Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Angew Chem Int Ed Engl ; 54(49): 14758-62, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26460151

ABSTRACT

Compared to imaging in the visible and near-infrared regions below 900 nm, imaging in the second near-infrared window (NIR-II, 1000-1700 nm) is a promising method for deep-tissue high-resolution optical imaging in vivo mainly owing to the reduced scattering of photons traversing through biological tissues. Herein, semiconducting single-walled carbon nanotubes with large diameters were used for in vivo fluorescence imaging in the long-wavelength NIR region (1500-1700 nm, NIR-IIb). With this imaging agent, 3-4 µm wide capillary blood vessels at a depth of about 3 mm could be resolved. Meanwhile, the blood-flow speeds in multiple individual vessels could be mapped simultaneously. Furthermore, NIR-IIb tumor imaging of a live mouse was explored. NIR-IIb imaging can be generalized to a wide range of fluorophores emitting at up to 1700 nm for high-performance in vivo optical imaging.


Subject(s)
Fluorescence , Molecular Imaging/methods , Nanotubes, Carbon/chemistry , Animals , Blood Vessels/chemistry , Brain/anatomy & histology , Hindlimb/anatomy & histology , Mice , Semiconductors , Spectroscopy, Near-Infrared
2.
J Am Chem Soc ; 135(23): 8452-5, 2013 Jun 12.
Article in English | MEDLINE | ID: mdl-23701670

ABSTRACT

Highly active, durable, and cost-effective electrocatalysts for water oxidation to evolve oxygen gas hold a key to a range of renewable energy solutions, including water-splitting and rechargeable metal-air batteries. Here, we report the synthesis of ultrathin nickel-iron layered double hydroxide (NiFe-LDH) nanoplates on mildly oxidized multiwalled carbon nanotubes (CNTs). Incorporation of Fe into the nickel hydroxide induced the formation of NiFe-LDH. The crystalline NiFe-LDH phase in nanoplate form is found to be highly active for oxygen evolution reaction in alkaline solutions. For NiFe-LDH grown on a network of CNTs, the resulting NiFe-LDH/CNT complex exhibits higher electrocatalytic activity and stability for oxygen evolution than commercial precious metal Ir catalysts.


Subject(s)
Electrochemical Techniques , Hydroxides/chemistry , Iron/chemistry , Nickel/chemistry , Water/chemistry , Catalysis , Hydroxides/chemical synthesis , Nanotubes, Carbon/chemistry , Oxidation-Reduction , Particle Size , Surface Properties
3.
J Am Chem Soc ; 134(41): 16971-4, 2012 Oct 17.
Article in English | MEDLINE | ID: mdl-23033937

ABSTRACT

The intrinsic band gap photoluminescence of semiconducting single-walled carbon nanotubes (SWNTs) makes them promising biological imaging probes in the second near-infrared (NIR-II, 1.0-1.4 µm) window. Thus far, SWNTs used for biological applications have been a complex mixture of metallic and semiconducting species with random chiralities, preventing simultaneous resonant excitation of all semiconducting nanotubes and emission at a single well-defined wavelength. Here, we developed a simple gel filtration method to enrich semiconducting (12,1) and (11,3) SWNTs with identical resonance absorption at ~808 nm and emission near ~1200 nm. The chirality sorted SWNTs showed ~5-fold higher photoluminescence intensity under resonant excitation of 808 nm than unsorted SWNTs on a per-mass basis. Real-time in vivo video imaging of whole mouse body and tumor vessels was achieved using a ~6-fold lower injected dose of (12,1) and (11,3) SWNTs (~3 µg per mouse or ~0.16 mg/kg of body weight vs 1.0 mg/kg for unsorted SWNTs) than a previous heterogeneous mixture, demonstrating the first resonantly excited and chirality separated SWNTs for biological imaging.


Subject(s)
Nanotubes, Carbon/chemistry , Neoplasms/blood supply , Optical Imaging/instrumentation , Animals , Luminescence , Mice , Mice, Nude , Neoplasms/pathology , Semiconductors , Tissue Distribution
4.
Phys Rev Lett ; 106(25): 256801, 2011 Jun 24.
Article in English | MEDLINE | ID: mdl-21770659

ABSTRACT

We investigate high-field transport in graphene nanoribbons (GNRs) on SiO(2), up to breakdown. The maximum current density is limited by self-heating, but can reach >3 mA/µm for GNRs ~15 nm wide. Comparison with larger, micron-sized graphene devices reveals that narrow GNRs benefit from 3D heat spreading into the SiO(2), which enables their higher current density. GNRs also benefit from lateral heat flow to the contacts in short devices (<~0.3 µm), which allows extraction of a median GNR thermal conductivity (TC), ~80 W m(-1)K(-1) at 20 °C across our samples, dominated by phonons. The TC of GNRs is an order of magnitude lower than that of micron-sized graphene on SiO(2), suggesting strong roles of edge and defect scattering, and the importance of thermal dissipation in small GNR devices.

5.
Nat Commun ; 5: 4206, 2014 Jun 20.
Article in English | MEDLINE | ID: mdl-24947309

ABSTRACT

In vivo fluorescence imaging in the second near-infrared window (1.0-1.7 µm) can afford deep tissue penetration and high spatial resolution, owing to the reduced scattering of long-wavelength photons. Here we synthesize a series of low-bandgap donor/acceptor copolymers with tunable emission wavelengths of 1,050-1,350 nm in this window. Non-covalent functionalization with phospholipid-polyethylene glycol results in water-soluble and biocompatible polymeric nanoparticles, allowing for live cell molecular imaging at >1,000 nm with polymer fluorophores for the first time. Importantly, the high quantum yield of the polymer allows for in vivo, deep-tissue and ultrafast imaging of mouse arterial blood flow with an unprecedented frame rate of >25 frames per second. The high time-resolution results in spatially and time resolved imaging of the blood flow pattern in cardiogram waveform over a single cardiac cycle (~200 ms) of a mouse, which has not been observed with fluorescence imaging in this window before.


Subject(s)
Arteries/physiology , Molecular Imaging/methods , Nanoparticles , Optical Imaging/methods , Regional Blood Flow/physiology , Animals , Mice , Microscopy, Atomic Force , Molecular Structure , Phospholipids , Polyethylene Glycols , Polymers/chemistry
6.
Science ; 342(6160): 836-40, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24233719

ABSTRACT

Silicon's sensitivity to corrosion has hindered its use in photoanode applications. We found that deposition of a ~2-nanometer nickel film on n-type silicon (n-Si) with its native oxide affords a high-performance metal-insulator-semiconductor photoanode for photoelectrochemical (PEC) water oxidation in both aqueous potassium hydroxide (KOH, pH = 14) and aqueous borate buffer (pH = 9.5) solutions. The Ni film acted as a surface protection layer against corrosion and as a nonprecious metal electrocatalyst for oxygen evolution. In 1 M aqueous KOH, the Ni/n-Si photoanodes exhibited high PEC activity with a low onset potential (~1.07 volts versus reversible hydrogen electrode), high photocurrent density, and durability. The electrode showed no sign of decay after ~80 hours of continuous PEC water oxidation in a mixed lithium borate-potassium borate electrolyte. The high photovoltage was attributed to a high built-in potential in a metal-insulator-semiconductor-like device with an ultrathin, incomplete screening Ni/NiO(x) layer from the electrolyte.

7.
Nat Commun ; 3: 700, 2012 Feb 28.
Article in English | MEDLINE | ID: mdl-22426221

ABSTRACT

Investigating the cellular internalization pathways of single molecules or single nano objects is important to understanding cell-matter interactions, and to applications in drug delivery and discovery. Imaging and tracking the motion of single molecules on cell plasma membranes require high spatial resolution in three dimensions. Fluorescence imaging along the axial dimension with nanometre resolution has been highly challenging, but critical to revealing displacements in transmembrane events. Here, utilizing a plasmonic ruler based on the sensitive distance dependence of near-infrared fluorescence enhancement of carbon nanotubes on a gold plasmonic substrate, we probe ~10 nm scale transmembrane displacements through changes in nanotube fluorescence intensity, enabling observations of single nanotube endocytosis in three dimensions. Cellular uptake and transmembrane displacements show clear dependences to temperature and clathrin assembly on cell membrane, suggesting that the cellular entry mechanism for a nanotube molecule is via clathrin-dependent endocytosis through the formation of clathrin-coated pits on the cell membrane.


Subject(s)
Coated Pits, Cell-Membrane/metabolism , Endocytosis , Endosomes/metabolism , Nanotubes , Adaptor Proteins, Vesicular Transport/metabolism , Clathrin/metabolism , Gold , Imaging, Three-Dimensional
SELECTION OF CITATIONS
SEARCH DETAIL