Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
J Sci Food Agric ; 104(6): 3559-3569, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38147410

ABSTRACT

BACKGROUND: Tetragenococcus halophilus is a halophilic lactic acid bacterium (LAB) isolated from soya sauce moromi. During the production of these fermented foods, acid stress is an inevitable environmental stress. In our previous study, T. halophilus could form biofilms and the cells in the biofilms exhibited higher cell viability under multiple environmental stresses, including acid stress. RESULTS: In this study, the effect of preformed T. halophilus biofilms on cell survival, cellular structure, intracellular environment, and the expression of genes and proteins under acid stress was investigated. The result showed that acid stress with pH 4.30 for 1.5 h reduced the live T. halophilus cell count and caused cellular structure damage. However, T. halophilus biofilm cells exhibited greater cell survival under acid stress than the planktonic cells, and biofilm formation reduced the damage of acid stress to the cell membrane and cell wall. The biofilm cells maintained a higher level of H+ -ATPase activity and intracellular ammonia concentration after acid stress. The RNA-Seq and iTRAQ technologies revealed that the genes and proteins associated with ATP production, the uptake of trehalose and N-acetylmuramic acid, the assembly of H+ -ATPase, amino acid biosynthesis and metabolism, ammonia production, fatty acid biosynthesis, CoA biosynthesis, thiamine production, and acetoin biosynthesis might be responsible for the stronger acid tolerance of T. halophilus biofilm cells together. CONCLUSION: These findings further explained the mechanisms that allowed LAB biofilm cells to resist environmental stress. © 2023 Society of Chemical Industry.


Subject(s)
Ammonia , Enterococcaceae , Lactobacillales , RNA-Seq , Cellular Structures , Adenosine Triphosphatases
2.
J Sci Food Agric ; 104(4): 2398-2405, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37996964

ABSTRACT

BACKGROUND: Yeast is often used to build cell factories to produce various chemicals or nutrient substances, which means the yeast has to encounter stressful environments. Previous research reported that unsaturated fatty acids were closely related to yeast stress resistance. Engineering unsaturated fatty acids may be a viable strategy for enhancing the stress resistance of cells. RESULTS: In this study, two desaturase genes, OLE1 and FAD2 from Z. rouxii, were overexpressed in S. cerevisiae to determine how unsaturated fatty acids affect cellular stress tolerance of cells. After cloning and plasmid recombination, the recombinant S. cerevisiae cells were constructed. Analysis of membrane fatty acid contents revealed that the recombinant S. cerevisiae with overexpression of OLE1 and FAD2 genes contained higher levels of fatty acids C16:1 (2.77 times), C18:1 (1.51 times) and C18:2 (4.15 times) than the wild-type S. cerevisiae pY15TEF1. In addition, recombinant S. cerevisiae cells were more resistant to multiple stresses, and exhibited improved membrane functionality, including membrane fluidity and integrity. CONCLUSION: These findings demonstrated that strengthening the expression of desaturases was beneficial to stress tolerance. Overall, this study may provide a suitable means to build a cell factory of industrial yeast cells with high tolerance during biological manufacturing. © 2023 Society of Chemical Industry.


Subject(s)
Fatty Acid Desaturases , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Fatty Acids, Unsaturated/metabolism , Fatty Acids/metabolism
3.
Food Microbiol ; 113: 104281, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37098426

ABSTRACT

Arginine deiminase pathway, controlled by arginine deiminase, ornithine carbamoyltransferase and carbamate kinase, could affect and modulate the intracellular pH homeostasis of lactic acid bacteria under acid stress. Herein, strategy based on exogenous addition of arginine had been proposed to improve the robustness of Tetragenococcus halophilus during acid stressed condition. Results indicated cells cultured in the presence of arginine acquired high tolerance to acid stress mainly through maintaining the homeostasis of intracellular microenvironment. Additionally, metabolomic analysis and q-PCR showed the content of intracellular metabolites and expression levels of genes involved in ADI pathway significantly increased when cells encountered acid stress with the presence of exogenous arginine. Furthermore, Lactococcus lactis NZ9000 with heterologous overexpression of arcA and arcC from T. halophilus exhibited high stress tolerance to acidic condition. This study may provide an insight into the systematical understanding about the mechanism underlying acid tolerance and improve the fermentation performance of LAB during harsh condition.


Subject(s)
Lactobacillales , Lactobacillales/metabolism , Enterococcaceae/metabolism , Hydrolases/genetics , Hydrolases/metabolism , Arginine
4.
Food Microbiol ; 115: 104322, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37567632

ABSTRACT

Zygosaccharomyces rouxii has excellent fermentation performance and good tolerance to osmotic stress. Acetyl-CoA is a crucial intermediate precursor in the central carbon metabolic pathway of yeast. This study investigated the effect of engineering acetyl-CoA metabolism on the membrane functionality and stress tolerance of yeast. Firstly, exogenous supplementation of acetyl-CoA improved the biomass and the ability of unsaturated fatty acid synthesis of Z. rouxii under salt stress. Q-PCR results suggested that the gene ACSS (coding acetyl-CoA synthetase) was significantly up-expressed. Subsequently, the gene ACSS from Z. rouxii was transformed and heterologously expressed in S. cerevisiae. The recombinant cells exhibited better multiple stress (salt, acid, heat, and cold) tolerance, higher fatty acid contents, membrane integrity, and fluidity. Our findings may provide a suitable means to enhance the stress tolerance and fermentation efficiency of yeast under harsh fermentation environments.


Subject(s)
Saccharomyces cerevisiae , Zygosaccharomyces , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Acetyl Coenzyme A/metabolism , Acetyl Coenzyme A/pharmacology , Zygosaccharomyces/genetics , Fermentation
5.
Food Microbiol ; 112: 104239, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36906322

ABSTRACT

Physical injury carried by dried process was an inevitable and hostile problem which could seriously affect the quality and viability of microbial agents. In this study, heat preadaptation was successfully applied as a pretreatment to fight against the physical stresses encountered during freeze-dried and spray-dried process and develop a high activity Tetragenococcus halophilus powder. The results indicated T. halophilus cells maintained a higher viability in dried powder when cells were treated with heat preadaptation before dried process. Flow cytometry analysis illustrated that heat preadaptation contributed to maintain a high membrane integrity during dried process. Besides, glass transition temperatures of dried powder increased when cells were preheated, which further verified that higher stability was obtained in group preadaptation during shelf life. Additionally, dried powder prepared by heat shock presented a better fermentation performance, suggesting heat preadaptation may be a promising strategy to prepare bacterial powder by freeze drying or spray drying.


Subject(s)
Lactobacillales , Spray Drying , Powders , Freeze Drying/methods , Temperature
6.
Crit Rev Food Sci Nutr ; : 1-14, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35875880

ABSTRACT

With the rapid development of systems biology technology, there is a deeper understanding of the molecular biological mechanisms and physiological characteristics of microorganisms. Yeasts are widely used in the food industry with their excellent fermentation performances. While due to the complex environments of food production, yeasts have to suffer from various stress factors. Thus, elucidating the stress mechanisms of food yeasts and proposing potential strategies to improve tolerance have been widely concerned. This review summarized the recent signs of progress in the variety, functions, and stress tolerance of food yeasts. Firstly, the main food yeasts occurred in fermented foods, and the taxonomy levels are demonstrated. Then, the main functions of yeasts including aroma enhancer, safety performance enhancer, and fermentation period reducer are discussed. Finally, the stress response mechanisms of yeasts and the strategies to improve the stress tolerance of cells are reviewed. Based on sorting out these related recent researches systematically, we hope that this review can provide help and approaches to further exert the functions of food yeasts and improve food production efficiency.

7.
Food Microbiol ; 106: 104056, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35690450

ABSTRACT

This study aimed to investigate the formation and abatement strategies of biogenic amines (BAs) in the moromi contaminated accidently during Cantonese soy sauce (CSS) production processes. The ratio of total acid/amino nitrogen (TA/AAN) in koji can be used to predict the change in BAs content. Of the three main phases, BAs contents were more significantly increased once moromi manufacturing- and fermentation-phase were polluted. By co-culturing Tetragenococcus halophilus CGMCC3792 with Zygosaccharomyces rouxii CGMCC21865, BAs content was reduced by 59.96% and 51.10%, respectively, for the contaminated initial and fermenting moromi. Moreover, BAs content was reduced by 67.68% via the split batch fermentation method for the latter. Based on high throughput sequencing and metatranscriptome technology, BAs content was closely related to Lactobacillus abundance. It revealed the mechanism of abating BAs by inhibiting decarboxylase expression and changing redox potential. Therefore, it was an efficient strategy for abating BAs content and improving the flavor profile of CSS.


Subject(s)
Soy Foods , Zygosaccharomyces , Biogenic Amines/metabolism , Enterococcaceae , Fermentation , Saccharomycetales , Zygosaccharomyces/genetics
8.
J Sci Food Agric ; 102(14): 6263-6272, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35510311

ABSTRACT

BACKGROUND: Zygosaccharomyces rouxii plays an irreplaceable role in the manufacture of traditional fermented foods, which are produced in a high-salt environment. However, there is little research on strategies for improving salt tolerance of Z. rouxii. RESULTS: In this study, metabolomics was used to reveal the changes in intracellular metabolites under salt stress, and the results show that most of the carbohydrate contents decreased, the contents of xanthohumol and glycerol increased (fold change 4.07 and 5.35, respectively), while the contents of galactinol, xylitol and d-threitol decreased (fold change -9.43, -5.83 and -3.59, respectively). In addition, the content of four amino acids and six organic acids decreased, while that of the ten nucleotides increased. Notably, except for stearic acid (C18:0), all fatty acid contents increased. Guided by the metabolomics results, the effect of addition of seven exogenous fatty acids (C12:0, C14:0, C16:0, C18:0, C16:1, C18:1, and C18:2) on the salt tolerance of Z. rouxii was analyzed, and the results suggested that four exogenous fatty acids (C12:0, C16:0, C16:1, and C18:1) can increase the biomass yield and maximum growth rate. Physiological analyses demonstrated that exogenous fatty acids could regulate the distribution of fatty acids in the cell membrane, increase the degree of unsaturation, improve membrane fluidity, and maintain cell integrity, morphology and surface roughness. CONCLUSION: These results are applicable to revealing the metabolic mechanisms of Z. rouxii under salt stress and screening potential protective agents to improve stress resistance by adding exogenous fatty acids. © 2022 Society of Chemical Industry.


Subject(s)
Zygosaccharomyces , Amino Acids/metabolism , Fatty Acids/metabolism , Glycerol/metabolism , Nucleotides/metabolism , Saccharomycetales , Salt Tolerance , Stearic Acids/metabolism , Xylitol/metabolism , Xylitol/pharmacology , Zygosaccharomyces/metabolism
9.
Compr Rev Food Sci Food Saf ; 21(4): 3346-3375, 2022 07.
Article in English | MEDLINE | ID: mdl-35762651

ABSTRACT

Food fermentation is driven by microorganisms, which usually coexist as multispecies biofilms. The activities and interactions of functional microorganisms and pathogenic bacteria in biofilms have important implications for the quality and safety of fermented foods. It was verified that the biofilm lifestyle benefited the fitness of microorganisms in harsh environments and intensified the cooperation and competition between biofilm members. This review focuses on multispecies biofilm formation, microbial interactions and communication in biofilms, and the application of multispecies biofilms in food fermentation. Microbial aggregation and adhesion are important steps in the early stage of multispecies biofilm formation. Different biofilm-forming abilities and strategies among microorganisms lead to several types of multispecies biofilm formation. The spatial distribution of multispecies biofilms reflects microbial interactions and biofilm function. Then, we discuss the intrinsic factors and external manifestations of multispecies biofilm system succession. Several typical interspecies cooperation and competition modes and mechanisms of microbial communication were reviewed in this review. The main limitations of the studies included in this review are the relatively small number of studies of biofilms formed by functional microorganisms during fermentation and the lack of direct evidence for the formation process of multispecies biofilms and microbial interactions and communication within biofilms. This review aims to provide the food industry with a sufficient understanding of multispecies biofilms in food fermentation. Practical Application: Meanwhile, it offers a reference value for better controlling and utilizing biofilms during food fermentation process, and the improvement of the yield, quality, and safety of fermented products including Chinese Baijiu, cheeese,kefir, soy sauce, kombucha, and fermented olive.


Subject(s)
Biofilms , Microbial Interactions , Bacteria , Communication , Fermentation
10.
Mol Syst Biol ; 16(3): e9170, 2020 03.
Article in English | MEDLINE | ID: mdl-32175694

ABSTRACT

Profiling of biological relationships between different molecular layers dissects regulatory mechanisms that ultimately determine cellular function. To thoroughly assess the role of protein post-translational turnover, we devised a strategy combining pulse stable isotope-labeled amino acids in cells (pSILAC), data-independent acquisition mass spectrometry (DIA-MS), and a novel data analysis framework that resolves protein degradation rate on the level of mRNA alternative splicing isoforms and isoform groups. We demonstrated our approach by the genome-wide correlation analysis between mRNA amounts and protein degradation across different strains of HeLa cells that harbor a high grade of gene dosage variation. The dataset revealed that specific biological processes, cellular organelles, spatial compartments of organelles, and individual protein isoforms of the same genes could have distinctive degradation rate. The protein degradation diversity thus dissects the corresponding buffering or concerting protein turnover control across cancer cell lines. The data further indicate that specific mRNA splicing events such as intron retention significantly impact the protein abundance levels. Our findings support the tight association between transcriptome variability and proteostasis and provide a methodological foundation for studying functional protein degradation.


Subject(s)
Protein Isoforms/analysis , Proteins/analysis , RNA Isoforms/metabolism , RNA, Messenger/metabolism , Alternative Splicing , Gene Expression Regulation, Neoplastic , HeLa Cells , Humans , Isotope Labeling/methods , Mass Spectrometry , Protein Isoforms/metabolism , Proteins/metabolism , Proteolysis , Proteomics/methods , RNA Isoforms/genetics , RNA, Messenger/genetics , Workflow
11.
Appl Microbiol Biotechnol ; 105(1): 259-270, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33216160

ABSTRACT

Zygosaccharomyces rouxii plays important roles in the brewing process of fermented foods such as soy sauce, where salt stress is a frequently encountered condition. In this study, effect of heat preadaptation on salt tolerance of Z. rouxii and the protective mechanisms underlying heat preadaptation were investigated based on physiological and transcriptomic analyses. Results showed that cells subjected to heat preadaptation (37 °C, 90 min) prior to salt stress aroused many physiological responses, including maintaining cell surface smooth and intracellular pH level, increasing Na+/K+-ATPase activity. Cells subjected to heat preadaptation increased the amounts of unsaturated fatty acids (palmitoleic C16:1, oleic C18:1, linoleic C18:2) and decreased the amounts of saturated fatty acids (palmitic C16:0, stearic C18:0) which caused the unsaturation degree (unsaturated/saturated = U/S ratio) increased by 2.4 times when compared with cells without preadaptation under salt stress. Besides, salt stress led to increase in contents of 5 amino acids (valine, proline, threonine, glycine, and tyrosine) and decrease of 2 amino acids (serine and lysine). When comparing the cells pre-exposed to heat preadaptation followed by challenged with salt stress and the cells without preadaptation under salt stress, the serine, threonine, and lysine contents increased significantly. RNA sequencing revealed that the metabolic level of glycolysis by Z. rouxii was weakened, while the metabolic levels of the pentose phosphate pathway and the riboflavin were enhanced in cells during heat preadaptation. Results presented in this study may contribute to understand the bases of adaptive responses in Z. rouxii and rationalize its exploitation in industrial processes.Key points• Heat preadaptation can improve high salinity tolerance of Z. rouxii.• Combined physiological and transcriptomic analyses of heat preadaptation mechanisms.• Provide theoretical support for the application of Z. rouxii.


Subject(s)
Zygosaccharomyces , Hot Temperature , Saccharomycetales , Salt Stress , Transcriptome , Zygosaccharomyces/genetics
12.
Food Microbiol ; 97: 103750, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33653523

ABSTRACT

The accumulation of ethanol has a negative effect on the viability and fermentation performance of microorganisms during the production of fermented foods because of its toxicity. In this study, we investigated the effect of co-culture with Tetragenococcus halophilus on ethanol stress resistance of Zygosaccharomyces rouxii. The result showed that co-culture with T. halophilus promoted cell survival of Z. rouxii under ethanol stress, and the tolerance improved with increasing co-culture time when ethanol content was 8%. Physiological analysis showed that the co-cultured Z. rouxii cells maintained higher intracellular content of trehalose and amino acids including tyrosine, tryptophan, arginine and proline after 8% ethanol stress for 90 min. The membrane integrity analysis and biophysical analysis of the cell surface indicated that the presence of ethanol resulted in cell membrane damage and changes of Young's modulus value and roughness of cell surface. While the co-cultured Z. rouxii cells exhibited better membrane integrity, stiffer and smoother cell surface than single-cultured cells under ethanol stress. As for transcriptomic analyses, the genes involved in unsaturated fatty acid biosynthesis, trehalose biosynthesis, various types of N-glycan biosynthesis, inositol phosphate metabolism, MAPK signaling pathway and tight junction had higher expression in co-cultured Z. rouxii cells with down-regulation of majority of gene expression after stress. And these genes may function in the improvement of ethanol tolerance of Z. rouxii in co-culture.


Subject(s)
Enterococcaceae/growth & development , Ethanol/metabolism , Saccharomycetales/growth & development , Saccharomycetales/metabolism , Amino Acids/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Coculture Techniques , Enterococcaceae/chemistry , Enterococcaceae/genetics , Enterococcaceae/metabolism , Fermentation , Fungal Proteins/genetics , Fungal Proteins/metabolism , Saccharomycetales/chemistry , Saccharomycetales/genetics , Surface Properties
13.
Can J Microbiol ; 66(1): 59-70, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31644885

ABSTRACT

In this study, we explored the effect of chemical oxygen demand (COD) load on the nitrification and microbial communities in activated sludge isolated from an aerobic nitrifying tank. The activated sludge was cultured in three different COD groups: L-COD, 200 mg/L; M-COD, 1200 mg/L; H-COD, 4200 mg/L. The results indicated that the COD exerts a negligible effect on the nitrogen removal ability within the first 24 h. However, the nitrification rate decreased with culture time; the ammonium degradation rates were found to be 80.26%, 57.56%, and 43.43% at 72 h in the three COD groups, respectively. These values correspond to decreases of 19.40%, 41.83%, and 51.48%, respectively, in relation to those observed at 24 h. The activated sludge in the different COD groups exhibited similar community compositions after 24 h, as assessed by Illumina high-throughput sequencing, while a significant difference in the relative abundances of some organisms occurred after 48 and 72 h. Proteobacteria was the main phylum, with a relative abundance of >51.45%. The genera Aridibacter, Paracoccus, Nitrospira, and Nitrosomonas were suppressed by COD load over time. This study may contribute to our knowledge about the nitrification ability and microbial communities in activated sludge at different COD load levels.


Subject(s)
Biological Oxygen Demand Analysis , Microbiota , Nitrogen/metabolism , Sewage/microbiology , Water Pollutants, Chemical/metabolism , Ammonium Compounds/analysis , Ammonium Compounds/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Bioreactors/microbiology , Microbiota/genetics , Nitrification , Nitrogen/analysis , Time Factors , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis
14.
J Food Sci Technol ; 57(4): 1544-1552, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32180651

ABSTRACT

The effect of packaging material and storage temperature on two types of soy sauce was investigated. Ethanol content decreased significantly in all tested samples after storage (P < 0.05). While the changes of physicochemical properties and CIELAB color space indexes varied with soy sauce types, packaging materials and storage temperatures. The changes of volatile profiles after storage indicated that storage temperature was a key factor resulting in flavor scalping. It also suggested that there was no significant difference of flavor compounds sorption between glass bottle and polyethylene terephthalate bottle. The abundances of acids and alcohols increased after stored at ambient temperature (AT) and low temperature (LT) for 90 days, but phenols decreased. The effect of the packaging material, raw soy sauce type and storage temperature resulted in changing the intensities of fruity, caramel-like, mushroom-like note as well as smoky note. For the inoculated soy sauces, 1-octen-3-ol, ethyl hexanoate and ethyl octanoate in the samples were dominant in samples stored at AT, while the samples stored at LT were characterized by multiple components according to the results of principal components analysis. These results were benefit for understanding the main factors affecting the flavor profiles and quality of soy sauce during storage, as well as optimizing the storage condition.

15.
Proteomics ; 19(13): e1800438, 2019 07.
Article in English | MEDLINE | ID: mdl-30901150

ABSTRACT

CRISPR-Cas gene editing holds substantial promise in many biomedical disciplines and basic research. Due to the important functional implications of non-histone chromosomal protein HMG-14 (HMGN1) in regulating chromatin structure and tumor immunity, gene knockout of HMGN1 is performed by CRISPR in cancer cells and the following proteomic regulation events are studied. In particular, DIA mass spectrometry (DIA-MS) is utilized, and more than 6200 proteins (protein- FDR 1%) and more than 82 000 peptide precursors are reproducibly measured in the single MS shots of 2 h. HMGN1 protein deletion is confidently verified by DIA-MS in all of the clone- and dish- replicates following CRISPR. Statistical analysis reveals 147 proteins change their expressions significantly after HMGN1 knockout. Functional annotation and enrichment analysis indicate the deletion of HMGN1 induces histone inactivation, various stress pathways, remodeling of extracellular proteomes, cell proliferation, as well as immune regulation processes such as complement and coagulation cascade and interferon alpha/ gamma response in cancer cells. These results shed new lights on the cellular functions of HMGN1. It is suggested that DIA-MS can be reliably used as a rapid, robust, and cost-effective proteomic-screening tool to assess the outcome of the CRISPR experiments.


Subject(s)
Gene Deletion , Gene Editing/methods , HMGN1 Protein/genetics , Proteomics/methods , CRISPR-Cas Systems , Cell Line, Tumor , Cell Proliferation/genetics , Chromatin/physiology , HeLa Cells , Humans
16.
J Sci Food Agric ; 99(13): 5687-5695, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31150112

ABSTRACT

BACKGROUND: The quality of soy sauce is strongly affected by microorganisms and raw materials (defatted soybean or whole soybean). The present study investigated the effect of two types of fortified pattern, including inoculation with starters (Tetragenococcus halophilus combined with Zygosaccharomyces rouxii and Candida versatilis), and adding culture medium (saccharified rice flour solution), on the metabolite profiles and microbial community of soy sauce produced from defatted soybean (DP) and whole soybean (HD). Relationships between microbes and volatiles, and their interactions, were shown. RESULTS: The dominant metabolites differed in the soy sauce samples except for isoflavones. Alcohols and phenols were higher in DP moromi. Two classes of dominant esters, long-chain fatty acid esters (LFAE) and unsaturated-short-chain fatty acid esters (USFAE), were higher in HD moromi than DP. Weissella, Leuconostoc, and Aspergillus were the dominant microbes. Leuconostoc, and Aspergillus increased, and Weissella decreased in moromi inoculated with starters compared with a control. Similar changes to Leuconostoc were observed in moromi added culture medium. CONCLUSIONS: The microbes were responsible for the formation of volatiles. The intergeneric interactions with microbes were affected by fortified pattern. The effect of starters or culture medium on microbial community and metabolites of soy sauce depended on the raw material. © 2019 Society of Chemical Industry.


Subject(s)
Bacteria/isolation & purification , Fungi/isolation & purification , Glycine max/microbiology , Microbiota , Soy Foods/microbiology , Alcohols/analysis , Alcohols/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Candida/metabolism , Enterococcaceae/metabolism , Fatty Acids/chemistry , Fatty Acids/metabolism , Fermentation , Fungi/classification , Fungi/genetics , Fungi/metabolism , Phenols/analysis , Phenols/metabolism , Soy Foods/analysis , Glycine max/metabolism , Zygosaccharomyces/metabolism
17.
Crit Rev Microbiol ; 43(4): 393-404, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28502225

ABSTRACT

Lactic acid bacteria (LAB) are widely used for the production of a variety of foods and feed raw materials where they contribute to flavor and texture of the fermented products. In addition, specific LAB strains are considered as probiotic due to their health-promoting effects in consumers. Recently, the genome sequencing of LAB is booming and the increased amount of published genomics data brings unprecedented opportunity for us to reveal the important traits of LAB. This review describes the recent progress on LAB genomics and special emphasis is placed on understanding the industry-related physiological features based on genomics analysis. Moreover, strategies to engineer metabolic capacity and stress tolerance of LAB with improved industrial performance are also discussed.


Subject(s)
Food Microbiology/methods , Genome, Bacterial/genetics , Lactobacillales/genetics , Metabolic Engineering/methods , Fermentation , Lactobacillales/metabolism , Probiotics
18.
Appl Microbiol Biotechnol ; 98(3): 1055-63, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24337395

ABSTRACT

Lactic acid bacteria (LAB) are widely used for the production of a variety of fermented foods, and are considered as probiotic due to their health-promoting effect. However, LAB encounter various environmental stresses both in industrial fermentation and application, among which acid stress is one of the most important survival challenges. Improving the acid stress resistance may contribute to the application and function of probiotic action to the host. Recently, the advent of genomics, functional genomics and high-throughput technologies have allowed for the understanding of acid tolerance mechanisms at a systems level, and many method to improve acid tolerance have been developed. This review describes the current progress in engineering acid stress resistance of LAB. Special emphasis is placed on engineering cellular microenvironment (engineering amino acid metabolism, introduction of exogenous biosynthetic capacity, and overproduction of stress response proteins) and maintaining cell membrane functionality. Moreover, strategies to improve acid tolerance and the related physiological mechanisms are also discussed.


Subject(s)
Acids/toxicity , Drug Resistance, Bacterial , Lactobacillales/drug effects , Lactobacillales/physiology , Metabolic Engineering , Stress, Physiological , Biotechnology/methods , Biotechnology/trends , Lactobacillales/genetics , Microbial Viability/drug effects , Microbiology/trends
19.
J Ind Microbiol Biotechnol ; 41(10): 1533-40, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25062817

ABSTRACT

The aim of this study was to investigate the acid tolerance response (ATR) in Lactobacillus casei by a combined physiological and proteomic analysis. To optimize the ATR induction, cells were acid adapted for 1 h at different pHs, and then acid challenged at pH 3.5. The result showed that acid adaptation improved acid tolerance, and the highest survival was observed in cells adapted at pH 4.5 for 1 h. Analysis of the physiological data showed that the acid-adapted cells exhibited higher intracellular pH (pHi), intracellular NH4 (+) content, and lower inner permeability compared with the cells without adaptation. Proteomic analysis was performed upon acid adaptation to different pHs (pH 6.5 vs. pH 4.5) using two-dimensional electrophoresis. A total of 24 proteins that exhibited at least 1.5-fold differential expression were identified. Four proteins (Pgk, LacD, Hpr, and Galm) involved in carbohydrate catabolism and five classic stress response proteins (GroEL, GrpE, Dnak, Hspl, and LCAZH_2811) were up-regulated after acid adaptation at pH 4.5 for 1 h. Validation of the proteomic data was performed by quantitative RT-PCR, and transcriptional regulation of all selected genes showed a positive correlation with the proteomic patterns of the identified proteins. Results presented in this study may be useful for further elucidating the acid tolerance mechanisms and may help in formulating new strategies to improve the industrial performance of this species during acid stress.


Subject(s)
Bacterial Proteins/metabolism , Lacticaseibacillus casei/metabolism , Proteome/metabolism , Acid-Base Equilibrium , Adaptation, Physiological , Bacterial Proteins/genetics , Carbohydrate Metabolism , Cell Membrane Permeability , Lacticaseibacillus casei/genetics , Proteome/genetics , Proteomics , Stress, Physiological
20.
World J Microbiol Biotechnol ; 30(12): 3055-63, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25193747

ABSTRACT

In this study, characterises of the microbial community structures of three typical Chinese liquor Daqu, as well as different kinds of light flavour Daqu were investigated using nested PCR-denaturing gradient gel electrophoresis (DGGE). The results showed that microbial diversity was considerably different, and the microfloral compositions were highly variable among various Daqu. Lactic acid bacteria, which accounted for 30.95 % of all identified bacteria, were dominant in all Daqu samples, whereas Bacillus species were also predominant in the Luzhou (14.8 %) and Langjiu Daqu (18.2 %). Citrobacter and Burkholderia were first identified in light flavour Daqu. Aspergillus was the dominant moulds, and the non-Saccharomyces yeast species, Saccharomycopsis fibuligera, Wallemia sebi, Wallemia muriae, and Pichia subpelliculosa, were the dominant yeasts. Rasamsonia, Galactomyces, Geotrichum and Wallemia were first identified using nested PCR-DGGE. Cluster analysis indicated that the microbial community structures of different Daqu samples exhibited some differences. These may be ascribed to the different peak production temperatures, raw material constituents and microhabitats around the liquor enterprises. The current study provides insights into the microbial community structures of three typical Daqu samples, and may facilitate the development of starter cultures for manufacturing Chinese liquor.


Subject(s)
Alcoholic Beverages/microbiology , Bacteria/classification , Bacteria/isolation & purification , Biota , Fungi/classification , Fungi/isolation & purification , Cluster Analysis , Denaturing Gradient Gel Electrophoresis , Fermentation , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL