Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Plant Cell ; 35(6): 2095-2113, 2023 05 29.
Article in English | MEDLINE | ID: mdl-36883592

ABSTRACT

Flowering is critical for sexual reproduction and fruit production. Several pear (Pyrus sp.) varieties produce few flower buds, but the underlying mechanisms are unknown. The circadian clock regulator EARLY FLOWERING3 (ELF3) serves as a scaffold protein in the evening complex that controls flowering. Here, we report that the absence of a 58-bp sequence in the 2nd intron of PbELF3 is genetically associated with the production of fewer flower buds in pear. From rapid amplification of cDNA ends sequencing results, we identified a short, previously unknown transcript from the PbELF3 locus, which we termed PbELF3ß, whose transcript level was significantly lower in pear cultivars that lacked the 58-bp region. The heterologous expression of PbELF3ß in Arabidopsis (Arabidopsis thaliana) accelerated flowering, whereas the heterologous expression of the full-length transcript PbELF3α caused late flowering. Notably, ELF3ß was functionally conserved in other plants. Deletion of the 2nd intron reduced AtELF3ß expression and caused delayed flowering time in Arabidopsis. AtELF3ß physically interacted with AtELF3α, disrupting the formation of the evening complex and consequently releasing its repression of flower induction genes such as GIGANTEA (GI). AtELF3ß had no effect in the absence of AtELF3α, supporting the idea that AtELF3ß promotes flower induction by blocking AtELF3α function. Our findings show that alternative promoter usage at the ELF3 locus allows plants to fine-tune flower induction.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Circadian Clocks , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Circadian Clocks/physiology , Plants/metabolism , Flowers/metabolism
2.
Plant Cell ; 35(9): 3544-3565, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37306489

ABSTRACT

Self-incompatibility (SI) is a widespread genetically determined system in flowering plants that prevents self-fertilization to promote gene flow and limit inbreeding. S-RNase-based SI is characterized by the arrest of pollen tube growth through the pistil. Arrested pollen tubes show disrupted polarized growth and swollen tips, but the underlying molecular mechanism is largely unknown. Here, we demonstrate that the swelling at the tips of incompatible pollen tubes in pear (Pyrus bretschneideri [Pbr]) is mediated by the SI-induced acetylation of the soluble inorganic pyrophosphatase (PPA) PbrPPA5. Acetylation at Lys-42 of PbrPPA5 by the acetyltransferase GCN5-related N-acetyltransferase 1 (GNAT1) drives accumulation of PbrPPA5 in the nucleus, where it binds to the transcription factor PbrbZIP77, forming a transcriptional repression complex that inhibits the expression of the pectin methylesterase (PME) gene PbrPME44. The function of PbrPPA5 as a transcriptional repressor does not require its PPA activity. Downregulating PbrPME44 resulted in increased levels of methyl-esterified pectins in growing pollen tubes, leading to swelling at their tips. These observations suggest a mechanism for PbrPPA5-driven swelling at the tips of pollen tubes during the SI response. The targets of PbrPPA5 include genes encoding cell wall-modifying enzymes, which are essential for building a continuous sustainable mechanical structure for pollen tube growth.


Subject(s)
Pollen Tube , Pyrus , Ribonucleases/metabolism , Inorganic Pyrophosphatase/genetics , Inorganic Pyrophosphatase/metabolism , Acetylation , Pyrus/metabolism
3.
BMC Genomics ; 25(1): 169, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38347517

ABSTRACT

BACKGROUND: ATP-binding cassette (ABC) transporter proteins constitute a plant gene superfamily crucial for growth, development, and responses to environmental stresses. Despite their identification in various plants like maize, rice, and Arabidopsis, little is known about the information on ABC transporters in pear. To investigate the functions of ABC transporters in pear development and abiotic stress response, we conducted an extensive analysis of ABC gene family in the pear genome. RESULTS: In this study, 177 ABC transporter genes were successfully identified in the pear genome, classified into seven subfamilies: 8 ABCAs, 40 ABCBs, 24 ABCCs, 8 ABCDs, 9 ABCEs, 8 ABCFs, and 80 ABCGs. Ten motifs were common among all ABC transporter proteins, while distinct motif structures were observed for each subfamily. Distribution analysis revealed 85 PbrABC transporter genes across 17 chromosomes, driven primarily by WGD and dispersed duplication. Cis-regulatory element analysis of PbrABC promoters indicated associations with phytohormones and stress responses. Tissue-specific expression profiles demonstrated varied expression levels across tissues, suggesting diverse functions in development. Furthermore, several PbrABC genes responded to abiotic stresses, with 82 genes sensitive to salt stress, including 40 upregulated and 23 downregulated genes. Additionally, 91 genes were responsive to drought stress, with 22 upregulated and 36 downregulated genes. These findings highlight the pivotal role of PbrABC genes in abiotic stress responses. CONCLUSION: This study provides evolutionary insights into PbrABC transporter genes, establishing a foundation for future research on their functions in pear. The identified motifs, distribution patterns, and stress-responsive expressions contribute to understanding the regulatory mechanisms of ABC transporters in pear. The observed tissue-specific expression profiles suggest diverse roles in developmental processes. Notably, the significant responses to salt and drought stress emphasize the importance of PbrABC genes in mediating adaptive responses. Overall, our study advances the understanding of PbrABC transporter genes in pear, opening avenues for further investigations in plant molecular biology and stress physiology.


Subject(s)
ATP-Binding Cassette Transporters , Pyrus , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Pyrus/genetics , Membrane Transport Proteins/genetics , Stress, Physiological/genetics , Adenosine Triphosphate , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Multigene Family , Gene Expression Regulation, Plant
4.
BMC Genomics ; 25(1): 794, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39169310

ABSTRACT

BACKGROUND: PSEUDO RESPONSE REGULATOR (PRR) genes are essential components of circadian clock, playing vital roles in multiple processes including plant growth, flowering and stress response. Nonetheless, little is known about the evolution and function of PRR family in Rosaceae species. RESULTS: In this study, a total of 43 PRR genes in seven Rosaceae species were identified through comprehensive analysis. The evolutionary relationships were analyzed with phylogenetic tree, duplication events and synteny. PRR genes were classified into three groups (PRR1, PRR5/9, PRR3/7). The expansion of PRR family was mainly derived from dispersed and whole-genome duplication events. Purifying selection was the major force for PRR family evolution. Synteny analysis indicated the existence of multiple orthologous PRR gene pairs between pear and other Rosaceae species. Moreover, the conserved motifs of eight PbPRR proteins supported the phylogenetic relationship. PRR genes showed diverse expression pattern in various tissues of pear (Pyrus bretschneideri). Transcript analysis under 12-h light/ dark cycle and constant light conditions revealed that PRR genes exhibited distinct rhythmic oscillations in pear. PbPRR59a and PbPRR59b highly homologous to AtPRR5 and AtPRR9 were cloned for further functional verification. PbPRR59a and PbPRR59b proteins were localized in the nucleus. The ectopic overexpression of PbPRR59a and PbPRR59b significantly delayed flowering in Arabidopsis transgenic plants by repress the expression of AtGI, AtCO and AtFT under long-day conditions. CONCLUSIONS: These results provide information for exploring the evolution of PRR genes in plants, and contribute to the subsequent functional studies of PRR genes in pear and other Rosaceae species.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Rosaceae , Flowers/genetics , Flowers/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Rosaceae/genetics , Pyrus/genetics , Arabidopsis/genetics , Evolution, Molecular , Synteny , Multigene Family
5.
Plant Physiol ; 192(3): 2356-2373, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37010117

ABSTRACT

S-RNase-mediated self-incompatibility (SI) prevents self-fertilization and promotes outbreeding to ensure genetic diversity in many flowering plants, including pear (Pyrus sp.). Brassinosteroids (BRs) have well-documented functions in cell elongation, but their molecular mechanisms in pollen tube growth, especially in the SI response, remain elusive. Here, exogenously applied brassinolide (BL), an active BR, countered incompatible pollen tube growth inhibition during the SI response in pear. Antisense repression of BRASSINAZOLE-RESISTANT1 (PbrBZR1), a critical component of BR signaling, blocked the positive effect of BL on pollen tube elongation. Further analyses revealed that PbrBZR1 binds to the promoter of EXPANSIN-LIKE A3 (PbrEXLA3) to activate its expression. PbrEXLA3 encodes an expansin that promotes pollen tube elongation in pear. The stability of dephosphorylated PbrBZR1 was substantially reduced in incompatible pollen tubes, where it is targeted by ARIADNE2.3 (PbrARI2.3), an E3 ubiquitin ligase that is strongly expressed in pollen. Our results show that during the SI response, PbrARI2.3 accumulates and negatively regulates pollen tube growth by accelerating the degradation of PbrBZR1 via the 26S proteasome pathway. Together, our results show that an ubiquitin-mediated modification participates in BR signaling in pollen and reveal the molecular mechanism by which BRs regulate S-RNase-based SI.


Subject(s)
Brassinosteroids , Pollen Tube , Pyrus , Brassinosteroids/metabolism , Endoribonucleases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen/genetics , Pyrus/metabolism , Ribonucleases/genetics , Ribonucleases/metabolism
6.
Plant Physiol ; 191(3): 1734-1750, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36617219

ABSTRACT

In pear (Pyrus bretschneideri), pollen tube growth is critical for the double fertilization associated with seed setting, which in turn affects fruit yield. The normal deposition of callose mediates the polar growth of pollen tubes. However, the mechanism regulating callose synthesis in pollen tubes remains relatively uncharacterized. In this study, we revealed that the typical pear pollen tube lifecycle has a semi-growth duration (GD50) of 16.16 h under in vitro culture conditions. Moreover, callose plugs were deposited throughout the pollen tube lifecycle. The formation of callose plugs was inhibited by 2-deoxy-D-glucose, which also accelerated the senescence of pear pollen tubes. Additionally, PbrCalS1B.1, which encodes a plasma membrane-localized callose synthase, was expressed specifically in pollen tubes and restored the fertility of the Arabidopsis (Arabidopsis thaliana) cals5 mutant, in which callose synthesis is inhibited. However, this restoration of fertility was impaired by the transient silencing of PbrCalS1B.1, which restricts callose plug formation and shortens the pear pollen tube lifecycle. More specifically, PbrbZIP52 regulated PbrCalS1B.1 transcription by binding to promoter A-box elements to maintain the periodic formation of callose plugs and normal pollen tube growth, ultimately leading to double fertilization. This study confirmed that PbrbZIP52 positively affects pear pollen tube longevity by promoting callose synthesis. This finding may be useful for breeding high-yielding pear cultivars and stabilizing fruit setting in commercial orchards.


Subject(s)
Arabidopsis , Pyrus , Pollen Tube , Pyrus/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Longevity , Plant Breeding , Arabidopsis/metabolism
7.
Plant Cell ; 33(3): 566-580, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33955496

ABSTRACT

The external application of nitrogen (N) fertilizers is an important practice for increasing crop production. However, the excessive use of fertilizers significantly increases production costs and causes environmental problems, making the improvement of crop N-use efficiency (NUE) crucial for sustainable agriculture in the future. Here we show that the rice (Oryza sativa) NUE quantitative trait locus DULL NITROGEN RESPONSE1 (qDNR1), which is involved in auxin homeostasis, reflects the differences in nitrate (NO3-) uptake, N assimilation, and yield enhancement between indica and japonica rice varieties. Rice plants carrying the DNR1indica allele exhibit reduced N-responsive transcription and protein abundance of DNR1. This, in turn, promotes auxin biosynthesis, thereby inducing AUXIN RESPONSE FACTOR-mediated activation of NO3- transporter and N-metabolism genes, resulting in improved NUE and grain yield. We also show that a loss-of-function mutation at the DNR1 locus is associated with increased N uptake and assimilation, resulting in improved rice yield under moderate levels of N fertilizer input. Therefore, modulating the DNR1-mediated auxin response represents a promising strategy for achieving environmentally sustainable improvements in rice yield.


Subject(s)
Indoleacetic Acids/metabolism , Loss of Function Mutation/genetics , Nitrogen/metabolism , Oryza/genetics , Oryza/metabolism , Alleles , Homeostasis/genetics , Homeostasis/physiology
8.
Mol Breed ; 44(3): 18, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38390031

ABSTRACT

Cold shock domain proteins (CSPs), initially identified in Escherichia coli, have been demonstrated to play a positive role in cold resistance. Previous studies in wheat, rice, and Arabidopsis have indicated the functional conservation of CSPs in cold resistance between bacteria and higher plants. However, the biological functions of PbrCSPs in pear pollen tubes, which represent the fragile reproductive organs highly sensitive to low temperature, remain largely unknown. In this study, a total of 22 CSPs were identified in the seven Rosaceae species, with a focus on characterizing four PbrCSPs in pear (Pyrus bretschneideri Rehder). All four PbrCSPs were structurally conserved and responsive to the abiotic stresses, such as cold, high osmotic, and abscisic acid (ABA) treatments. PbrCSP1, which is specifically expressed in pear pollen tubes, was selected for further research. PbrCSP1 was localized in both the cytoplasm and nucleus. Suppressing the expression of PbrCSP1 significantly inhibited the pollen tube growth in vitro. Conversely, overexpression of PbrCSP1 promoted the growth of pear pollen tubes under the normal condition and, notably, under the cold environment at 4 °C. These findings highlight an essential role of PbrCSP1 in facilitating the normal growth and enhancing cold resistance in pear pollen tubes. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01457-w.

9.
BMC Genomics ; 24(1): 49, 2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36707756

ABSTRACT

BACKGROUND: The circadian clock integrates endogenous and exogenous signals and regulates various physiological processes in plants. REVEILLE (RVE) proteins play critical roles in circadian clock system, especially CCA1 (CIRCADIAN CLOCK ASSOCIATED 1) and LHY (LATE ELONGATED HYPOCOTYL), which also participate in flowering regulation. However, little is known about the evolution and function of the RVE family in Rosaceae species, especially in Pyrus bretschneideri. RESULTS: In this study, we performed a genome-wide analysis and identified 51 RVE genes in seven Rosaceae species. The RVE family members were classified into two groups based on phylogenetic analysis. Dispersed duplication events and purifying selection were the main drivers of evolution in the RVE family. Moreover, the expression patterns of ten PbRVE genes were diverse in P. bretschneideri tissues. All PbRVE genes showed diurnal rhythms under light/dark cycles in P. bretschneideri leaves. Four PbRVE genes also displayed robust rhythms under constant light conditions. PbLHY, the gene with the highest homology to AtCCA1 and AtLHY in P. bretschneideri, is localized in the nucleus. Ectopic overexpression of PbLHY in Arabidopsis delayed flowering time and repressed the expression of flowering time-related genes. CONCLUSION: These results contribute to improving the understanding and functional research of RVE genes in P. bretschneideri.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Rosaceae , Transcription Factors/genetics , Transcription Factors/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Rosaceae/genetics , Phylogeny , Arabidopsis/metabolism , Circadian Rhythm/genetics , Gene Expression Regulation, Plant
10.
Planta ; 257(4): 68, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36853424

ABSTRACT

MAIN CONCLUSION: The phylogenetic relationship and evolutionary history of the GAUT gene family were identified in 8 Rosaseae species. PbrGAUT22 was involved in controlling pollen tube growth by regulating the content of pectins. In plants, galacturonosyltransferases (GAUTs) were involved in homogalacturonan biosynthesis and functioned in maintaining pollen tube cell wall integrity. However, the feature and evolutionary history of the GAUT gene family in Rosaceae species and candidates in pear pollen tube growth remain unclear. Here, we identified 190 GAUT genes in 8 Rosaceae species, including Chinese white pear (Pyrus bretschneideri), European pear (Pyrus communis), apple (Malus × domestica), peach (Prunus persica), Japanese apricot (Prunus mume), sweet cherry (Prunus avium), woodland strawberry (Fragaria vesca) and black raspberry (Rubus occidentalis). Members in GAUT gene family were divided into 4 subfamilies according to the phylogenetic and structural analysis. Whole-genome duplication events and dispersed duplicates drove the expansion of the GAUT gene family. Among 23 pollen-expressed PbrGAUT genes in pear, PbrGAUT22 showed increased expression level during 1-6 h post-cultured pollen tubes. PbrGAUT22 was localized to the cytoplasm and plasma membrane. Knockdown of PbrGAUT22 expression in pollen tubes caused the decrease of pectin content and inhibited pear pollen tubes growth. Taken together, we investigated the identification and evolution of the GAUT gene family in Rosaceae species, and found that PbrGAUT22 played an essential role in the synthesis of pectin and the growth of pear pollen tubes.


Subject(s)
Fragaria , Malus , Prunus persica , Pyrus , Rosaceae , Rosaceae/genetics , Pyrus/genetics , Pollen Tube/genetics , Phylogeny , Cell Proliferation
11.
Physiol Plant ; 175(2): e13893, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36929905

ABSTRACT

Photoperiod provides a key environmental signal that controls plant growth. Plants have evolved an integrated mechanism for sensing photoperiods with internal clocks to orchestrate physiological events. This mechanism has been identified to enable timely plant growth and improve fitness. Although the components and pathways underlying photoperiod regulation have been described in many species, diurnal patterns of gene expression at the genome-wide level under different photoperiods are rarely reported in perennial fruit trees. To explore the global gene expression in response to photoperiod, pear plants were cultured under long-day (LD) and short-day (SD) conditions. A time-series transcriptomic study was implemented using LD and SD samples collected at 4 h intervals over 2 days. We identified 13,677 rhythmic genes, of which 7639 were identified under LD and 10,557 under SD conditions. Additionally, 4674 genes were differentially expressed in response to photoperiod change. We also characterized the candidate homologs of clock-associated genes in pear. Clock genes were involved in the regulation of many processes throughout the day, including photosynthesis, stress response, hormone dynamics, and secondary metabolism. Strikingly, genes within photosynthesis-related pathways were enriched in both the rhythmic and differential expression analyses. Several key candidate genes were identified to be associated with regulating photosynthesis and improving productivity under different photoperiods. The results suggest that temporal variation in gene expression should not be ignored in pear gene function research. Overall, our work expands the understanding of photoperiod regulation of plant growth, particularly by extending the research to non-model trees.


Subject(s)
Photoperiod , Pyrus , Transcriptome , Gene Expression Regulation, Plant , Gene Expression Profiling
12.
Genome Res ; 29(11): 1889-1899, 2019 11.
Article in English | MEDLINE | ID: mdl-31649061

ABSTRACT

Genome assemblies from diploid organisms create mosaic sequences alternating between parental alleles, which can create erroneous gene models and other problems. In animals, a popular strategy to generate haploid genome-resolved assemblies has been the sampling of (haploid) gametes, and the advent of single-cell sequencing has further advanced such methods. However, several challenges for the isolation and amplification of DNA from plant gametes have limited such approaches in plants. Here, we combined a new approach for pollen protoplast isolation with a single-cell DNA amplification technique and then used a "barcoding" bioinformatics strategy to incorporate haploid-specific sequence data from 12 pollen cells, ultimately enabling the efficient and accurate phasing of the pear genome into its A and B haploid genomes. Beyond revealing that 8.12% of the genes in the pear reference genome feature mosaic assemblies and enabling a previously impossible analysis of allelic affects in pear gene expression, our new haploid genome assemblies provide high-resolution information about recombination during meiosis in pollen. Considering that outcrossing pear is an angiosperm species featuring very high heterozygosity, our method for rapidly phasing genome assemblies is potentially applicable to several yet-unsequenced outcrossing angiosperm species in nature.


Subject(s)
Diploidy , Genome, Plant , Germ Cells, Plant , Pollen/cytology , Computational Biology , DNA, Plant/genetics , Haplotypes , High-Throughput Nucleotide Sequencing/methods , Meiosis
13.
BMC Plant Biol ; 22(1): 341, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35836134

ABSTRACT

In contrast to most land plant species, sorbitol, instead of sucrose, is the major photosynthetic product in many Rosaceae species. It has been well illustrated that three key functional genes encoding sorbitol-6-phosphate dehydrogenase (S6PDH), sorbitol dehydrogenase (SDH), and sorbitol transporter (SOT), are mainly responsible for the synthesis, degradation and transportation of sorbitol. In this study, the genome-wide identification of S6PDH, SDH and SOT genes was conducted in four Rosaceae species, peach, mei, apple and pear, and showed the sorbitol bio-pathway to be dominant (named sorbitol present group, SPG); another three related species, including tomato, poplar and Arabidopsis, showed a non-sorbitol bio-pathway (named sorbitol absent group, SAG). To understand the evolutionary differences of the three important gene families between SAG and SPG, their corresponding gene duplication, evolutionary rate, codon bias and positive selection patterns have been analyzed and compared. The sorbitol pathway genes in SPG were found to be expanded through dispersed and tandem gene duplications. Branch-specific model analyses revealed SDH and S6PDH clade A were under stronger purifying selection in SPG. A higher frequency of optimal codons was found in S6PDH and SDH than that of SOT in SPG, confirming the purifying selection effect on them. In addition, branch-site model analyses revealed SOT genes were under positive selection in SPG. Expression analyses showed diverse expression patterns of sorbitol-related genes. Overall, these findings provide new insights in the evolutionary characteristics for the three key sorbitol metabolism-related gene families in Rosaceae and other non-sorbitol dominant pathway species.


Subject(s)
Pyrus , Rosaceae , Solanum lycopersicum , Biological Evolution , Carbohydrate Metabolism , Solanum lycopersicum/genetics , Phylogeny , Pyrus/metabolism , Rosaceae/genetics , Sorbitol/metabolism
14.
Planta ; 256(2): 22, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35767158

ABSTRACT

MAIN CONCLUSION: Identification of CalS genes in seven Rosaceae species and functional characterization of PbrCalS5 in pear pollen tube growth by regulating callose deposition. Callose exists widely in angiosperms and has significant functions in a range of developmental processes. Callose is synthesized by callose synthase (CalS). However, the members of the callose synthase gene family and their evolutionary profiles, along with their biological functions, in species of the Rosaceae remain unknown. In this study, a total of 69 members of the CalS gene family in seven Rosaceae species (Fragaria vesca, Malus × domestica, Prunus avium, Pyrus bretschneideri, Prunus mume, Prunus persica and Rubus occidentalis) were identified and divided into six clades. Different types of gene duplication events contributed to the expansions of the CalS gene family in the seven species, with purifying selection playing a key role in the evolution of the CalS genes. Tissue-specific expression patterns analysis revealed that PbrCalS5 was highly expressed in the pear pollen tube and was selected for further functional analysis. Subcellular localization indicated that PbrCalS5 was localized in the plasma membrane and cell wall. Antisense oligodeoxynucleotide (AS-ODN) assays resulted in the inhibition of PbrCalS5 expression, leading to the decreased callose deposition in the pollen tube wall and subsequent inhibition of pear pollen tube growth. These results provide the theoretical basis for exploring the functional roles of CalS genes in pear pollen tube growth.


Subject(s)
Malus , Pyrus , Rosaceae , Evolution, Molecular , Glucosyltransferases , Malus/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen Tube/metabolism , Pyrus/genetics , Pyrus/metabolism , Rosaceae/metabolism
15.
Physiol Plant ; 174(3): e13700, 2022 May.
Article in English | MEDLINE | ID: mdl-35526262

ABSTRACT

Cellulose, a key component of the cell wall, plays an important role in maintaining the growth of pollen tubes. However, the molecular mechanism of cellulose participating in the cessation of pear pollen tube growth remains unclear. Here, we reported that at 15 h post-cultured (HPC), the slow-growth pear pollen tubes showed thickened cell walls and cellulose accumulation in the inner wall. Transcriptome data and quantitative real-time PCR analysis showed that PbrCSLD5, a cellulose synthesis-like gene, was highly expressed in the 15 HPC pear pollen tubes. Knockdown of PbrCSLD5 caused a decrease in cellulose content in pear pollen tubes. Moreover, PbrCSLD5 overexpression in Arabidopsis resulted in the accumulation of cellulose and disruption of normal pollen tube growth. Transcription factor PbrMADS52 was found to bind to the promoter of PbrCSLD5 and enhanced its expression. Our results suggested that the PbrMADS52-PbrCSLD5 signaling pathway led to increased cellulose content in the pear pollen tube cell wall, thereby inhibiting pollen tube growth. These results provided new insights into the regulation of pollen tube growth.


Subject(s)
Arabidopsis , Plant Proteins/metabolism , Pyrus , Arabidopsis/metabolism , Cellulose/metabolism , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Pollen Tube/genetics , Pollen Tube/metabolism , Pyrus/genetics , Pyrus/metabolism
16.
BMC Plant Biol ; 21(1): 256, 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34088272

ABSTRACT

BACKGROUND: Pears and apples are both perennial deciduous trees of the Rosaceae family, and both are important economic fruit trees worldwide. The emergence of many varieties in the market has been mostly domesticated from wild to cultivated and regulated by the differential expression of genes. However, the molecular process and pathways underlying this phenomenon remain unclear. Four typical wild and cultivar pear and apple trees at three developmental stages were used in our study to investigate the molecular process at the transcriptome level. RESULT: Physiological observations indicated the obvious differences of size, weight, sugar acid content and peel color in wild and cultivar fruit among each developmental stage. Using next-generation sequencing based RNA-seq expression profiling technology, we produced a transcriptome in procession of a large fraction of annotated pear and apple genes, and provided a molecular basis underlying the phenomenon of wild and cultivar fruit tree differences. 5921 and 5744 differential expression genes were identified in pear and apple at three developmental stages respectively. We performed temporal and spatial differential gene expression profiling in developing fruits. Several key pathways such as signal transduction, photosynthesis, translation and many metabolisms were identified as involved in the differentiation of wild and cultivar fruits. CONCLUSION: In this study, we reported on the next-generation sequencing study of the temporal and spatial mRNA expression profiling of pear and apple fruit trees. Also, we demonstrated that the integrated analysis of pear and apple transcriptome, which strongly revealed the consistent process of domestication in Rosaceae fruit trees. The results will be great influence to the improvement of cultivar species and the utilization of wild resources.


Subject(s)
Gene Expression Regulation, Developmental/physiology , Gene Expression Regulation, Plant/physiology , Malus/genetics , Pyrus/genetics , RNA-Seq/methods , Fruit/growth & development , RNA, Plant , Species Specificity , Time Factors
17.
Planta ; 253(6): 118, 2021 May 07.
Article in English | MEDLINE | ID: mdl-33961146

ABSTRACT

MAIN CONCLUSION: Pectin methylesterase inhibitor gene family in the seven Rosaceae species (including three pear cultivars) is characterized and three pectin methylesterase inhibitor genes are identified to regulate pollen tube growth in pear. Pectin methylesterase inhibitor (PMEI) participates in a variety of biological processes in plants. However, the information and function of PMEI genes in Rosaceae are largely unknown. In this study, a total of 423 PMEI genes are identified in the genomes of seven Rosaceae species. The PMEI genes in pear are categorized into five subfamilies based on structural analysis and evolutionary analysis. WGD and TD are the main duplication events in the PMEI gene family of pear. Quantitative real-time PCR analysis indicates that PbrPMEI23, PbrPMEI39, and PbrPMEI41 are increasingly expressed during pear pollen tube growth. Under the treatment of recombinant proteins PbrPMEI23, PbrPMEI39 or PbrPMEI41, the content of methylesterified pectin at the region 5-20 µm from the pollen tube tip significantly increases, and the growth of pear pollen tubes is promoted. These results indicate that PMEI regulates the growth of pollen tubes by changing the distribution of methylesterified pectin in the apex.


Subject(s)
Pyrus , Rosaceae , Carboxylic Ester Hydrolases/genetics , Pectins , Plant Proteins/genetics , Pollen Tube/genetics , Pyrus/genetics , Rosaceae/genetics
18.
Plant Cell ; 30(5): 1023-1039, 2018 05.
Article in English | MEDLINE | ID: mdl-29716992

ABSTRACT

S-RNase is the female determinant of self-incompatibility (SI) in pear (Pyrus bretschneideri). After translocation to the pollen tube, S-RNase degrades rRNA and induces pollen tube death in an S-haplotype-specific manner. In this study, we found that the actin cytoskeleton is a target of P. bretschneideri S-RNase (PbrS-RNase) and uncovered a mechanism that involves phosphatidic acid (PA) and protects the pollen tube from PbrS-RNase cytotoxicity. PbrS-RNase interacts directly with PbrActin1 in an S-haplotype-independent manner, causing the actin cytoskeleton to depolymerize and promoting programmed cell death in the self-incompatible pollen tube. Pro-156 of PbrS-RNase is essential for the PbrS-RNase-PbrActin1 interaction, and the actin cytoskeleton-depolymerizing function of PbrS-RNase does not require its RNase activity. PbrS-RNase cytotoxicity enhances the expression of phospholipase D (PbrPLDδ1), resulting in increased PA levels in the incompatible pollen tube. PbrPLDδ1-derived PA initially prevents depolymerization of the actin cytoskeleton elicited by PbrS-RNase and delays the SI signaling that leads to pollen tube death. This work provides insights into the orchestration of the S-RNase-based SI response, in which increased PA levels initially play a protective role in incompatible pollen, until sustained PbrS-RNase activity reaches the point of no return and pollen tube growth ceases.


Subject(s)
Actin Cytoskeleton/metabolism , Actins/metabolism , Cytoskeleton/metabolism , Phosphatidic Acids/metabolism , Pollination/physiology , Ribonucleases/metabolism , Signal Transduction/physiology
19.
Genomics ; 112(2): 1622-1632, 2020 03.
Article in English | MEDLINE | ID: mdl-31533070

ABSTRACT

Flowering is a prerequisite for pear fruit production. Therefore, the development of flower buds and the control of flowering time are important for pear trees. However, the molecular mechanism of pear flowering is unclear. SOC1, a member of MADS-box family, is known as a flowering signal integrator in Arabidopsis. We identified eight SOC1-like genes in Pyrus bretschneideri and analyzed their basic information and expression patterns. Some pear SOC1-like genes were regulated by photoperiod in leaves. Moreover, the expression patterns were diverse during the development of pear flower buds. Two members of the pear SOC1-like genes, PbSOC1d and PbSOC1g, could lead to early flowering phenotype when overexpressed in Arabidopsis. PbSOC1d and PbSOC1g were identified as activators of the floral meristem identity genes AtAP1 and AtLFY and promote flowering time. These results suggest that PbSOC1d and PbSOC1g are promoters of flowering time and may be involved in flower bud development in pear.


Subject(s)
MADS Domain Proteins/genetics , Plant Proteins/genetics , Pyrus/genetics , Flowers/genetics , Flowers/metabolism , MADS Domain Proteins/metabolism , Photoperiod , Plant Development , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/metabolism , Pyrus/growth & development
20.
Genomics ; 112(3): 2467-2477, 2020 05.
Article in English | MEDLINE | ID: mdl-32014523

ABSTRACT

Pectin methyl-esterases (PMEs) play crucial roles in plant growth. In this study, we identified 81 PbrPMEs in pear. Whole-genome duplication and purifying selection drove the evolution of PbrPME gene family. The expression of 47 PbrPMEs was detected in pear pollen tube, which were assigned to 13 clusters by an expression tendency analysis. One of the 13 clusters presented opposite expression trends towards the changes of methyl-esterified pectins at the apical cell wall. PbrPMEs were localized in the cytoplasm and plasma membrane. Repression of PbrPME11, PbrPME44, and PbrPME59 resulted in the inhibition of pear pollen tube growth and abnormal deposition of methyl-esterified pectins at pollen tube tip. Pharmacological analysis confirmed that reduced PbrPME activities repressed the pollen tube growth. Overall, we have explored the evolutionary characteristics of PbrPME gene family and found the key PbrPME genes that control the growth of pollen tube, which deepened the understanding of pear fertility regulation.


Subject(s)
Esterases/genetics , Pectins/metabolism , Pollen Tube/enzymology , Pollen Tube/growth & development , Pyrus/enzymology , Pyrus/growth & development , Chromosome Mapping , Esterases/classification , Esterases/metabolism , Genes, Plant , Genome, Plant , Multigene Family , Nucleotide Motifs , Phylogeny , Pollen Tube/metabolism , Pyrus/genetics , Pyrus/metabolism , Synteny
SELECTION OF CITATIONS
SEARCH DETAIL