ABSTRACT
2',3'-cAMP is a positional isomer of the well-established second messenger 3',5'-cAMP, but little is known about the biology of this noncanonical cyclic nucleotide monophosphate (cNMP). Toll/interleukin-1 receptor (TIR) domains of nucleotide-binding leucine-rich repeat (NLR) immune receptors have the NADase function necessary but insufficient to activate plant immune responses. Here, we show that plant TIR proteins, besides being NADases, act as 2',3'-cAMP/cGMP synthetases by hydrolyzing RNA/DNA. Structural data show that a TIR domain adopts distinct oligomers with mutually exclusive NADase and synthetase activity. Mutations specifically disrupting the synthetase activity abrogate TIR-mediated cell death in Nicotiana benthamiana (Nb), supporting an important role for these cNMPs in TIR signaling. Furthermore, the Arabidopsis negative regulator of TIR-NLR signaling, NUDT7, displays 2',3'-cAMP/cGMP but not 3',5'-cAMP/cGMP phosphodiesterase activity and suppresses cell death activity of TIRs in Nb. Our study identifies a family of 2',3'-cAMP/cGMP synthetases and establishes a critical role for them in plant immune responses.
Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Cell Death/genetics , Cyclic AMP/biosynthesis , Cyclic GMP/biosynthesis , Ligases/metabolism , NAD+ Nucleosidase/metabolism , Plant Diseases , Plant Immunity/physiology , Plant Proteins/metabolism , Receptors, Immunologic/metabolism , Receptors, Interleukin-1/metabolism , Nicotiana/genetics , Nicotiana/metabolismABSTRACT
Interleukin-33 (IL-33), an epithelial cell-derived cytokine that responds rapidly to environmental insult, has a critical role in initiating airway inflammatory diseases. However, the molecular mechanism underlying IL-33 secretion following allergen exposure is not clear. Here, we found that two cell events were fundamental for IL-33 secretion after exposure to allergens. First, stress granule assembly activated by allergens licensed the nuclear-cytoplasmic transport of IL-33, but not the secretion of IL-33. Second, a neo-form murine amino-terminal p40 fragment gasdermin D (Gsdmd), whose generation was independent of inflammatory caspase-1 and caspase-11, dominated cytosolic secretion of IL-33 by forming pores in the cell membrane. Either the blockade of stress granule assembly or the abolishment of p40 production through amino acid mutation of residues 309-313 (ELRQQ) could efficiently prevent the release of IL-33 in murine epithelial cells. Our findings indicated that targeting stress granule disassembly and Gsdmd fragmentation could reduce IL-33-dependent allergic airway inflammation.
Subject(s)
Allergens , Interleukin-33 , Phosphate-Binding Proteins/metabolism , Pore Forming Cytotoxic Proteins/metabolism , Animals , Caspase 1/metabolism , Inflammation , Interleukin-1beta/metabolism , Interleukin-33/genetics , Interleukin-33/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Peptide Hydrolases/metabolism , Stress GranulesABSTRACT
Stochasticity has emerged as a mechanism of gene regulation. Much of this so-called "noise" has been attributed to bursting transcription. Although bursting transcription has been studied extensively, the role of stochasticity in translation has not been fully investigated due to the lack of enabling imaging technology. In this study, we developed techniques to track single mRNAs and their translation in live cells for hours, allowing the measurement of previously uncharacterized translation dynamics. We applied genetic and pharmacological perturbations to control translation kinetics and found that, like transcription, translation is not a constitutive process but instead cycles between inactive and active states, or "bursts." However, unlike transcription, which is largely frequency-modulated, complex structures in the 5'-untranslated region alter burst amplitudes. Bursting frequency can be controlled through cap-proximal sequences and trans-acting factors such as eIF4F. We coupled single-molecule imaging with stochastic modeling to quantitatively determine the kinetic parameters of translational bursting.
Subject(s)
Gene Expression Regulation , RNA, Messenger/genetics , 5' Untranslated RegionsABSTRACT
The RNA sensor MDA5 recruits the signaling adaptor MAVS to initiate type I interferon signaling and downstream antiviral responses, a process that requires K63-linked polyubiquitin chains. Here, we examined the mechanisms whereby K63-polyUb chain regulate MDA5 activation. Only long unanchored K63-polyUbn (n ≥ 8) could mediate tetramerization of the caspase activation and recruitment domains of MDA5 (MDA5CARDs). Cryoelectron microscopy structures of a polyUb13-bound MDA5CARDs tetramer and a polyUb11-bound MDA5CARDs-MAVSCARD assembly revealed a tower-like formation, wherein eight Ubs tethered along the outer rim of the helical shell, bridging MDA5CARDs and MAVSCARD tetramers into proximity. ATP binding and hydrolysis promoted the stabilization of RNA-bound MDA5 prior to MAVS activation via allosteric effects on CARDs-polyUb complex. Abundant ATP prevented basal activation of apo MDA5. Our findings reveal the ordered assembly of a MDA5 signaling complex competent to recruit and activate MAVS and highlight differences with RIG-I in terms of CARD orientation and Ub sensing that suggest different abilities to induce antiviral responses.
Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Interferon-Induced Helicase, IFIH1/metabolism , Signal Transduction/physiology , Adaptor Proteins, Signal Transducing/chemistry , Cryoelectron Microscopy , HEK293 Cells , Humans , Immunity, Innate/physiology , Interferon-Induced Helicase, IFIH1/chemistry , Interferon-Induced Helicase, IFIH1/ultrastructure , Polyubiquitin/chemistry , Polyubiquitin/metabolism , Protein BindingABSTRACT
Specific binding proteins are crucial for the correct spatiotemporal expression of mRNA. To understand this process, a method is required to characterize RNA-protein interactions in single living cells with subcellular resolution. We combined endogenous single RNA and protein detection with two-photon fluorescence fluctuation analysis to measure the average number of proteins bound to mRNA at specific locations within live cells. We applied this to quantify the known binding of zipcode binding protein 1 (ZBP1) and ribosomes to ß-actin mRNA within subcellular compartments of primary fibroblasts and neurons. ZBP1-mRNA binding did not occur in nuclei, contrary to previous conclusions. ZBP1 interaction with ß-actin mRNA was enhanced perinuclearly in neurons compared to fibroblasts. Cytoplasmic ZBP1 and ribosome binding to the mRNA were anti-correlated depending on their location in the cell. These measurements support a mechanism whereby ZBP1 inhibits translation of localizing mRNA until its release from the mRNA peripherally, allowing ribosome binding.
Subject(s)
Fibroblasts/metabolism , Glycoproteins/metabolism , Neurons/metabolism , Single-Cell Analysis/methods , Actins/genetics , Actins/metabolism , Animals , Cells, Cultured , Embryo, Mammalian/cytology , Fluorescence , Mice , RNA, Messenger/metabolism , RNA-Binding Proteins , Ribosomes/metabolismABSTRACT
Nucleotide-binding leucine-rich repeat (NLR) proteins play a pivotal role in plant immunity by recognizing pathogen effectors1,2. Maintaining a balanced immune response is crucial, as excessive NLR expression can lead to unintended autoimmunity3,4. Unlike most NLRs, the plant NLR required for cell death 2 (NRC2) belongs to a small NLR group characterized by constitutively high expression without self-activation5. The mechanisms underlying NRC2 autoinhibition and activation are not yet understood. Here we show that Solanum lycopersicum (tomato) NRC2 (SlNRC2) forms dimers and tetramers and higher-order oligomers at elevated concentrations. Cryo-electron microscopy shows an inactive conformation of SlNRC2 in these oligomers. Dimerization and oligomerization not only stabilize the inactive state but also sequester SlNRC2 from assembling into an active form. Mutations at the dimeric or interdimeric interfaces enhance pathogen-induced cell death and immunity in Nicotiana benthamiana. The cryo-electron microscopy structures unexpectedly show inositol hexakisphosphate (IP6) or pentakisphosphate (IP5) bound to the inner surface of the C-terminal leucine-rich repeat domain of SlNRC2, as confirmed by mass spectrometry. Mutations at the inositol phosphate-binding site impair inositol phosphate binding of SlNRC2 and pathogen-induced SlNRC2-mediated cell death in N. benthamiana. Our study indicates a negative regulatory mechanism of NLR activation and suggests inositol phosphates as cofactors of NRCs.
Subject(s)
NLR Proteins , Phytic Acid , Plant Proteins , Protein Multimerization , Solanum lycopersicum , Binding Sites , Cell Death , Cryoelectron Microscopy , Models, Molecular , Mutation , Nicotiana/cytology , Nicotiana/immunology , Nicotiana/metabolism , NLR Proteins/antagonists & inhibitors , NLR Proteins/chemistry , NLR Proteins/genetics , NLR Proteins/metabolism , NLR Proteins/ultrastructure , Phytic Acid/metabolism , Phytic Acid/chemistry , Plant Immunity , Plant Proteins/antagonists & inhibitors , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/ultrastructure , Protein Binding , Protein Domains , Solanum lycopersicum/cytology , Solanum lycopersicum/genetics , Solanum lycopersicum/immunology , Solanum lycopersicum/metabolismABSTRACT
Owing to their unique abilities to manipulate, label, and image individual molecules in vitro and in cellulo, single-molecule techniques provide previously unattainable access to elementary biological processes. In imaging, single-molecule fluorescence resonance energy transfer (smFRET) and protein-induced fluorescence enhancement in vitro can report on conformational changes and molecular interactions, single-molecule pull-down (SiMPull) can capture and analyze the composition and function of native protein complexes, and single-molecule tracking (SMT) in live cells reveals cellular structures and dynamics. In labeling, the abilities to specifically label genomic loci, mRNA, and nascent polypeptides in cells have uncovered chromosome organization and dynamics, transcription and translation dynamics, and gene expression regulation. In manipulation, optical tweezers, integration of single-molecule fluorescence with force measurements, and single-molecule force probes in live cells have transformed our mechanistic understanding of diverse biological processes, ranging from protein folding, nucleic acids-protein interactions to cell surface receptor function.
Subject(s)
Genomics/trends , Molecular Imaging/trends , Optical Imaging/trends , Single Molecule Imaging/trends , Animals , Diffusion of Innovation , Fluorescence Resonance Energy Transfer/trends , Humans , Microscopy, Fluorescence/trends , Proteomics/trendsABSTRACT
Precise control of CRISPR-Cas9 would improve its safety and applicability. Controlled CRISPR inhibition is a promising approach but is complicated by separate inhibitor delivery, incomplete deactivation, and slow kinetics. To overcome these obstacles, we engineered photocleavable guide RNAs (pcRNAs) that endow Cas9 nucleases and base editors with a built-in mechanism for light-based deactivation. pcRNA enabled the fastest (<1 min) and most complete (<1% residual indels) approach for Cas9 deactivation. It also exhibited significantly enhanced specificity with wild-type Cas9. Time-resolved deactivation revealed that 12-36 h of Cas9 activity or 2-4 h of base editor activity was sufficient to achieve high editing efficiency. pcRNA is useful for studies of the cellular response to DNA damage by abolishing sustained cycles of damage and repair that would otherwise desynchronize response trajectories. Together, pcRNA expands the CRISPR toolbox for precision genome editing and studies of DNA damage and repair.
Subject(s)
CRISPR-Associated Protein 9/chemistry , CRISPR-Cas Systems , DNA Damage , Gene Editing , RNA, Guide, Kinetoplastida/chemistry , CRISPR-Associated Protein 9/metabolism , RNA, Guide, Kinetoplastida/metabolismABSTRACT
Translation of problematic mRNA sequences induces ribosome stalling, triggering quality-control events, including ribosome rescue and nascent polypeptide degradation. To define the timing and regulation of these processes, we developed a SunTag-based reporter to monitor translation of a problematic sequence (poly[A]) in real time on single mRNAs. Although poly(A)-containing mRNAs undergo continuous translation over the timescale of minutes to hours, ribosome load is increased by â¼3-fold compared to a control, reflecting long queues of ribosomes extending far upstream of the stall. We monitor the resolution of these queues in real time and find that ribosome rescue is very slow compared to both elongation and termination. Modulation of pause strength, collision frequency, and the collision sensor ZNF598 reveals how the dynamics of ribosome collisions and their recognition facilitate selective targeting for quality control. Our results establish that slow clearance of stalled ribosomes allows cells to distinguish between transient and deleterious stalls.
Subject(s)
Peptide Chain Elongation, Translational/genetics , Peptide Chain Termination, Translational/genetics , Ribosomes/genetics , Carrier Proteins/genetics , HEK293 Cells , Humans , Kinetics , Peptides/genetics , Poly A/genetics , Quality Control , RNA, Messenger/geneticsABSTRACT
MDA5, a viral double-stranded RNA (dsRNA) receptor, shares sequence similarity and signaling pathways with RIG-I yet plays essential functions in antiviral immunity through distinct specificity for viral RNA. Revealing the molecular basis for the functional divergence, we report here the crystal structure of MDA5 bound to dsRNA, which shows how, using the same domain architecture, MDA5 recognizes the internal duplex structure, whereas RIG-I recognizes the terminus of dsRNA. We further show that MDA5 uses direct protein-protein contacts to stack along dsRNA in a head-to-tail arrangement, and that the signaling domain (tandem CARD), which decorates the outside of the core MDA5 filament, also has an intrinsic propensity to oligomerize into an elongated structure that activates the signaling adaptor, MAVS. These data support a model in which MDA5 uses long dsRNA as a signaling platform to cooperatively assemble the core filament, which in turn promotes stochastic assembly of the tandem CARD oligomers for signaling.
Subject(s)
DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/metabolism , RNA, Double-Stranded/metabolism , Amino Acid Sequence , Humans , Interferon-Induced Helicase, IFIH1 , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , RNA, Double-Stranded/chemistry , Receptors, Retinoic Acid/chemistry , Receptors, Retinoic Acid/metabolism , Sequence Alignment , X-Ray DiffractionABSTRACT
Nucleotide-binding domain, leucine-rich repeat receptors (NLRs) mediate innate immunity by forming inflammasomes. Activation of the NLR protein NLRP1 requires autocleavage within its function-to-find domain (FIIND)1-7. In resting cells, the dipeptidyl peptidases DPP8 and DPP9 interact with the FIIND of NLRP1 and suppress spontaneous NLRP1 activation8,9; however, the mechanisms through which this occurs remain unknown. Here we present structural and biochemical evidence that full-length rat NLRP1 (rNLRP1) and rat DPP9 (rDPP9) form a 2:1 complex that contains an autoinhibited rNLRP1 molecule and an active UPA-CARD fragment of rNLRP1. The ZU5 domain is required not only for autoinhibition of rNLRP1 but also for assembly of the 2:1 complex. Formation of the complex prevents UPA-mediated higher-order oligomerization of UPA-CARD fragments and strengthens ZU5-mediated NLRP1 autoinhibition. Structure-guided biochemical and functional assays show that both NLRP1 binding and enzymatic activity are required for DPP9 to suppress NLRP1 in human cells. Together, our data reveal the mechanism of DPP9-mediated inhibition of NLRP1 and shed light on the activation of the NLRP1 inflammasome.
Subject(s)
Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/chemistry , NLR Proteins/chemistry , Animals , CARD Signaling Adaptor Proteins , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins , Nerve Tissue Proteins , Protein Binding , Protein Domains , Protein Structure, Secondary , RatsABSTRACT
mRNA translation and its regulation shape the human proteome. Lyon et al. (2019) and Boersma et al. (2019) introduce new orthogonal peptide-tagging systems to study translation in multiple reading frames. Both groups discovered diverse translation behavior of single mRNAs derived from the same genes.
Subject(s)
Frameshifting, Ribosomal , RNA , Humans , Open Reading Frames , Proteome/genetics , RNA, MessengerABSTRACT
Translation is regulated spatiotemporally to direct protein synthesis when and where it is needed. RNA localization and local translation have been observed in various subcellular compartments, allowing cells to rapidly and finely adjust their proteome post-transcriptionally. Local translation on membrane-bound organelles is important to efficiently synthesize proteins targeted to the organelles. Protein-RNA phase condensates restrict RNA spatially in membraneless organelles and play essential roles in translation regulation and RNA metabolism. In addition, the temporal translation kinetics not only determine the amount of protein produced, but also serve as an important checkpoint for the quality of ribosomes, mRNAs, and nascent proteins. Translation imaging provides a unique capability to study these fundamental processes in the native environment. Recent breakthroughs in imaging enabled real-time visualization of translation of single mRNAs, making it possible to determine the spatial distribution and key biochemical parameters of in vivo translation dynamics. Here we reviewed the recent advances in translation imaging methods and their applications to study spatiotemporal translation regulation in vivo.
Subject(s)
Protein Biosynthesis , Ribosomes , Ribosomes/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Organelles/metabolismABSTRACT
mRNAs form ribonucleoprotein complexes (mRNPs) by association with proteins that are crucial for mRNA metabolism. While the mRNP proteome has been well characterized, little is known about mRNP organization. Using a single-molecule approach, we show that mRNA conformation changes depending on its cellular localization and translational state. Compared to nuclear mRNPs and lncRNPs, association with ribosomes decompacts individual mRNAs, while pharmacologically dissociating ribosomes or sequestering them into stress granules leads to increased compaction. Moreover, translating mRNAs rarely show co-localized 5' and 3' ends, indicating either that mRNAs are not translated in a closed-loop configuration, or that mRNA circularization is transient, suggesting that a stable closed-loop conformation is not a universal state for all translating mRNAs.
Subject(s)
RNA Precursors/physiology , Ribonucleoproteins/genetics , Ribonucleoproteins/physiology , Exons , Gene Expression/physiology , HEK293 Cells , Humans , Protein Biosynthesis/physiology , RNA Precursors/genetics , RNA Splicing , RNA Stability , RNA, Long Noncoding , RNA, Messenger/genetics , RNA, Messenger/ultrastructure , Ribosomes , Single Molecule Imaging/methods , Spatial AnalysisABSTRACT
Throughout life, the cerebellum plays a central role in the coordination and optimization of movements, using cellular plasticity to adapt a range of behaviors. Whether these plasticity processes establish a fixed setpoint during development, or continuously adjust behaviors throughout life, is currently unclear. Here, by spatiotemporally manipulating the activity of protein phosphatase 2B (PP2B), an enzyme critical for cerebellar plasticity in male and female mice, we examined the consequences of disrupted plasticity on the performance and adaptation of the vestibulo-ocular reflex (VOR). We find that, in contrast to Purkinje cell (PC)-specific deletion starting early postnatally, acute pharmacological as well as adult-onset genetic deletion of PP2B affects all forms of VOR adaptation but not the level of VOR itself. Next, we show that PC-specific genetic deletion of PP2B in juvenile mice leads to a progressive loss of the protein PP2B and a concurrent change in the VOR, in addition to the loss of adaptive abilities. Finally, re-expressing PP2B in adult mice that lack PP2B expression from early development rescues VOR adaptation but does not affect the performance of the reflex. Together, our results indicate that chronic or acute, genetic, or pharmacological block of PP2B disrupts the adaptation of the VOR. In contrast, only the absence of plasticity during cerebellar development affects the setpoint of VOR, an effect that cannot be corrected after maturation of the cerebellum. These findings suggest that PP2B-dependent cerebellar plasticity is required during a specific period to achieve the correct setpoint of the VOR.
Subject(s)
Cerebellum , Neuronal Plasticity , Reflex, Vestibulo-Ocular , Animals , Reflex, Vestibulo-Ocular/physiology , Neuronal Plasticity/physiology , Mice , Cerebellum/growth & development , Cerebellum/physiology , Male , Female , Purkinje Cells/physiology , Adaptation, Physiological/physiology , Mice, Inbred C57BL , Mice, KnockoutABSTRACT
Bax proteins form pores in the mitochondrial outer membrane to initiate apoptosis. This might involve their embedding in the cytosolic leaflet of the lipid bilayer, thus generating tension to induce a lipid pore with radially arranged lipids forming the wall. Alternatively, Bax proteins might comprise part of the pore wall. However, there is no unambiguous structural evidence for either hypothesis. Using NMR, we determined a high-resolution structure of the Bax core region, revealing a dimer with the nonpolar surface covering the lipid bilayer edge and the polar surface exposed to water. The dimer tilts from the bilayer normal, not only maximizing nonpolar interactions with lipid tails but also creating polar interactions between charged residues and lipid heads. Structure-guided mutations demonstrate the importance of both types of protein-lipid interactions in Bax pore assembly and core dimer configuration. Therefore, the Bax core dimer forms part of the proteolipid pore wall to permeabilize mitochondria.
Subject(s)
Mitochondria/metabolism , Mitochondrial Membranes/metabolism , bcl-2-Associated X Protein/metabolism , Apoptosis/physiology , Humans , Lipid Bilayers/metabolismABSTRACT
In this Letter, two relevant references were omitted; see the accompanying Amendment for details. The original Letter has not been corrected.
ABSTRACT
SignificanceThe conservation of historical relics against microbial biodeterioration is critical to preserving cultural heritages. One major challenge is our limited understanding of microorganisms' dispersal, colonization, and persistence on relics after excavation and opening to external environments. Here, we investigate the ecological and physiological profiles of the microbiome within and outside the Dahuting Han Dynasty Tomb with a 1,800-y history. Actinobacteria dominate the microbiome in this tomb. Via interkingdom signaling mutualism, springtails carry Actinobacteria as one possible source into the tomb from surrounding environments. Subsequently, Actinobacteria produce cellulases combined with antimicrobial substances, which helps them to colonize and thrive in the tomb via intrakingdom competition. Our findings unravel the ecology of the microbiomes colonizing historical relics and provide help for conservation practices.
Subject(s)
Actinobacteria , Microbiota , BacteriaABSTRACT
Blue aleurone of barley is caused by the accumulation of delphinidin-based derivatives. Although these compounds are ideal nutrients for human health, they are undesirable contaminants in malt brewing. Therefore, the ability to add and remove this trait easily would facilitate breeding barley for different purposes. Here we identified a glutathione S-transferase gene (HvGST) that was responsible for the blue aleurone trait in Tibetan qingke barley by performing a genome-wide association study and RNA-sequencing analysis. Gene variation and expression analysis indicated that HvGST also participates in the transport and accumulation of anthocyanin in purple barley. Haplotype and the geographic distribution analyses of HvGST alleles revealed two independent natural variants responsible for the emergence of white aleurone: a 203-bp deletion causing premature termination of translation in qingke barley and two key single nucleotide polymorphisms in the promoter resulting in low transcription in Western barley. This study contributes to a better understanding of mechanisms of colored barley formation, and provides a comprehensive reference for marker-assisted barley breeding.
Subject(s)
Anthocyanins , Hordeum , Anthocyanins/metabolism , Genome-Wide Association Study , Haplotypes , Hordeum/genetics , Hordeum/metabolism , Plant BreedingABSTRACT
Natural Antisense Transcripts (NATs) are a kind of complex regulatory RNAs that play crucial roles in gene expression and regulation. However, the NATs in Cannabis Sativa L., a widely economic and medicinal plant rich in cannabinoids remain unknown. In this study, we comprehensively predicted C. sativa NATs genome-wide using strand-specific RNA sequencing (ssRNA-Seq) data, and validated the expression profiles by strand-specific quantitative reverse transcription PCR (ssRT-qPCR). Consequently, a total of 307 NATs were predicted in C. sativa, including 104 cis- and 203 trans- NATs. Functional enrichment analysis demonstrated the potential involvement of the C. sativa NATs in DNA polymerase activity, RNA-DNA hybrid ribonuclease activity, and nucleic acid binding. Finally, 18 cis- and 376 trans- NAT-ST pairs were predicted to produce 621 cis- and 5,679 trans- small interfering RNA (nat-siRNAs), respectively. These nat-siRNAs were potentially involved in the biosynthesis of cannabinoids and cellulose. All these results will shed light on the regulation of NATs and nat-siRNAs in C. sativa.