesting a complex interplay between the two mutant alleles underlying this disorder. As emerging novel variants in MYBPC1 are shown to be causatively associated with musculoskeletal disease, it becomes clear that MYBPC1 should be included in relevant genetic screenings.


Subject(s)
Arthrogryposis , Muscular Diseases , Humans , Arthrogryposis/genetics , Arthrogryposis/metabolism , Mutation, Missense
10.
J Pers Med ; 14(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38392596

ABSTRACT

Desmoplakin (DSP) is a large (~260 kDa) protein found in the desmosome, the subcellular structure that links the intermediate filament network of one cell to its neighbor. A mutation "hot-spot" within the NH2-terminal of the DSP protein (residues 299-515) is associated with arrhythmogenic cardiomyopathy. In a subset of DSP variants, disease is linked to calpain hypersensitivity. Previous studies show that calpain hypersensitivity can be corrected in vitro through the addition of a bulky residue neighboring the cleavage site, suggesting that physically blocking calpain accessibility is a viable strategy to restore DSP levels. Here, we aim to find drug-like molecules that also block calpain-dependent degradation of DSP. To do this, we screened ~2500 small molecules to identify compounds that specifically rescue DSP protein levels in the presence of proteases. We find that several molecules, including sodium dodecyl sulfate, palmitoylethanolamide, GW0742, salirasib, eprosarten mesylate, and GSK1838705A prevent wildtype and disease-variant-carrying DSP protein degradation in the presence of both trypsin and calpain without altering protease function. Computational screenings did not predict which molecules would protect DSP, likely due to a lack of specific DSP-drug interactions. Molecular dynamic simulations of DSP-drug complexes suggest that some long hydrophobic molecules can bind in a shallow hydrophobic groove that runs alongside the protease cleavage site. Identification of these compounds lays the groundwork for pharmacological treatment for individuals harboring these hypersensitive DSP variants.

11.
Integr Comp Biol ; 63(6): 1532-1542, 2023 Dec 29.
Article in English | MEDLINE | ID: mdl-37558388

ABSTRACT

The shift of funding organizations to prioritize interdisciplinary work points to the need for workflow models that better accommodate interdisciplinary studies. Most scientists are trained in a specific field and are often unaware of the kind of insights that other disciplines could contribute to solving various problems. In this paper, we present a perspective on how we developed an experimental pipeline between a microscopy and image analysis/bioengineering lab. Specifically, we connected microscopy observations about a putative mechanosensing protein, obscurin, to image analysis techniques that quantify cell changes. While the individual methods used are well established (fluorescence microscopy; ImageJ WEKA and mTrack2 programs; MATLAB), there are no existing best practices for how to integrate these techniques into a cohesive, interdisciplinary narrative. Here, we describe a broadly applicable workflow of how microscopists can more easily quantify cell properties (e.g., perimeter, velocity) from microscopy videos of eukaryotic (MDCK) adherent cells. Additionally, we give examples of how these foundational measurements can create more complex, customizable cell mechanics tools and models.


Subject(s)
Image Processing, Computer-Assisted , Animals , Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence
12.
Proteins ; 80(9): 2250-61, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22611034

ABSTRACT

TraI, the F plasmid-encoded nickase, is a 1756 amino acid protein essential for conjugative transfer of plasmid DNA from one bacterium to another. Although crystal structures of N- and C-terminal domains of F TraI have been determined, central domains of the protein are structurally unexplored. The central region (between residues 306 and 1520) is known to both bind single-stranded DNA (ssDNA) and unwind DNA through a highly processive helicase activity. Here, we show that the ssDNA binding site is located between residues 381 and 858, and we also present the high-resolution solution structure of the N-terminus of this region (residues 381-569). This fragment folds into a four-strand parallel ß sheet surrounded by α helices, and it resembles the structure of the N-terminus of helicases such as RecD and RecQ despite little sequence similarity. The structure supports the model that F TraI resulted from duplication of a RecD-like domain and subsequent specialization of domains into the more N-terminal ssDNA binding domain and the more C-terminal domain containing helicase motifs. In addition, we provide evidence that the nickase and ssDNA binding domains of TraI are held close together by an 80-residue linker sequence that connects the two domains. These results suggest a possible physical explanation for the apparent negative cooperativity between the nickase and ssDNA binding domain.


Subject(s)
DNA Helicases/chemistry , Escherichia coli Proteins/chemistry , Binding Sites , DNA Helicases/metabolism , Escherichia coli Proteins/metabolism , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Scattering, Small Angle
13.
Front Genet ; 13: 780764, 2022.
Article in English | MEDLINE | ID: mdl-35222531

ABSTRACT

There are recent reports of associations of variants in the HPDL gene with a hereditary neurological disease that presents with a wide spectrum of clinical severity, ranging from severe neonatal encephalopathy with no psychomotor development to adolescent-onset uncomplicated spastic paraplegia. Here, we report two probands from unrelated families presenting with severe and intermediate variations of the clinical course. A homozygous variant in the HPDL gene was detected in each proband; however, there was no known parental consanguinity. We also highlight reductions in citrate synthase and mitochondrial complex I activity detected in both probands in different tissues, reflecting the previously proposed mitochondrial nature of disease pathogenesis associated with HPDL mutations. Further, we speculate on the functional consequences of the detected variants, although the function and substrate of the HPDL enzyme are currently unknown.

14.
J Pers Med ; 11(5)2021 May 12.
Article in English | MEDLINE | ID: mdl-34065787

ABSTRACT

Desmoplakin (DSP) is a large (~260 kDa) protein found in the desmosome, a subcellular complex that links the cytoskeleton of one cell to its neighbor. A mutation 'hot-spot' within the NH2-terminal third of the DSP protein (specifically, residues 299-515) is associated with both cardiomyopathies and skin defects. In select DSP variants, disease is linked specifically to the uncovering of a previously-occluded calpain target site (residues 447-451). Here, we partially stabilize these calpain-sensitive DSP clinical variants through the addition of a secondary single point mutation-tyrosine for leucine at amino acid position 518 (L518Y). Molecular dynamic (MD) simulations and enzymatic assays reveal that this stabilizing mutation partially blocks access to the calpain target site, resulting in restored DSP protein levels. This 'molecular band-aid' provides a novel way to maintain DSP protein levels, which may lead to new strategies for treating this subset of DSP-related disorders.

15.
Neuromuscul Disord ; 30(6): 483-491, 2020 06.
Article in English | MEDLINE | ID: mdl-32448721

ABSTRACT

Recently the scientific community has started to view Bethlem myopathy 1 and Ullrich congenital muscular dystrophy as two extremes of a collagen VI-related myopathy spectrum rather than two separate entities, as both are caused by mutations in one of the collagen VI genes. Here we report three individuals in two families who are homozygous for a COL6A3 mutation (c.7447A> G; p.Lys2483Glu), and compare their clinical features with seven previously published cases. Individuals carrying homozygous or compound heterozygous c.7447A> G, (p.Lys2483Glu) mutation exhibit mild phenotype without loss of ambulation, similar to the cases described previously as Collagen VI-related limb-girdle syndrome. The phenotype could arise due to an aberrant assembly of Von Willebrand factor A domains. Based on these data, we propose that c.7447A> G, (p.Lys2483Glu) is a common pathogenic mutation.


Subject(s)
Collagen Type VI/genetics , Contracture , Muscular Dystrophies/congenital , Sclerosis , Adult , Contracture/diagnostic imaging , Contracture/genetics , Contracture/pathology , Contracture/physiopathology , Female , Humans , Male , Middle Aged , Muscular Dystrophies/diagnostic imaging , Muscular Dystrophies/genetics , Muscular Dystrophies/pathology , Muscular Dystrophies/physiopathology , Pedigree , Sclerosis/diagnostic imaging , Sclerosis/genetics , Sclerosis/pathology , Sclerosis/physiopathology , Exome Sequencing
16.
Circ Genom Precis Med ; 13(4): e002892, 2020 08.
Article in English | MEDLINE | ID: mdl-32603605

ABSTRACT

BACKGROUND: Dilated cardiomyopathy (DCM) is a genetically heterogeneous cardiac disease characterized by progressive ventricular enlargement and reduced systolic function. Here, we report genetic and functional analyses implicating the rat sarcoma signaling protein, SOS1 (Son of sevenless homolog 1), in DCM pathogenesis. METHODS: Exome sequencing was performed on 412 probands and family members from our DCM cohort, identifying several SOS1 variants with potential disease involvement. As several lines of evidence have implicated dysregulated rat sarcoma signaling in the pathogenesis of DCM, we assessed functional impact of each variant on the activation of ERK (extracellular signal-regulated kinase), AKT (protein kinase B), and JNK (c-Jun N-terminal kinase) pathways. Relative expression levels were determined by Western blot in HEK293T cells transfected with variant or wild-type human SOS1 expression constructs. RESULTS: A rare SOS1 variant [c.571G>A, p.(Glu191Lys)] was found to segregate alongside an A-band TTN truncating variant in a pedigree with aggressive, early-onset DCM. Reduced disease severity in the absence of the SOS1 variant suggested its potential involvement as a genetic risk factor for DCM in this family. Exome sequencing identified 5 additional SOS1 variants with potential disease involvement in 4 other families [c.1820T>C, p.(Ile607Thr); c.2156G>C, p.(Gly719Ala); c.2230A>G, p.(Arg744Gly); c.2728G>C, p.(Asp910His); c.3601C>T, p.(Arg1201Trp)]. Impacted amino acids occupied a number of functional domains relevant to SOS1 activity, including the N-terminal histone fold, as well as the C-terminal REM (rat sarcoma exchange motif), CDC25 (cell division cycle 25), and PR (proline-rich) tail domains. Increased phosphorylated ERK expression relative to wild-type levels was seen for all 6 SOS1 variants, paralleling known disease-relevant SOS1 signaling profiles. CONCLUSIONS: These data support gain-of-function variation in SOS1 as a contributing factor to isolated DCM.


Subject(s)
Cardiomyopathy, Dilated/genetics , SOS1 Protein/genetics , Adolescent , Adult , Aged , Cardiomyopathy, Dilated/pathology , Extracellular Signal-Regulated MAP Kinases/metabolism , Family , Gain of Function Mutation , Humans , Middle Aged , Pedigree , Phosphorylation , Polymorphism, Genetic , Protein Structure, Tertiary , Risk Factors , SOS1 Protein/chemistry , SOS1 Protein/metabolism , Severity of Illness Index , Signal Transduction/genetics , Exome Sequencing , Young Adult
17.
Am J Physiol Cell Physiol ; 297(4): C955-70, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19657060

ABSTRACT

S100A1, a 21-kDa dimeric Ca2+-binding protein of the EF-hand type, is expressed in cardiomyocytes and is an important regulator of heart function. During ischemia, cardiomyocytes secrete S100A1 to the extracellular space. Although the effects of extracellular S100A1 have been documented in cardiomyocytes, it is unclear whether S100A1 exerts modulatory effects on other tissues in proximity with cardiac cells. Therefore, we sought to investigate the effects of exogenous S100A1 on Ca2+ signals and electrical properties of superior cervical ganglion (SCG) neurons. Immunostaining and Western blot assays indicated no endogenous S100A1 in SCG neurons. Cultured SCG neurons took up S100A1 when it was present in the extracellular medium. Inside the cell exogenous S100A1 localized in a punctate pattern throughout the cytoplasm but was excluded from the nuclei. S100A1 partially colocalized with markers for both receptor- and non-receptor-mediated endocytosis, indicating that in SCG neurons multiple endocytotic pathways are involved in S100A1 internalization. In compartmentalized SCG cultures, axonal projections were capable of uptake and transport of S100A1 toward the neuronal somas. Exogenous S100A1 applied either extra- or intracellularly enhanced Cav1 channel currents in a PKA-dependent manner, prolonged action potentials, and amplified action potential-induced Ca2+ transients. NMR chemical shift perturbation of Ca2+-S100A1 in the presence of a peptide from the regulatory subunit of PKA verifies that S100A1 directly interacts with PKA, and that this interaction likely occurs in the hydrophobic binding pocket of Ca2+-S100A1. Our results suggest the hypothesis that in sympathetic neurons exogenous S100A1 may lead to an increase of sympathetic output.


Subject(s)
Action Potentials , Calcium Channels, L-Type/physiology , Calcium Signaling/physiology , Neurons/physiology , S100 Proteins/metabolism , Superior Cervical Ganglion/physiology , Animals , Axons/physiology , Cell Compartmentation/physiology , Cells, Cultured , Cytoplasm/metabolism , Endocytosis/physiology , Ion Channel Gating , Rats , Rats, Wistar , Signal Transduction/physiology
18.
Protein Sci ; 28(4): 717-726, 2019 04.
Article in English | MEDLINE | ID: mdl-30666746

ABSTRACT

Obscurin, a giant modular cytoskeletal protein, is comprised mostly of tandem immunoglobulin-like (Ig-like) domains. This architecture allows obscurin to connect distal targets within the cell. The linkers connecting the Ig domains are usually short (3-4 residues). The physical effect arising from these short linkers is not known; such linkers may lead to a stiff elongated molecule or, conversely, may lead to a more compact and dynamic structure. In an effort to better understand how linkers affect obscurin flexibility, and to better understand the physical underpinnings of this flexibility, here we study the structure and dynamics of four representative sets of dual obscurin Ig domains using experimental and computational techniques. We find in all cases tested that tandem obscurin Ig domains interact at the poles of each domain and tend to stay relatively extended in solution. NMR, SAXS, and MD simulations reveal that while tandem domains are elongated, they also bend and flex significantly. By applying this behavior to a simplified model, it becomes apparent obscurin can link targets more than 200 nm away. However, as targets get further apart, obscurin begins acting as a spring and requires progressively more energy to further elongate.


Subject(s)
Protein Serine-Threonine Kinases/chemistry , Rho Guanine Nucleotide Exchange Factors/chemistry , Crystallography, X-Ray , Humans , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Protein Domains , Scattering, Small Angle , X-Ray Diffraction
19.
Protein Pept Lett ; 25(11): 973-979, 2018.
Article in English | MEDLINE | ID: mdl-30289063

ABSTRACT

INTRODUCTION: The giant muscular proteins titin and obscurin bind to each other at the Zdisk during muscle development. This binding event is mediated through two domains from each protein: ZIg9/10 from titin and Ig58/59 from obscurin. This interaction helps stabilize and organize the sarcomere; ablation of this binding leads to muscular dystrophy. OBJECTIVE: Here we solve the high-resolution solution structure of titin ZIg10 and further delineate which sections of titin bind to obscurin. MATERIALS AND METHODS: Solution NMR, Circular Dichroism, and SEC-MALS were used to biophysically characterize the titin domains involved in this titin-obscurin interaction. RESULTS AND CONCLUSION: We present the high-resolution solution structure of titin ZIg10. Additionally, we show that titin ZIg9 drives the titin-obscurin interaction, while ZIg10 does not actively participate in the titin-obscurin interaction but instead acts to stabilize ZIg9.


Subject(s)
Connectin/chemistry , Connectin/metabolism , Muscle Proteins/metabolism , Humans , Models, Molecular , Protein Binding , Protein Domains
20.
Sci Adv ; 3(6): e1603081, 2017 06.
Article in English | MEDLINE | ID: mdl-28630914

ABSTRACT

Obscurins are cytoskeletal proteins with structural and regulatory roles encoded by OBSCN. Mutations in OBSCN are associated with the development of hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). Specifically, the R4344Q mutation present in immunoglobulin domain 58 (Ig58) was the first to be linked with the development of HCM. To assess the effects of R4344Q in vivo, we generated the respective knock-in mouse model. Mutant obscurins are expressed and incorporated normally into sarcomeres. The expression patterns of sarcomeric and Ca2+-cycling proteins are unaltered in sedentary 1-year-old knock-in myocardia, with the exception of sarco/endoplasmic reticulum Ca2+ adenosine triphosphatase 2 (SERCA2) and pentameric phospholamban whose levels are significantly increased and decreased, respectively. Isolated cardiomyocytes from 1-year-old knock-in hearts exhibit increased Ca2+-transients and Ca2+-load in the sarcoplasmic reticulum and faster contractility kinetics. Moreover, sedentary 1-year-old knock-in animals develop tachycardia accompanied by premature ventricular contractions, whereas 2-month-old knock-in animals subjected to pressure overload develop a DCM-like phenotype. Structural analysis revealed that the R4344Q mutation alters the distribution of electrostatic charges over the Ig58 surface, thus interfering with its binding capabilities. Consistent with this, wild-type Ig58 interacts with phospholamban modestly, and this interaction is markedly enhanced in the presence of R4344Q. Together, our studies demonstrate that under sedentary conditions, the R4344Q mutation results in Ca2+ deregulation and spontaneous arrhythmia, whereas in the presence of chronic, pathological stress, it leads to cardiac remodeling and dilation. We postulate that enhanced binding between mutant obscurins and phospholamban leads to SERCA2 disinhibition, which may underlie the observed pathological alterations.


Subject(s)
Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Calcium Signaling , Calcium/metabolism , Guanine Nucleotide Exchange Factors/genetics , Heart Diseases/genetics , Heart Diseases/metabolism , Muscle Proteins/genetics , Mutation , Animals , Arrhythmias, Cardiac/diagnosis , Disease Models, Animal , Echocardiography , Electrocardiography , Heart Diseases/diagnosis , Magnetic Resonance Spectroscopy , Mice , Mice, Transgenic , Protein Serine-Threonine Kinases , Rho Guanine Nucleotide Exchange Factors
SELECTION OF CITATIONS
SEARCH DETAIL