Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Br J Anaesth ; 133(2): 296-304, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38839471

ABSTRACT

BACKGROUND: The comparative effectiveness of volatile anaesthesia and total intravenous anaesthesia (TIVA) in terms of patient outcomes after cardiac surgery remains a topic of debate. METHODS: Multicentre randomised trial in 16 tertiary hospitals in China. Adult patients undergoing elective cardiac surgery were randomised in a 1:1 ratio to receive volatile anaesthesia (sevoflurane or desflurane) or propofol-based TIVA. The primary outcome was a composite of predefined major complications during hospitalisation and mortality 30 days after surgery. RESULTS: Of the 3123 randomised patients, 3083 (98.7%; mean age 55 yr; 1419 [46.0%] women) were included in the modified intention-to-treat analysis. The composite primary outcome was met by a similar number of patients in both groups (volatile group: 517 of 1531 (33.8%) patients vs TIVA group: 515 of 1552 (33.2%) patients; relative risk 1.02 [0.92-1.12]; P=0.76; adjusted odds ratio 1.05 [0.90-1.22]; P=0.57). Secondary outcomes including 6-month and 1-yr mortality, duration of mechanical ventilation, length of ICU and hospital stay, and healthcare costs, were also similar for the two groups. CONCLUSIONS: Among adults undergoing cardiac surgery, we found no difference in the clinical effectiveness of volatile anaesthesia and propofol-based TIVA. CLINICAL TRIAL REGISTRATION: Chinese Clinical Trial Registry (ChiCTR-IOR-17013578).


Subject(s)
Anesthetics, Inhalation , Anesthetics, Intravenous , Cardiac Surgical Procedures , Desflurane , Postoperative Complications , Propofol , Humans , Propofol/adverse effects , Female , Male , Middle Aged , Cardiac Surgical Procedures/adverse effects , Cardiac Surgical Procedures/mortality , Anesthetics, Intravenous/adverse effects , Anesthetics, Inhalation/adverse effects , Aged , Postoperative Complications/mortality , Postoperative Complications/prevention & control , Adult , Sevoflurane/adverse effects , Anesthesia, Intravenous/methods , China/epidemiology , Length of Stay/statistics & numerical data , Anesthesia, Inhalation/methods , Anesthesia, Inhalation/adverse effects , Treatment Outcome
2.
Br J Cancer ; 129(5): 884-894, 2023 09.
Article in English | MEDLINE | ID: mdl-37474721

ABSTRACT

BACKGROUND: It is imperative to develop novel therapeutics to overcome chemoresistance, a significant obstacle in the clinical management of prostate cancer (PCa) and other cancers. METHODS: A phenotypic screen was performed to identify novel inhibitors of chemoresistant PCa cells. The mechanism of action of potential candidate(s) was investigated using in silico docking, and molecular and cellular assays in chemoresistant PCa cells. The in vivo efficacy was evaluated in mouse xenograft models of chemoresistant PCa. RESULTS: Nicardipine exhibited high selectivity and potency against chemoresistant PCa cells via inducing apoptosis and cell cycle arrest. Computational, molecular, and cellular studies identified nicardipine as a putative inhibitor of embryonic ectoderm development (EED) protein, and the results are consistent with a proposed mechanism of action that nicardipine destabilised enhancer of zeste homologue 2 (EZH2) and inhibited key components of noncanonical EZH2 signalling, including transducer and activator of transcription 3, S-phase kinase-associated protein 2, ATP binding cassette B1, and survivin. As a monotherapy, nicardipine effectively inhibited the skeletal growth of chemoresistant C4-2B-TaxR tumours. As a combination regimen, nicardipine synergistically enhanced the in vivo efficacy of docetaxel against C4-2 xenografts. CONCLUSION: Our findings provided the first preclinical evidence supporting nicardipine as a novel EED inhibitor that has the potential to be promptly tested in PCa patients to overcome chemoresistance and improve clinical outcomes.


Subject(s)
Nicardipine , Prostatic Neoplasms , Animals , Humans , Male , Mice , Apoptosis , Cell Line, Tumor , Docetaxel/pharmacology , Docetaxel/therapeutic use , Nicardipine/pharmacology , Nicardipine/therapeutic use , Polycomb Repressive Complex 2 , Prostatic Neoplasms/drug therapy
3.
Prostate ; 80(12): 993-1005, 2020 09.
Article in English | MEDLINE | ID: mdl-32559345

ABSTRACT

BACKGROUND: Androgen deprivation therapy (ADT) is the mainstay of treatment for castration-resistant prostate cancer (CRPC). Unfortunately, although ADT initially prolongs survival, most patients relapse and develop resistance. Clinical failure of these treatments in CRPC highlights the urgent need to develop novel strategies to more effectively block androgen receptor (AR) signaling and target other oncogenic factors responsible for ADT resistance. METHODS: We developed a small-molecule compound LG1836 and investigated the in vitro and in vivo activity of LG1836 against CRPC in cellular and animal models. RESULTS: LG1836 exhibits potent in vitro cytotoxicity in CRPC cells. Mechanistic studies demonstrated that LG1836 inhibits the expression of AR and AR variant 7, partially mediated via proteasome-dependent protein degradation. LG1836 also suppresses survivin expression and effectively induces apoptosis in CRPC cells. Significantly, as a single agent, LG1836 is therapeutically efficacious in suppressing the in vivo growth of CRPC in the subcutaneous and intraosseous models and extends the survival of tumor-bearing mice. CONCLUSIONS: These preclinical studies indicate that LG1836 is a promising lead compound for the treatment of CRPC.


Subject(s)
Piperidines/pharmacology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Small Molecule Libraries/pharmacology , Androgen Receptor Antagonists/pharmacology , Animals , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Growth Processes/drug effects , HSP90 Heat-Shock Proteins/metabolism , Humans , Male , Mice , Mice, Nude , Mice, SCID , Prostatic Neoplasms, Castration-Resistant/pathology , Random Allocation , Receptors, Androgen/biosynthesis , Receptors, Androgen/metabolism , Survivin/antagonists & inhibitors , Survivin/biosynthesis , Ubiquitination , Xenograft Model Antitumor Assays
4.
Biomed Chromatogr ; 32(2)2018 Feb.
Article in English | MEDLINE | ID: mdl-28801923

ABSTRACT

A simple and sensitive liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) method was developed and validated for determination of two highly lipophilic anticancer drug candidates, LG1980 and GH501, in rat plasma and tissues (liver, kidney and femur bones). LG1980 and GH501 were extracted from rat plasma and tissue homogenates using liquid-liquid extraction. The method provided a linear range of 1.0-200.0 ng/mL for GH501 in plasma and LG1980 in plasma and liver. For both analytes in other tissue homogenates the linear range was 2.0-400.0 ng/mL. The method was validated with precision within 15% relative standard deviation, accuracy within 15% relative error and a consistent recovery. This method has been successfully applied in two preclinical studies for LG1980 and GH501 to determine their concentrations in rat plasma, liver, kidney and bone over 24 h after intravenous injection of compounds.


Subject(s)
Antineoplastic Agents/analysis , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Animals , Antineoplastic Agents/blood , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Hydrophobic and Hydrophilic Interactions , Kidney/chemistry , Limit of Detection , Linear Models , Liver/chemistry , Male , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Tissue Distribution
5.
Expert Rev Mol Med ; 18: e2, 2016 Jan 18.
Article in English | MEDLINE | ID: mdl-26775675

ABSTRACT

The translation initiation factor eIF4E mediates a rate-limiting process that drives selective translation of many oncongenic proteins such as cyclin D1, survivin and VEGF, thereby contributing to tumour growth, metastasis and therapy resistance. As an essential regulatory hub in cancer signalling network, many oncogenic signalling pathways appear to converge on eIF4E. Therefore, targeting eIF4E-mediated cap-dependent translation is considered a promising anticancer strategy. This paper reviews the strategies that can be used to target eIF4E, highlighting agents that target eIF4E activity at each distinct level.


Subject(s)
Antineoplastic Agents/therapeutic use , Eukaryotic Initiation Factor-4E/antagonists & inhibitors , Gene Expression Regulation, Neoplastic , Neoplasms/drug therapy , Signal Transduction/drug effects , Animals , Cyclin D1/genetics , Cyclin D1/metabolism , Epoxy Compounds/therapeutic use , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , Humans , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Macrolides/therapeutic use , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/metabolism , Protein Biosynthesis , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Ribavirin/therapeutic use , Sirolimus/therapeutic use , Survivin , Thiazoles/therapeutic use , Triterpenes/therapeutic use , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
6.
J Biol Chem ; 288(3): 1469-79, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-23188829

ABSTRACT

Aberrant expression of EGF receptors has been associated with hormone-refractory and metastatic prostate cancer (PCa). However, the molecular mechanism for EGF signaling in promoting PCa metastasis remains elusive. Using experimental models of PCa metastasis, we demonstrated that EGF could induce robust epithelial-mesenchymal transition (EMT) and increase invasiveness. Interestingly, EGF was found to be capable of promoting protein turnover of epithelial protein lost in neoplasm (EPLIN), a putative suppressor of EMT and tumor metastasis. Mechanistic study revealed that EGF could activate the phosphorylation, ubiquitination, and degradation of EPLIN through an extracellular signal-regulated kinase 1/2 (ERK1/2)-dependent signaling cascade. Pharmacological inhibition of the ERK1/2 pathway effectively antagonized EGF-induced EPLIN degradation. Two serine residues, i.e. serine 362 and serine 604, were identified as putative ERK1/2 phosphorylation sites in human EPLIN, whose point mutation rendered resistance to EGF-induced protein turnover. This study elucidated a novel molecular mechanism for EGF regulation of EMT and invasiveness in PCa cells, indicating that blockade of EGF signaling could be beneficial in preventing and retarding PCa metastasis at early stages.


Subject(s)
Cytoskeletal Proteins/metabolism , Epidermal Growth Factor/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Neoplasm Metastasis , Neoplasm Proteins/metabolism , Prostatic Neoplasms/genetics , Cell Line, Tumor , Cell Movement , Cytoskeletal Proteins/genetics , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Genes, Reporter , Humans , Male , Neoplasm Proteins/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Proteolysis/drug effects , Signal Transduction/drug effects , Transfection
7.
Cell Tissue Res ; 357(1): 245-52, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24723227

ABSTRACT

Bone metastasis of breast cancer typically leads to osteolysis, which causes severe pathological bone fractures and hypercalcemia. Bone homeostasis is skillfully regulated through osteoblasts and osteoclasts. Bone loss with bone metastasis of breast cancer may be due to both activation of osteoclastic bone resorption and suppression of osteoblastic bone formation. This study was undertaken to determine whether the novel curcumin analogue UBS109 has preventive effects on bone loss induced by breast cancer cell bone metastasis. Nude mice were inoculated with breast cancer MDA-MB-231 bone metastatic cells (10(6) cells/mouse) into the head of the right and left tibia. One week after inoculation, the mice were treated with control (vehicle), oral administration (p.o.) of UBS109 (50 or 150 mg/kg body weight), or intraperitoneal administration (i.p.) of UBS109 (10 or 20 mg/kg body weight) once daily for 5 days per week for 7 weeks. After UBS109 administration for 7 weeks, hind limbs were assessed using an X-ray diagnosis system and hematoxylin and eosion staining to determine osteolytic destruction. Bone marrow cells obtained from the femurs and tibias were cultured to estimate osteoblastic mineralization and osteoclastogenesis ex vivo and in vitro. Remarkable bone loss was demonstrated in the tibias of mice inoculated with breast cancer MDA-MB-231 bone metastatic cells. This bone loss was prevented by p.o. administration of UBS109 (50 and 150 mg/kg body weight) and i.p. treatment of UBS109 (10 and 20 mg/kg) in vivo. Culture of bone marrow cells obtained from the bone tissues of mice with breast cancer cell bone metastasis showed suppressed osteoblastic mineralization and stimulated osteoclastogenesis ex vivo. These changes were not seen after culture of the bone marrow cells obtained from mice treated with UBS109. Moreover, UBS109 was found to stimulate osteoblastic mineralization and suppress lipopolysaccharide (LPS)-induced osteoclastogenesis in bone marrow cells obtained from normal nude mice in vitro. These findings suggest that the novel curcumin analogue UBS109 prevents breast cancer cell bone metastasis-induced bone loss by stimulating osteoblastic mineralization and suppressing osteoclastogenesis.


Subject(s)
Bone Neoplasms/prevention & control , Bone Neoplasms/secondary , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Osteoblasts/drug effects , Osteoclasts/drug effects , Piperidones/pharmacology , Pyridines/pharmacology , Animals , Bone Resorption/pathology , Bone Resorption/prevention & control , Disease Models, Animal , Female , Humans , Mice , Mice, Nude , Neoplasm Metastasis , Osteoblasts/pathology , Osteoclasts/pathology , Xenograft Model Antitumor Assays
8.
Foods ; 13(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38672875

ABSTRACT

China is a major player in the marine fish trade. The price prediction of marine fish is of great significance to socio-economic development and the fisheries industry. However, due to the complexity and uncertainty of the marine fish market, traditional forecasting methods often struggle to accurately predict price fluctuations. Therefore, this study adopts an intelligent combination model to enhance the accuracy of food product price prediction. Firstly, three decomposition methods, namely empirical wavelet transform, singular spectrum analysis, and variational mode decomposition, are applied to decompose complex original price series. Secondly, a combination of bidirectional long short-term memory artificial neural network, extreme learning machine, and exponential smoothing prediction methods are applied to the decomposed results for cross-prediction. Subsequently, the predicted results are input into the PSO-CS intelligence algorithm for weight allocation and to generate combined prediction results. Empirical analysis is conducted using data illustrating the daily sea purchase price of larimichthys crocea in Ningde City, Fujian Province, China. The combination prediction accuracy with PSO-CS weight allocation is found to be higher than that of single model predictions, yielding superior results. With the implementation of weight allocation intelligent combinatorial modelling, the prediction of marine fish prices demonstrates higher accuracy and stability, enabling better adaptation to market changes and price fluctuations.

9.
Drug Discov Today ; 29(6): 103986, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642703

ABSTRACT

EED within the PRC2 complex is crucial for chromatin regulation particularly in tumor development, making its inhibition a promising epigenetic therapeutic strategy. Significant advancement in PRC2 inhibitor development has been achieved with an approved EZH2 inhibitor in the market and with others in the clinical trials. However, current EZH2 inhibitors are limited to specific blood cancers and encounter therapeutic resistance. EED stabilizes PRC2 complex and enhances its activity through unique allosteric mechanisms, thereby acting as both a scaffold protein and a recognizer of H3K27me3 making it an attractive drug target. This review provides an overview of epigenetic therapeutic strategies targeting EED, including allosteric inhibitors, PPI inhibitors, and PROTACs, together with brief discussions on the relevant challenges, opportunities, and future directions.


Subject(s)
Epigenesis, Genetic , Polycomb Repressive Complex 2 , Humans , Polycomb Repressive Complex 2/antagonists & inhibitors , Polycomb Repressive Complex 2/metabolism , Epigenesis, Genetic/drug effects , Animals , Neoplasms/drug therapy , Neoplasms/genetics , Molecular Targeted Therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Allosteric Regulation/drug effects
10.
Prostate ; 73(15): 1681-9, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23999913

ABSTRACT

BACKGROUND: Cabazitaxel (Jevtana) has been approved for the treatment of metastatic castration-resistant prostate cancer (mCRPC). However, most patients progress and become chemoresistant, which remains a major challenge in the management of advanced PCa. In this study, we investigated whether genistein, an isoflavone abundant in soy products, could sensitize mCRPC cells to cabazitaxel treatment in experimental models. METHODS: The in vitro and in vivo effect of genistein in enhancing the response of mCRPC cells to cabazitaxel chemotherapy was evaluated in experimental models. RESULTS: Genistein increases the expression of pro-apoptotic protein Bax, activates apoptotic signals, and enhances the response to cabazitaxel treatment in mCRPC cells. In a PC3-luciferase xenograft model, the combined treatment with genistein and cabazitaxel significantly retarded the growth of mCRPC when compared to vehicle control, cabazitaxel, or genistein. Tissue staining confirmed the in vivo effect of genistein on the induction of Bax and activation of apoptosis. CONCLUSION: This study provided the first preclinical evidence supporting that genistein could be beneficial in improving cabazitaxel chemotherapy in mCRPC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Proliferation/drug effects , Genistein/therapeutic use , Prostate/drug effects , Prostatic Neoplasms/drug therapy , Taxoids/therapeutic use , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Genistein/pharmacology , Humans , Male , Mice , Mice, Nude , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Prostate/metabolism , Prostate/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Taxoids/pharmacology , bcl-2-Associated X Protein/metabolism
11.
Prostate ; 2013 Dec 23.
Article in English | MEDLINE | ID: mdl-24375421

ABSTRACT

BACKGROUND: Docetaxel treatment is the only first-line chemotherapy with a survival benefit in metastatic castration-resistant prostate cancer (PCa). Nonetheless, most patients become docetaxel resistant and inevitably progress with no cure. In this study, we investigated the potential of pomegranate extract (PE) in targeting metastatic castration-resistant PCa and improving docetaxel chemotherapy. METHODS: The in vitro and in vivo effect of POMx, a PE formula currently approved for clinical trials, in metastatic castration-resistant PCa cells was evaluated in experimental models. RESULTS: We demonstrated that POMx exhibited potent in vitro cytotoxicity in metastatic castration-resistant PCa cells. Mechanistic studies identified survivin as a novel molecular target that may mediate the anti-cancer activity of POMx, presumably through the inhibition of signal transducer and activator of transcription 3. The in vivo administration of POMx treatment effectively inhibited survivin, induced apoptosis, retarded C4-2 tumor growth in skeleton and significantly enhanced the efficacy of docetaxel in athymic nude mice. CONCLUSION: These results provide the first preclinical evidence that POMx may be effective in treating metastatic castration-resistant PCa and enhancing the efficacy of docetaxel chemotherapy. Prostate © 2013 Wiley Periodicals, Inc.

12.
Transl Oncol ; 34: 101707, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37271121

ABSTRACT

Chemoresistance is a major obstacle in the clinical management of metastatic, castration-resistant prostate cancer (PCa). It is imperative to develop novel strategies to overcome chemoresistance and improve clinical outcomes in patients who have failed chemotherapy. Using a two-tier phenotypic screening platform, we identified bromocriptine mesylate as a potent and selective inhibitor of chemoresistant PCa cells. Bromocriptine effectively induced cell cycle arrest and activated apoptosis in chemoresistant PCa cells but not in chemoresponsive PCa cells. RNA-seq analyses revealed that bromocriptine affected a subset of genes implicated in the regulation of the cell cycle, DNA repair, and cell death. Interestingly, approximately one-third (50/157) of the differentially expressed genes affected by bromocriptine overlapped with known p53-p21- retinoblastoma protein (RB) target genes. At the protein level, bromocriptine increased the expression of dopamine D2 receptor (DRD2) and affected several classical and non-classical dopamine receptor signal pathways in chemoresistant PCa cells, including adenosine monophosphate-activated protein kinase (AMPK), p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor kappa B  (NF-κB), enhancer of zeste homolog 2 (EZH2), and survivin. As a monotherapy, bromocriptine treatment at 15 mg/kg, three times per week, via the intraperitoneal route significantly inhibited the skeletal growth of chemoresistant C4-2B-TaxR xenografts in athymic nude mice. In summary, these results provided the first preclinical evidence that bromocriptine is a selective and effective inhibitor of chemoresistant PCa. Due to its favorable clinical safety profiles, bromocriptine could be rapidly tested in PCa patients and repurposed as a novel subtype-specific treatment to overcome chemoresistance.

13.
Medicine (Baltimore) ; 101(26): e29692, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35777001

ABSTRACT

Neurofilament light chain (NfL) levels have proved to be a good biomarker in cerebrospinal fluid (CSF) correlating with the degree of neuronal injury and neurodegeneration. However, little is known about the value of plasma neurofilament light chain (pNfL) levels in predicting the clinical prognosis of patients with acute cerebral infarction. This study aimed to explore whether pNfL could be used as a biomarker to predict the severity of the outcomes of acute ischemic stroke (AIS). Patients with AIS were included from the Department of Neurology of the First People's Hospital of Bengbu City from January 2018 to May 2019, as well as health control (HC). The plasma levels of NfL in patients with AIS (n = 60) at 2 days, 7 days, and 6 months after stroke, as well as in HCs (n = 60) were measured by electrochemiluminescence immunoassay(ECL) on the Meso Scale Discovery platform. Stroke severity was analyzed at admission using the National Institutes of Health Stroke Scale score. Functional outcomes were assessed at different times using the modified Rankin Scale (mRS) and Barthel Index. The mean level of pNfL in patients with ischemic stroke (IS) at 2 days (225.86 pg/L) after stroke was significantly higher than that in HC (107.02 pg/L) and gradually increased 7 days after stroke (316.23 pg/L) (P < .0001). The mean level of pNfL in patients with IS at 6 months after stroke was 173.38 pg/L, which was still significantly higher than that of HC. The levels of pNfL at 7 days after stroke independently predicted modified Rankin Scale scores (mRS) (R = 0.621, P < .001), Barthel Index (R = -0.716, P < .001), and National Institutes of Health Stroke Scale (R = -0.736, P < .001). The diagnostic severity and prognosis were evaluated by ROC curve, an area under the receiver operator curve of 0.812 (P = .001, 95% CI: 0.69-0.93) at 7 days. Plasma NfL levels reflect neuronal injury after AIS. It changes with time and has a certain relationship with prognosis and may be a promising biomarker for predicting the severity of neuroaxonal injury in patients with acute IS.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Biomarkers , Brain Ischemia/diagnosis , Humans , Intermediate Filaments , Stroke/diagnosis , United States
14.
Environ Sci Technol ; 45(4): 1540-6, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21207939

ABSTRACT

A series of nanosized (Fe3-xMnx)1-δO4 (x = 0, 0.2, 0.5, and 0.8) were synthesized for elemental mercury capture from the flue gas. Cation vacancies on (Fe3-xMnx)1-δO4 can provide the active sites for elemental mercury adsorption, and Mn(4+) cations on (Fe3-xMnx)1-δO4 may be the oxidizing agents for elemental mercury oxidization. With the increase of Mn content in the spinel structure, the percents of Mn(4+) cations and cation vacancies on the surface increased. As a result, elemental mercury capture by (Fe3-xMnx)1-δO4 was obviously promoted with the increase of Mn content. (Fe2.2Mn0.8)1-δO4 showed an excellent capacity for elemental mercury capture (>1.5 mg g(-1) at 100-300 °C) in the presence of SO2 and HCl. Furthermore, (Fe2.2Mn0.8)1-δO4 with the saturation magnetization of 45.6 emu g(-1) can be separated from the fly ash using magnetic separation, leaving the fly ash essentially free of sorbent and adsorbed Hg. Therefore, nanosized (Fe2.2Mn0.8)1-δO4 may be a promising sorbent for the control of elemental mercury emission.


Subject(s)
Mercury/chemistry , Nanoparticles , Adsorption , Air Pollution/prevention & control , Coal Ash , Gases/chemistry , Magnetics , Oxidation-Reduction
15.
Am J Clin Exp Urol ; 9(4): 264-276, 2021.
Article in English | MEDLINE | ID: mdl-34541025

ABSTRACT

Confucius said, "Good tools are prerequisite to the successful execution of a job". Among his many groundbreaking achievements, Dr. Leland W. K. Chung established several widely used prostate cancer (PCa) cell lines, including C4-2, C4-2B, and ARCaP. These cellular models have been pivotal tools to enhance our understanding of the biology of PCa progression and assist in the discovery of new strategies to treat metastatic, castration-resistant PCa. Recent studies in the ARCaP PCa progression model uncovered epithelial protein lost in neoplasm (EPLIN), an actin-binding protein with an indispensable role in the maintenance of epithelial structures, as a negative regulator of epithelial-mesenchymal transition. Clinical evidence further supports the potential role of EPLIN in controlling metastasis in PCa and other solid tumors. In this article, we review the current understanding of the biology of EPLIN and the ARCaP model in the discovery of new agents for the prevention and treatment of PCa metastasis.

16.
Curr Top Med Chem ; 21(31): 2771-2777, 2021.
Article in English | MEDLINE | ID: mdl-34544341

ABSTRACT

The polycomb repressive complex 2 (PRC2) can methylate at lysine 27 of histone H3 at the trimethylation level (H3K27me3). This leads to gene silencing and is known to be dysregulated in many cancers. PRC2 is made up of three core subunits: EZH2, SUZ12, and EED. EED is essential for the regulation of PRC2 function by binding to H3K27me3. Targeting the allosteric site within EED offers new strategies to disrupt the PRC2 activity. In this minireview, we summarize some of the recent developments in small molecules that target EED and its interaction with other core proteins in the PRC2 complex.


Subject(s)
Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/metabolism , Polycomb Repressive Complex 2/antagonists & inhibitors , Allosteric Site , Animals , Histones/chemistry , Histones/metabolism , Humans , Methylation , Polycomb Repressive Complex 2/chemistry , Polycomb Repressive Complex 2/metabolism
17.
Bio Protoc ; 11(22): e4231, 2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34909452

ABSTRACT

Bone metastasis is a frequent and lethal complication of many cancer types (i.e., prostate cancer, breast cancer, and multiple myeloma), and a cure for bone metastasis remains elusive. To recapitulate the process of bone metastasis and understand how cancer cells metastasize to bone, intracardiac injection and intracaudal arterial animal models were developed. The intratibial injection animal model was established to investigate the communication between cancer cells and the bone microenvironment and to mimic the setting of prostate cancer patients with bone metastasis. Given that detailed protocols of intratibial injection and its quantitative analysis are still insufficient, in this protocol, we provide hands-on procedures for how to prepare cells, perform the tibial injection, monitor tibial tumor growth, and quantitatively evaluate the tibial tumors in pathological samples. This manuscript provides a ready-to-use experimental protocol for investigating cancer cell behaviors in bone and developing novel therapeutic strategies for bone metastatic cancer patients.

18.
Pharmaceutics ; 13(12)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34959463

ABSTRACT

Despite the recent successes in siRNA therapeutics, targeted delivery beyond the liver remains the major hurdle for the widespread application of siRNA in vivo. Current cationic liposome or polymer-based delivery agents are restricted to the liver and suffer from off-target effects, poor clearance, low serum stability, and high toxicity. In this study, we genetically engineered a non-cationic non-viral tumor-targeted universal siRNA nanocarrier (MW 26 KDa). This protein nanocarrier consists of three function domains: a dsRNA binding domain (dsRBD) (from human protein kinase R) for any siRNA binding, 18-histidine for endosome escape, and two RGD peptides at the N- and C-termini for targeting tumor and tumor neovasculature. We showed that cloned dual-RGD-dsRBD-18his (dual-RGD) protein protects siRNA against RNases, induces effective siRNA endosomal escape, specifically targets integrin αvß3 expressing cells in vitro, and homes siRNA to tumors in vivo. The delivered siRNA leads to target gene knockdown in the cell lines and tumor xenografts with low toxicity. This multifunctional and biomimetic siRNA carrier is biodegradable, has low toxicity, is suitable for mass production by fermentation, and is serum stable, holding great potential to provide a widely applicable siRNA carrier for tumor-targeted siRNA delivery.

19.
Biochimie ; 180: 1-9, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33132158

ABSTRACT

Neurite outgrowth involves reciprocal signaling interactions between tumor cells and nerves where invading tumor cells have acquired the ability to respond to pro-invasive signals within the nerve environment. Neurite outgrowth could serve as a mechanism leading to invasion of cancer cells into the nerve sheath and subsequent metastasis. Snail transcription factor can promote migration and invasion of prostate cancer cells. We hypothesized that prostate cancer cell interaction with nerve cells will be mediated by Snail expression within prostate cancer cells. For this study we utilized various prostate cancer cell lines: C4-2 non-silencing (NS, control); C4-2 Snail shRNA, (stable Snail knockdown); LNCaP Neo (empty vector control) and LNCaP Snail (stably over-expressing Snail). Cancer cell adhesion and migration towards nerve cells (snF96.2 or NS20Y) was examined by co-culture assays. Conditioned media (CM) collected from C4-2 cells was cultured with nerve cells (PC-12 or NS20Y) for 48 h followed by qualitative or quantitative neurite outgrowth assay. Our results showed that cancer cells expressing high levels of Snail (LNCaP Snail/C4-2 NS) displayed significantly higher migration adherence to nerve cells, compared to cells with lower levels of Snail (LNCaP Neo/C4-2 Snail shRNA). Additionally, LNCaP Snail or C4-2 NS (Snail-high) CM led to a higher neurite outgrowth compared to the LNCaP Neo or C4-2 Snail shRNA (Snail-low). In conclusion, Snail promotes migration and adhesion to nerve cells, as well as neurite outgrowth via secretion of soluble factors. Therefore, targeting cancer cell interaction with nerves may contribute to halting prostate cancer progression/metastasis.


Subject(s)
Neuronal Outgrowth/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism , Animals , Cell Adhesion/genetics , Cell Communication/genetics , Cell Line , Cell Movement/genetics , Cell Proliferation/genetics , Gene Silencing , Humans , Male , Mice , Neurons/metabolism , Prostatic Neoplasms/pathology , Rats
20.
Neoplasia ; 23(12): 1261-1274, 2021 12.
Article in English | MEDLINE | ID: mdl-34781084

ABSTRACT

A major challenge to the treatment of advanced prostate cancer (PCa) is the development of resistance to androgen-deprivation therapy (ADT) and chemotherapy. It is imperative to discover effective therapies to overcome drug resistance and improve clinical outcomes. We have developed a novel class of silicon-containing compounds and evaluated the anticancer activities and mechanism of action using cellular and animal models of drug-resistant PCa. Five organosilicon compounds were evaluated for their anticancer activities in the NCI-60 panel and established drug-resistant PCa cell lines. GH1504 exhibited potent in vitro cytotoxicity in a broad spectrum of human cancer cells, including PCa cells refractory to ADT and chemotherapy. Molecular studies identified several potential targets of GH1504, most notably androgen receptor (AR), AR variant 7 (AR-v7) and survivin. Mechanistically, GH1504 may promote the protein turnover of AR, AR-v7 and survivin, thereby inducing apoptosis in ADT-resistant and chemoresistant PCa cells. Animal studies demonstrated that GH1504 effectively inhibited the in vivo growth of ADT-resistant CWR22Rv1 and chemoresistant C4-2B-TaxR xenografts in subcutaneous and intraosseous models. These preclinical results indicated that GH1504 is a promising lead that can be further developed as a novel therapy for drug-resistant PCa.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Organosilicon Compounds/pharmacology , Prostatic Neoplasms, Castration-Resistant , Animals , Cell Line , Drug Screening Assays, Antitumor , Humans , Male , Mice , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL