ABSTRACT
BACKGROUND: Diffuse midline glioma (DMG) is a pediatric tumor with dismal prognosis. Systemic strategies have been unsuccessful and radiotherapy (RT) remains the standard-of-care. A central impediment to treatment is the blood-brain barrier (BBB), which precludes drug delivery to the central nervous system (CNS). Focused ultrasound (FUS) with microbubbles can transiently and non-invasively disrupt the BBB to enhance drug delivery. This study aimed to determine the feasibility of brainstem FUS in combination with clinical doses of RT. We hypothesized that FUS-mediated BBB-opening (BBBO) is safe and feasible with 39 Gy RT. METHODS: To establish a safety timeline, we administered FUS to the brainstem of non-tumor bearing mice concurrent with or adjuvant to RT; our findings were validated in a syngeneic brainstem murine model of DMG receiving repeated sonication concurrent with RT. The brainstems of male B6 (Cg)-Tyrc-2J/J albino mice were intracranially injected with mouse DMG cells (PDGFB+, H3.3K27M, p53-/-). A clinical RT dose of 39 Gy in 13 fractions (39 Gy/13fx) was delivered using the Small Animal Radiation Research Platform (SARRP) or XRAD-320 irradiator. FUS was administered via a 0.5 MHz transducer, with BBBO and tumor volume monitored by magnetic resonance imaging (MRI). RESULTS: FUS-mediated BBBO did not affect cardiorespiratory rate, motor function, or tissue integrity in non-tumor bearing mice receiving RT. Tumor-bearing mice tolerated repeated brainstem BBBO concurrent with RT. 39 Gy/13fx offered local control, though disease progression occurred 3-4 weeks post-RT. CONCLUSION: Repeated FUS-mediated BBBO is safe and feasible concurrent with RT. In our syngeneic DMG murine model, progression occurs, serving as an ideal model for future combination testing with RT and FUS-mediated drug delivery.
Subject(s)
Blood-Brain Barrier , Glioma , Humans , Rats , Child , Male , Mice , Animals , Disease Models, Animal , Rats, Sprague-Dawley , Brain Stem , Drug Delivery Systems/methods , Magnetic Resonance Imaging , Glioma/radiotherapy , Microbubbles , BrainABSTRACT
INTRODUCTION: Focused ultrasound (FUS) is an innovative and emerging technology for the treatment of adult and pediatric brain tumors and illustrates the intersection of various specialized fields, including neurosurgery, neuro-oncology, radiation oncology, and biomedical engineering. OBJECTIVE: The authors provide a comprehensive overview of the application and implications of FUS in treating pediatric brain tumors, with a special focus on pediatric low-grade gliomas (pLGGs) and the evolving landscape of this technology and its clinical utility. METHODS: The fundamental principles of FUS include its ability to induce thermal ablation or enhance drug delivery through transient blood-brain barrier (BBB) disruption, emphasizing the adaptability of high-intensity focused ultrasound (HIFU) and low-intensity focused ultrasound (LIFU) applications. RESULTS: Several ongoing clinical trials explore the potential of FUS in offering alternative therapeutic strategies for pathologies where conventional treatments fall short, specifically centrally-located benign CNS tumors and diffuse intrinsic pontine glioma (DIPG). A case illustration involving the use of HIFU for pilocytic astrocytoma is presented. CONCLUSION: Discussions regarding future applications of FUS for the treatment of gliomas include improved drug delivery, immunomodulation, radiosensitization, and other technological advancements.
Subject(s)
Brain Neoplasms , Humans , Brain Neoplasms/therapy , Brain Neoplasms/diagnostic imaging , Child , Glioma/therapy , Glioma/diagnostic imaging , Ultrasonic Therapy/methodsABSTRACT
Understanding dexamethasone's effect on the immune microenvironment in glioma patients is of key importance. We performed a comprehensive literature review using the NCBI PubMed database for all articles meeting the following search criteria. ((dexamethasone[All Fields]) AND (glioma or glioblastoma)[Title/Abstract]) AND (immune or T cell or B cell or monocyte or neutrophil or macrophage). Forty-three manuscripts were deemed relevant to the topic at hand. Multiple clinical studies have linked dexamethasone use to decreased overall survival while preclinical studies in murine glioma models have demonstrated decreased tumor-infiltrating lymphocytes after dexamethasone administration.
Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Animals , Brain Neoplasms/drug therapy , Dexamethasone/therapeutic use , Glioma/drug therapy , Humans , Immunotherapy , Lymphocytes, Tumor-Infiltrating , Mice , Precision Medicine , Tumor MicroenvironmentABSTRACT
PURPOSE: Non-small cell lung cancer (NSCLC) brain metastases are associated with substantial morbidity and mortality. During recent years, accompanying dramatic improvements in systemic disease control, NSCLC brain metastases have emerged as an increasingly relevant clinical problem. However, optimal surveillance practices remain poorly defined. This purpose of this study was to further characterize the natural history, clinical course and risk factors associated with earlier development of subsequent NSCLC brain metastases to better inform clinical practice and help guide survivorship care. METHODS: We retrospectively reviewed all institutional NSCLC brain metastasis cases treated with radiotherapy between 1997 and 2015. Exclusion criteria included presence of brain metastases at initial NSCLC diagnosis and incomplete staging information. Interval time to brain metastases and subsequent survival were characterized using Kaplan-Meier and multivariate Cox regression analyses. RESULTS: Among 105 patients within this cohort, median interval time to development of brain metastases was 16 months. Median interval times were 29, 19, 16 and 13 months for Stage I-IV patients, respectively (P = 0.016). Additional independent predictors for earlier development of NSCLC brain metastases included non-adenocarcinomatous histopathology (HR 3.036, P < 0.001), no prior surgical resection (HR 1.609, P = 0.036) and no prior systemic therapy (HR 3.560, P = 0.004). Median survival following intracranial progression was 16 months. Delayed development of brain metastases was associated with better prognosis (HR 0.970, P < 0.001) but not survival following intracranial disease onset. CONCLUSIONS: Collectively, our results provide valuable insights into the natural history of NSCLC brain metastases. NSCLC stage, histology, prior surgical resection and prior systemic therapy emerged as independent predictors for interval time to brain metastases.
Subject(s)
Brain Neoplasms/epidemiology , Brain Neoplasms/secondary , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology , Adult , Aged , Aged, 80 and over , Brain Neoplasms/diagnosis , Carcinoma, Non-Small-Cell Lung/epidemiology , Carcinoma, Non-Small-Cell Lung/radiotherapy , Disease Progression , Female , Follow-Up Studies , Humans , Lung Neoplasms/epidemiology , Lung Neoplasms/radiotherapy , Male , Middle Aged , Neoplasm Staging , Prognosis , Retrospective Studies , Survival Analysis , Time FactorsABSTRACT
Prior studies of post-operative stereotactic radiosurgery (SRS) have not distinguished between Adjuvant SRS (ARS) versus Adjuvant SRS to residual/recurrent disease (ARD). In this study, we defined ARS and ARD and investigated local control (LC), overall survival (OS), distant development of brain metastases (DBF), and leptomeningeal disease (LMD). We retrospectively identified BM patients who received surgical resection and SRS for BM from an IRB approved database between Jan 2009-Aug 2015. Patients were stratified into two groups: ARS and ARD. LC was determined by follow-up MRI studies and OS was measured from the date of surgery. LC and OS were assessed using the Kaplan-Meier method. 70 cavities underwent surgical resection of BM and received SRS to the post-operative bed. 41 cavities were classified as ARS and 29 as ARD. There was no significant difference in 12-month LC between the ARS and ARD group (71.4 vs. 80.8%, respectively; p = 0.135) from the time point of SRS. The overall 1-year survival for ARS and ARD was 79.9 and 86.1%, respectively (p = 0.339). Mean time to progression was 6.45 and 8.0 months and median follow-up was 10 and 15 months for ARS and ARD, respectively. 11.8% of ARS patients and 15.4% of ARD patients developed LMD, p = 0.72. 29.4% of ARS and 48.0% of ARD patients developed DBF, p = 0.145. Our findings suggest that observation after surgical resection, with subsequent treatment with SRS after the development of local failure, may not compromise treatment efficacy. If validated, this would spare patients who do not recur post-surgically from additional treatment.
Subject(s)
Brain Neoplasms/radiotherapy , Neoplasm Recurrence, Local/radiotherapy , Radiosurgery , Brain Neoplasms/secondary , Disease Progression , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasm, Residual , Radiotherapy, Adjuvant , Retrospective Studies , Treatment OutcomeABSTRACT
Gliosarcoma is a rare histopathologic variant of glioblastoma traditionally associated with a poor prognosis. While gliosarcoma may represent a distinct clinical entity given its unique histologic composition and molecular features, its relative prognostic significance remains uncertain. While treatment of gliosarcoma generally encompasses the same standardized approach used in glioblastoma, supporting evidence is limited given its rarity. Here, we characterized 32 cases of gliosarcoma and retrospectively evaluated survival relative to 451 glioblastoma patients diagnosed during the same era within the same institution. Overall, we identified 22 primary gliosarcomas, representing 4.7% of WHO Grade IV primary glioblastomas, and 10 secondary gliosarcomas. With median age of 62, patients were predominately Caucasian (87.5%) and male (65.6%). Tumors with available molecular profiling were primarily MGMT-unmethylated (87.5%), IDH-1-preserved (100%) and EGFR wild-type (100%). Interestingly, while no significant median survival difference between primary gliosarcoma and glioblastoma was observed across the entire cohort (11.0 vs. 14.8 months, p = 0.269), median survival was worse for gliosarcoma specifically among patients who received modern temozolomide-based (TMZ) chemoradiotherapy (11.0 vs. 17.3 months, p = 0.006). Matched-pair analysis also trended toward worse median survival among gliosarcomas (11.0 vs. 19.6 months, log-rank p = 0.177, Breslow p = 0.010). While adjuvant radiotherapy (HR 0.206, p = 0.035) and TMZ-based chemotherapy (HR 0.531, p = 0.000) appeared protective, gliosarcoma emerged as a significantly poor prognostic factor on multivariate analysis (HR 3.27, p = 0.012). Collectively, our results suggest that gliosarcoma may still portend worse prognosis even with modern trimodality therapy.
Subject(s)
Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Glioblastoma/metabolism , Glioblastoma/pathology , Gliosarcoma/metabolism , Gliosarcoma/pathology , Adult , Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Female , Glioblastoma/genetics , Glioblastoma/therapy , Gliosarcoma/genetics , Gliosarcoma/therapy , Humans , Male , Middle Aged , Prognosis , Retrospective Studies , Survival AnalysisABSTRACT
Meningeal hemangiopericytoma (m-HPC) is a rare tumor of the central nervous system (CNS), which is distinguished clinically from meningioma by its tendency to recur and metastasize. The histological classification and grading scheme for m-HPC is still evolving and few studies have identified tumor features that are associated with metastasis. All patients at our institution with m-HPC were assessed for patient, tumor, and treatment characteristics associated with survival, recurrence, and metastasis. New findings were validated using the SEER database. Twenty-seven patients were identified in our institutional records with m-HPC with a median follow-up time of 85 months. Invasiveness was the strongest predictor of decreased overall survival (OS) and decreased metastasis-free survival (MFS) (p = 0.004 and 0.001). On subgroup analysis, bone invasion trended towards decreased OS (p = 0.056). Bone invasion and soft tissue invasion were significantly associated with decreased MFS (p = 0.001 and 0.012). An additional 315 patients with m-HPC were identified in the SEER database that had information on tumor invasion and 263 with information on distant metastasis. Invasion was significantly associated with decreased survival (HR = 5.769, p = 0.007) and metastasis (OR 134, p = 0.000) in the SEER data. In this study, the authors identified a previously unreported tumor characteristic, invasiveness, as the strongest factor associated with decreased survival and metastasis. The association of invasion with decreased survival and metastasis was confirmed in a separate, larger, publicly available database. Invasion may be a useful parameter in the histological grading and clinical management of hemangiopericytoma of the CNS.
Subject(s)
Central Nervous System Neoplasms/mortality , Central Nervous System Neoplasms/secondary , Hemangiopericytoma/mortality , Hemangiopericytoma/secondary , Neoplasm Invasiveness/physiopathology , Adult , Age Factors , Bone Neoplasms/pathology , Female , Follow-Up Studies , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasm Invasiveness/pathology , Proportional Hazards Models , Retrospective StudiesABSTRACT
Breast cancer brain metastasis (BCBM) is associated with high morbidity and mortality. Patients with breast cancer risk factors associated with rapid development of BCBM could potentially benefit from early brain metastasis screening. We retrospectively reviewed all BCBM patients treated with brain radiotherapy at our institution from 1997 to 2015. Interval time to BCBM was defined as date of pathologic breast cancer diagnosis to date of radiographic evidence of brain metastasis. Patients were stratified by breast cancer molecular subtype and stage at diagnosis. Kaplan Meier analysis was conducted on time to development of BCBM. Breast cancer risk factors were correlated with time to BCBM on Cox proportion hazard analysis. The study cohort comprised 121 BCBM patients, with median interval time to BCBM of 46 months. Times to BCBM for Her2+/2HR+, Her2+, Her2-/HR+, and triple-negative (TNBC) subtypes were 70, 44, 42, and 28 months respectively (p = 0.002). Time to BCBM for stages I, II, III, and IV were 70, 54, 29, and 24 months, respectively (p = 0.000). BCBM patients were further stratified by both molecular subtype (TNBC vs. non-TNBC) and stage (I, II vs. III, IV). Median times to BCBM for non-TNBC/stage I-II, TNBC/stage I-II, non-TNBC stage III-IV, and TNBC/stage III-IV were 68, 47, 29, and 6 months respectively (p = 0.000). Subtype and stage were associated with shorter time to BCBM on multivariate analysis. Subtype and initial stage are independently correlated with decreased time to development of BCBM. Patients with advanced high stage and triple negative breast cancer develop brain metastases significantly earlier.
Subject(s)
Brain Neoplasms/metabolism , Brain Neoplasms/secondary , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Adult , Aged , Aged, 80 and over , Brain Neoplasms/pathology , Brain Neoplasms/radiotherapy , Humans , Kaplan-Meier Estimate , Middle Aged , Neoplasm Staging , Prognosis , Proportional Hazards Models , Retrospective Studies , Time FactorsABSTRACT
We investigated effects of breast cancer subtype on overall survival (OS), local and distant control, and time from initial diagnosis to brain metastases (BM). We also investigated advances in graded prognostic assessment (GPA) scores. A cohort of 72 patients treated for BM from breast cancer with Gamma Knife stereotactic radiosurgery at our institution from 2000 to 2014 had subtyping available and were used for this study. Median follow up for OS was 12 months and for control was 6 months. OS for luminal, HER2, and triple negative subtypes were 26, 20, and 22 months. OS when stratified by Sperduto et al. (J Clin Oncol 30(4):419-425, 2012) and Subbiah et al. (J Clin Oncol 33(20):2239-2245, 2015) GPAs were similar (p = 0.087 and p = 0.063). KPS and treatment modality were significant for OS (p = 0.002; p = 0.034). On univariate analysis, triple negative subtype and >3 BM were trending and significant for decreased OS (p = 0.084; p = 0.047). On multivariable analysis HER2, triple negative, and >3 BM were significant for OS (p = 0.022; p = 0.040; p = 0.009). Subtype was significant for response on a per lesion basis (p = 0.007). Subtype was trending towards significance when analyzing time from initial diagnosis to BM treatment (p = 0.064). Breast cancer subtype is an important prognostic factor when stratifying breast cancer patients with BM. The addition of number of BM to the GPA is a useful addition and should be further investigated. Subtype has an effect on lesion response, and also on rate of development BM after initial diagnosis.
Subject(s)
Brain Neoplasms/secondary , Breast Neoplasms/pathology , Radiosurgery , Receptor, ErbB-2/metabolism , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Triple Negative Breast Neoplasms/pathology , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/surgery , Breast Neoplasms/metabolism , Breast Neoplasms/surgery , Case-Control Studies , Female , Follow-Up Studies , Humans , Immunoenzyme Techniques , Middle Aged , Neoplasm Staging , Prognosis , Survival Rate , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/surgeryABSTRACT
20-HETE is a potent inducer of endothelial ACE in vitro and administration of lisinopril or losartan attenuates blood pressure in models of 20-HETE-dependent hypertension. The present study was undertaken to further define the relationship between 20-HETE and the renin-angiotensin system in hypertension using an angiotensinogen-deficient mouse (Agt+/-). Treatment of male AGT+/- with 5α-dihydrotestosterone (DHT) increased systolic BP from 102±2 to 125±3mmHg; in comparison, the same treatment raised BP in wild type (WT) from 110±2 to 138±2mmHg. DHT increased vascular 20-HETE levels in AGT+/- and WT from 1.5±0.7 and 2.1±0.6 to 13.0±2.0 and 15.8±4.0ng/mg, respectively. Concurrent treatment with the 20-HETE antagonist, 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid (20-HEDE) prevented the increases in BP in both AGT+/- and WT mice. Administration of 20-HEDE at the peak of the DHT-induced BP increase (12 days) reduced BP to basal levels after 48h. Interestingly, basal levels of renal microvascular EETs were higher in AGT+/- compared to WT (55.2±9.7 vs 20.0±4.1ng/mg) and treatment of AGT+/- with DHT decreased the levels of EETs (28.4±5.1ng/mg). DHT-mediated changes in vascular EET level were not observed in WT mice. Vascular Cyp4a12 and ACE protein levels were increased in both AGT+/- and WT by 30-40% and decreased with concomitant administration of 20-HEDE. Lisinopril was as effective as 20-HEDE in preventing DHT-mediated increases in BP in both AGT+/- and WT mice. This study substantiates our previous findings that the RAS plays an important role in 20-HETE-mediated hypertension. It also proposes a novel interaction between 20-HETE and EETs.
Subject(s)
Androgens/adverse effects , Angiotensins/deficiency , Hydroxyeicosatetraenoic Acids/metabolism , Hydroxyeicosatetraenoic Acids/pharmacology , Hypertension , Androgens/pharmacology , Animals , Hydroxyeicosatetraenoic Acids/antagonists & inhibitors , Hydroxyeicosatetraenoic Acids/genetics , Hypertension/chemically induced , Hypertension/drug therapy , Hypertension/genetics , Hypertension/metabolism , Male , Mice , Mice, Mutant StrainsABSTRACT
Motor neuron degeneration resulting from the aggregation of the androgen receptor with an expanded polyglutamine tract (AR-polyQ) has been linked to the development of spinal and bulbar muscular atrophy (SBMA or Kennedy disease). Here we report that adding 5-hydroxy-1,7-bis(3,4-dimethoxyphenyl)-1,4,6-heptatrien-3-one (ASC-J9) disrupts the interaction between AR and its coregulators, and also increases cell survival by decreasing AR-polyQ nuclear aggregation and increasing AR-polyQ degradation in cultured cells. Intraperitoneal injection of ASC-J9 into AR-polyQ transgenic SBMA mice markedly improved disease symptoms, as seen by a reduction in muscular atrophy. Notably, unlike previous approaches in which surgical or chemical castration was used to reduce SBMA symptoms, ASC-J9 treatment ameliorated SBMA symptoms by decreasing AR-97Q aggregation and increasing VEGF164 expression with little change of serum testosterone. Moreover, mice treated with ASC-J9 retained normal sexual function and fertility. Collectively, our results point to a better therapeutic and preventative approach to treating SBMA, by disrupting the interaction between AR and AR coregulators.
Subject(s)
Curcumin/analogs & derivatives , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/metabolism , Phenotype , Receptors, Androgen/metabolism , Androgen Receptor Antagonists , Animals , COS Cells , Cell Line , Chlorocebus aethiops , Curcumin/therapeutic use , Disease Models, Animal , Female , Male , Mice , Mice, Transgenic , Muscular Atrophy, Spinal/geneticsABSTRACT
Although the mechanism underlying the effect of androgen on BP and cardiovascular disease is not well understood, recent studies suggest that 20-hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE), a primary cytochrome P450 4 (Cyp4)-derived eicosanoid, may mediate androgen-induced hypertension. Here, treatment of normotensive mice with 5α-dihydrotestosterone increased BP and induced both Cyp4a12 expression and 20-HETE levels in preglomerular microvessels. Administration of a 20-HETE antagonist prevented and reversed the effects of dihydrotestosterone on BP. Cyp4a14(-/-) mice, which exhibit androgen-sensitive hypertension in the male mice, produced increased levels of vascular 20-HETE; furthermore, administration of a 20-HETE antagonist normalized BP. To examine whether androgen-independent increases in 20-HETE are sufficient to cause hypertension, we studied Cyp4a12-transgenic mice, which express the CYP4A12-20-HETE synthase under the control of a doxycycline-sensitive promoter. Administration of doxycycline increased BP by 40%, and administration of a 20-HETE antagonist prevented this increase. Levels of CYP4A12 and 20-HETE in preglomerular microvessels of doxycycline-treated transgenic mice approximately doubled, correlating with increased 20-HETE-dependent sensitivity to phenylephrine-mediated vasoconstriction and with decreased acetylcholine-mediated vasodilation in the renal microvasculature. We observed a similar contribution of 20-HETE to myogenic tone in the mesenteric microvasculature. Taken together, these results suggest that 20-HETE both mediates androgen-induced hypertension and can cause hypertension independent of androgen.
Subject(s)
Androgens/pharmacology , Blood Pressure/drug effects , Cytochrome P-450 Enzyme System/metabolism , Dihydrotestosterone/pharmacology , Hydroxyeicosatetraenoic Acids/metabolism , Hypertension/drug therapy , Kidney/drug effects , Animals , Cytochrome P450 Family 4 , Hydroxyeicosatetraenoic Acids/pharmacology , Hypertension/metabolism , Hypertension/physiopathology , Kidney/metabolism , Kidney/physiopathology , Male , Mice , Up-RegulationABSTRACT
Immunotherapeutic agents have revolutionized cancer treatment over the past decade. However, most patients fail to respond to immunotherapy alone. A growing body of preclinical studies highlights the potential for synergy between radiation therapy and immunotherapy, but the outcomes of clinical studies have been mixed. This review summarizes the current state of immunotherapy and radiation combination therapy across cancers, highlighting existing challenges and promising areas for future investigation.
Subject(s)
Neoplasms , Humans , Neoplasms/radiotherapy , Neoplasms/drug therapy , Immunotherapy , Combined Modality TherapyABSTRACT
PURPOSE: Diffuse midline glioma (DMG) is a fatal tumor traditionally treated with radiation therapy (RT) and previously characterized as having a noninflammatory tumor immune microenvironment (TIME). FLASH is a novel RT technique using ultra-high dose rate that is associated with decreased toxicity and effective tumor control. However, the effect of FLASH and conventional (CONV) RT on the DMG TIME has not yet been explored. METHODS AND MATERIALS: Here, we performed single-cell RNA sequencing (scRNA-seq) and flow cytometry on immune cells isolated from an orthotopic syngeneic murine model of brainstem DMG after the use of FLASH (90 Gy/sec) or CONV (2 Gy/min) dose-rate RT and compared to unirradiated tumor (SHAM). RESULTS: At day 4 post-RT, FLASH exerted similar effects as CONV in the predominant microglial (MG) population, including the presence of two activated subtypes. However, at day 10 post-RT, we observed a significant increase in the type 1 interferon α/ß receptor (IFNAR+) in MG in CONV and SHAM compared to FLASH. In the non-resident myeloid clusters of macrophages (MACs) and dendritic cells (DCs), we found increased type 1 interferon (IFN1) pathway enrichment for CONV compared to FLASH and SHAM by scRNA-seq. We observed this trend by flow cytometry at day 4 post-RT in IFNAR+ MACs and DCs, which equalized by day 10 post-RT. DMG control and murine survival were equivalent between RT dose rates. CONCLUSIONS: Our work is the first to map CONV and FLASH immune alterations of the DMG TIME with single-cell resolution. Although DMG tumor control and survival were similar between CONV and FLASH, we found that changes in immune compartments differed over time. Importantly, although both RT modalities increased IFN1, we found that the timing of this response was cell-type and dose-rate dependent. These temporal differences, particularly in the context of tumor control, warrant further study.
Subject(s)
Glioma , Microglia , Animals , Glioma/radiotherapy , Glioma/immunology , Glioma/pathology , Mice , Microglia/radiation effects , Microglia/immunology , Tumor Microenvironment/immunology , Brain Neoplasms/radiotherapy , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Receptor, Interferon alpha-beta/genetics , Mice, Inbred C57BL , Single-Cell Analysis/methods , Dendritic Cells/immunology , Dendritic Cells/radiation effects , Macrophages/immunologyABSTRACT
High-grade gliomas (HGG) are deadly diseases for both adult and pediatric patients. Recently, it has been shown that neuronal activity promotes the progression of multiple subgroups of HGG. However, epigenetic mechanisms that govern this process remain elusive. Here we report that the chromatin remodeler chromodomain helicase DNA-binding protein 2 (CHD2) regulates neuron-glioma interactions in diffuse midline glioma (DMG) characterized by onco-histone H3.1K27M. Depletion of CHD2 in H3.1K27M DMG cells compromises cell viability and neuron-to-glioma synaptic connections in vitro, neuron-induced proliferation of H3.1K27M DMG cells in vitro and in vivo, activity-dependent calcium transients in vivo, and extends the survival of H3.1K27M DMG-bearing mice. Mechanistically, CHD2 coordinates with the transcription factor FOSL1 to control the expression of axon-guidance and synaptic genes in H3.1K27M DMG cells. Together, our study reveals a mechanism whereby CHD2 controls the intrinsic gene program of the H3.1K27M DMG subtype, which in turn regulates the tumor growth-promoting interactions of glioma cells with neurons. Significance: Neurons drive the proliferation and invasion of glioma cells. Here we show that chromatin remodeler chromodomain helicase DNA-binding protein 2 controls the epigenome and expression of axon-guidance and synaptic genes, thereby promoting neuron-induced proliferation of H3.1K27M diffuse midline glioma and the pathogenesis of this deadly disease.
Subject(s)
Glioma , Neurons , Humans , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Mice , Animals , Neurons/metabolism , Neurons/pathology , Cell Line, Tumor , Child , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Proliferation , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , DNA-Binding ProteinsABSTRACT
Diffuse Midline Gliomas (DMGs) are universally fatal, primarily pediatric malignancies affecting the midline structures of the central nervous system. Despite decades of clinical trials, treatment remains limited to palliative radiation therapy. A major challenge is the coexistence of molecularly distinct malignant cell states with potentially orthogonal drug sensitivities. To address this challenge, we leveraged established network-based methodologies to elucidate Master Regulator (MR) proteins representing mechanistic, non-oncogene dependencies of seven coexisting subpopulations identified by single-cell analysis-whose enrichment in essential genes was validated by pooled CRISPR/Cas9 screens. Perturbational profiles of 372 clinically relevant drugs helped identify those able to invert the activity of subpopulation-specific MRs for follow-up in vivo validation. While individual drugs predicted to target individual subpopulations-including avapritinib, larotrectinib, and ruxolitinib-produced only modest tumor growth reduction in orthotopic models, systemic co-administration induced significant survival extension, making this approach a valuable contribution to the rational design of combination therapy.
ABSTRACT
BACKGROUND: Diffuse midline glioma (DMG) is the most aggressive primary brain tumor in children. All previous studies examining the role of systemic agents have failed to demonstrate a survival benefit; the only standard of care is radiation therapy (RT). Successful implementation of radiosensitization strategies in DMG remains an essential and promising avenue of investigation. We explore the use of Napabucasin, an NAD(P)H quinone dehydrogenase 1 (NQO1)-bioactivatable reactive oxygen species (ROS)-inducer, as a potential therapeutic radiosensitizer in DMG. METHODS: In this study, we conduct in vitro and in vivo assays using patient-derived DMG cultures to elucidate the mechanism of action of Napabucasin and its radiosensitizing properties. As penetration of systemic therapy through the blood-brain barrier (BBB) is a significant limitation to the success of DMG therapies, we explore focused ultrasound (FUS) and convection-enhanced delivery (CED) to overcome the BBB and maximize therapeutic efficacy. RESULTS: Napabucasin is a potent ROS-inducer and radiosensitizer in DMG, and treatment-mediated ROS production and cytotoxicity are dependent on NQO1. In subcutaneous xenograft models, combination therapy with RT improves local control. After optimizing targeted drug delivery using CED in an orthotopic mouse model, we establish the novel feasibility and survival benefit of CED of Napabucasin concurrent with RT. CONCLUSIONS: As nearly all DMG patients will receive RT as part of their treatment course, our validation of the efficacy of radiosensitizing therapy using CED to prolong survival in DMG opens the door for exciting novel studies of alternative radiosensitization strategies in this devastating disease while overcoming limitations of the BBB.
ABSTRACT
20-Hydroxyeicosatetraenoic acid (20-HETE) is a cytochrome P-450 (Cyp)-derived arachidonic acid metabolite that has been shown to increase smooth muscle contractions and proliferation, stimulate endothelial dysfunction and activation, and promote hypertension. We examined if 20-HETE contributes to microvascular remodeling in hypertension. In Sprague-Dawley rats, administration of the 20-HETE biosynthesis inhibitor HET0016 or the 20-HETE antagonist N-20-hydroxyeicosa-6(Z),15(Z)-dienoic acid (20-HEDE) prevented 5α-dihydrotestosterone (DHT)-induced increases in blood pressure as well as abrogated DHT-induced increases in the media-to-lumen ratio (M/L), media thickness, and collagen IV deposition in renal interlobar arteries. Reserpine prevented blood pressure elevation in DHT-treated rats but did not affect microvascular remodeling (M/L, media thickness, and collagen deposition); under these conditions, treatment with the 20-HETE antagonist attenuated microvascular remodeling, suggesting that 20-HETE contributes to DHT-induced vascular remodeling independent of blood pressure elevation. In Cyp4a14(-/-) mice, which display androgen-driven and 20-HETE-dependent hypertension, treatment with the 20-HETE antagonist abolished remodeling of renal resistance arteries measured as media thickness (24 ± 1 vs. 15 ± 1 µm) and M/L (0.29 ± 0.03 vs. 0.17 ± 0.01). Moreover, in Cyp4a12 transgenic mice in which the expression of Cyp4a12-20-HETE synthase is driven by a tetracycline-sensitive promoter, treatment with doxycycline resulted in blood pressure elevation (140 ± 4 vs. 92 ± 5 mmHg) and a significant increase in remodeling of renal resistance arteries (media thickness: 23 ± 1 vs. 16 ± 1 µm; M/L: 0.39 ± 0.04 vs. 0.23 ± 0.02); these increases were abrogated by cotreatment with 20-HEDE. This study demonstrated that 20-HETE is a key regulator of microvascular remodeling in hypertension; its effect is independent of blood pressure elevation and androgen levels.
Subject(s)
Hydroxyeicosatetraenoic Acids/pharmacology , Hypertension/physiopathology , Renal Artery/drug effects , Animals , Blood Pressure/drug effects , Dihydrotestosterone , Hydroxyeicosatetraenoic Acids/antagonists & inhibitors , Male , Mice , Rats , Rats, Sprague-Dawley , Renal Artery/physiopathology , Reserpine/pharmacologyABSTRACT
OBJECTIVE: 20-hydroxyeicosatetraenoic acid (20-HETE) promotes endothelial dysfunction by uncoupling endothelial NO synthase, stimulating O(2)(-) production, and reducing NO bioavailability. Moreover, 20-HETE-dependent vascular dysfunction and hypertension are associated with upregulation of the renin-angiotensin system This study was undertaken to examine the contribution of renin-angiotensin system to 20-HETE actions in the vascular endothelium. METHODS AND RESULTS: In endothelial cells, 20-HETE induced angiotensin-converting enzyme (ACE) mRNA levels and increased ACE protein and activity by 2- to 3-fold; these effects were negated with addition of the 20-HETE antagonist, 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid (20 HEDE). 20-HETE induced ACE expression was protein kinase C independent and epidermal growth factor receptor tyrosine kinase and IκB kinase ß dependent. ACE short interfering RNA abolished 20-HETE-mediated inhibition of NO production and stimulation of O(2)(-) generation, whereas angiotensin II type 1 receptor short interfering RNA attenuated these effects by 40%. 20-HETE-stimulated O(2)(-) production was negated by 20-HEDE and was attenuated by lisinopril and losartan. Importantly, 20-HETE-mediated impairment of acetylcholine-induced relaxation in rat renal interlobar arteries was also attenuated by lisinopril and losartan. CONCLUSIONS: These results indicate that ACE and angiotensin II type 1 receptor activation contribute to 20-HETE-mediated endothelial cell and vascular dysfunction and further enforce the notion that excessive production of 20-HETE within the vasculature leads to hypertension via mechanisms that include the induction of endothelial ACE, thus, perpetuating an increase in vascular angiotensin which, together with 20-HETE, promotes vascular dysfunction.
Subject(s)
Endothelial Cells/drug effects , Hydroxyeicosatetraenoic Acids/pharmacology , Peptidyl-Dipeptidase A/biosynthesis , Renin-Angiotensin System/drug effects , Acetylcholine/pharmacology , Angiotensin II/biosynthesis , Cells, Cultured , Endothelial Cells/metabolism , Enzyme Induction/drug effects , Humans , I-kappa B Kinase/physiology , Protein-Tyrosine Kinases/physiology , Renin-Angiotensin System/physiology , Superoxides/metabolismABSTRACT
The opening of the blood-brain barrier (BBB) by focused ultrasound (FUS) coupled with intravenously injected microbubbles can be leveraged as a form of immunotherapy for the treatment of neurodegenerative disorders. However, how FUS BBB opening affects brain macrophages is not well understood. Here by using single-cell sequencing to characterize the distinct responses of microglia and central nervous system-associated macrophages (CAMs) to FUS-mediated BBB opening in mice, we show that the treatment remodels the immune landscape via the recruitment of CAMs and the proliferation of microglia and via population size increases in disease-associated microglia. Both microglia and CAMs showed early and late increases in population sizes, yet only the proliferation of microglia increased at both timepoints. The population of disease-associated microglia also increased, accompanied by the upregulation of genes associated with gliogenesis and phagocytosis, with the depletion of brain macrophages significantly decreasing the duration of BBB opening.