ABSTRACT
BACKGROUND: To compare potential of ultrashort time-to-echo (UTE) T2* mapping and T2* values from T2*-weighted imaging for assessing lumbar intervertebral disc degeneration (IVDD),with Pfirrmann grading as a reference standard. METHODS: UTE-T2* and T2* values of 366 lumbar discs (L1/2-L5/S1) in 76 subjects were measured in 3 segmented regions: anterior annulus fibrosus, nucleus pulposus (NP), and posterior annulus fibrosus. Lumbar intervertebral discs were divided into 3 categories based on 5-level Pfirrmann grading: normal (Pfirrmann grade I),early disc degeneration (Pfirrmann grades II-III), and advanced disc degeneration (Pfirrmann grades IV-V). Regional differences between UTE-T2* and T2* relaxometry and correlation with degeneration were statistically analyzed. RESULTS: UTE-T2* and T2*value correlated negatively with Pfirrmann grades (P < 0.001). In NP, correlations with Pfirrmann grade were high with UTE-T2* values (r = - 0.733; P < 0.001) and moderate with T2* values (r = -0.654; P < 0.001). Diagnostic accuracy of detecting early IVDD was better with UTE-T2* mapping than T2* mapping (P < 0.05),with receiver operating characteristic analysis area under the curve of 0.715-0.876. CONCLUSIONS: UTE-T2* relaxometry provides another promising magnetic resonance imaging sequence for quantitatively evaluate lumbar IVDD and was more accurate than T2*mapping in the earlier stage degenerative process.
Subject(s)
Annulus Fibrosus , Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Humans , Intervertebral Disc/diagnostic imaging , Intervertebral Disc/pathology , Intervertebral Disc Degeneration/pathology , Magnetic Resonance Imaging/methods , Nucleus Pulposus/pathologyABSTRACT
RATIONALE: Artemisitene shows a wide variety of pharmacological activities, such as antioxidant protection in vitro and in vivo. It has been identified as a novel Nrf2 inducer. However, there is no report on an ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) method to quantitate artemisitene in rat plasma and its application to a pharmacokinetic profile study. METHODS: An ACQUITY UPLC™ BEH Symmetry Shield RP18 column (1.7 µm, 2.1 mm × 100 mm) was used at a flow rate of 0.3 mL·min-1 . Mass detection was performed by electrospray ionization tandem mass spectrometry via multiple reaction monitoring (MRM) in positive mode. Plasma samples were pre-treated by a single-step extraction with 0.1% formic acid aqueous solutions-acetonitrile, and tolbutamide was used as internal standard. RESULTS: The calibration curve was from 0.98 to 1000 ngâmL-1 (r2 = 0.995). The extraction recoveries were 61.5-79.4% and 81.7-94.6% for artemisitene and tolbutamide, respectively. The lower limit of quantification (LLOQ) was 0.98 ngâmL-1 . The absolute bioavailability of artemisitene was 3.7% after intravenous and oral administration in rats. CONCLUSIONS: The UPLC/MS/MS assay was validated for linearity, accuracy, stability, extraction recovery, matrix effects, and intra-day and inter-day precision. The method, for the first time, achieved some pharmacokinetic parameters and was successfully applied to a pharmacokinetic study Copyright © 2017 John Wiley & Sons, Ltd.
Subject(s)
Artemisinins/blood , Artemisinins/pharmacokinetics , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Animals , Artemisinins/chemistry , Calibration , Drug Stability , Linear Models , Male , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Sensitivity and SpecificityABSTRACT
Caesalpinia sappan L. is a traditional medicinal plant which is used for promoting blood circulation and cerebral apoplexy therapy in China. Previous reports showed that the extracts of Caesalpinia sappan L. could exert vasorelaxant activity and anti-inflammation activity. Protosappanin B is a major constituent of C. sappan L., and showed several important bioactivities. The separation was achieved by an Acquity UPLC BEH Symmetry Shield RP18 column (1.7 µm, 2.1 × 100 mm) column with the gradient mobile phase consisting of 5 mm ammonium acetate aqueous solution and acetonitrile. Detection was carried out by using negative-ion electrospray tandem mass spectrometry via multiple reaction monitoring. Plasma samples were preprocessed by an extraction with ethyl acetate, and apigenin was used as internal standard. The current UPLC-MS/MS assay was validated for linearity, accuracy, intraday and interday precisions, stability, matrix effects and extraction recovery. After oral and intravenous administration, the main pharmacokinetic parameters were as follows: peak concentrations, 83.5 ± 46.2 and 1329.6 ± 343.6 ng/mL; areas under the concentration-time curve, 161.9 ± 69.7 and 264.9 ± 56.3 µg h/L; and half-lives, 3.4 ± 0.9 and 0.3 ± 0.1 h, respectively. The absolute bioavailability in rats of protosappanin B was 12.2%. The method has been successfully applied to a pharmacokinetic and bioavailability study of protosappanin B in rats.
Subject(s)
Chromatography, Liquid/methods , Oxocins/blood , Tandem Mass Spectrometry/methods , Animals , Biological Availability , Limit of Detection , Male , Oxocins/pharmacokinetics , Rats , Rats, Sprague-Dawley , Reproducibility of ResultsABSTRACT
We employed the water-soluble cytochrome P450 BM-3 to study the activity and regiospecificity of oxidation of fluorinated n-octanes. Three mutations, A74G, F87V, and L188Q, were introduced into P450 BM-3 to allow the system to undergo n-octane oxidation. In addition, the alanine at residue 328 was replaced with a phenylalanine to introduce an aromatic residue into the hydrophobic pocket to examine whether or not van der Waals interactions between a C-F substituent in the substrate and the polarizable π system of the phenylalanine may be used to steer the positioning of the substrate within the active-site pocket of the enzyme and control the regioselectivity and stereoselectivity of hydroxylation. Interestingly, not only was the regioselectivity controlled when the fluorine substituent was judiciously positioned in the substrate, but the electron input into the iron-heme group became tightly coupled to the formation of product, essentially without abortive side reactions. Remarkable enhancement of the coupling efficiency between electron input and product formation was observed for a range of fluorinated octanes in the enzyme even without the A328F mutation, presumably because of interactions of the C-F substituent with the π system of the porphyrin macrocycle within the active-site pocket. Evidently, tightening the protein domain containing the heme pocket tunes the distribution of accessible enzyme conformations and the associated protein dynamics that activate the iron porphyrin for substrate hydroxylation to allow the reactions mediated by the high-valent Fe(IV)=O to become kinetically more commensurate with electron transfer from the flavin adenine dinucleotide (FAD)/flavin mononucleotide (FMN) reductase. These observations lend compelling evidence to support significant van der Waals interactions between the CF(2) group and aromatic π systems within the heme pocket when the fluorinated octane substrate is bound.
Subject(s)
Cytochrome P-450 Enzyme System/chemistry , Flavin Mononucleotide/chemistry , Flavin-Adenine Dinucleotide/chemistry , Fluorine/chemistry , Hydrocarbons, Fluorinated/chemistry , Octanes/chemistry , Electron Transport , Hydrogen Bonding , Hydroxylation , Molecular Conformation , Mutagenesis , Oxidation-Reduction , Solubility , Stereoisomerism , Water/chemistryABSTRACT
Nrf2 (Nuclear Factor Erythroid 2 Related Factor 2) transcription factor not only regulates oxidative stress response, but also represses inflammation by regulating cytokines production and cross-talking with NF-κB signaling pathways. Nrf2 plays an essential role in liver injury induced by oxidative stress and inflammation. Triptriolide (T11) is a minor component of Tripterygium wilfordii Hook F. (TwHF), which can be obtained by hydrolysis reaction of triptolide (T9). The major purpose of this study is to clarify the regulating effects of T11 on oxidative stress and inflammation in vivo and in vitro. LPS-stimulated RAW 264.7 cells were used to verify the regulating effects of T11 on oxidative stress (ROS and Nrf2 signaling pathway) and inflammatory cytokines production (TNF-α, IL-6 and IL-1ß). The antioxidant responsive element (ARE) luciferase assay was employed to evaluate Nrf2 activation effect of T11 in HEK-293T cells. Lipopolysaccharides (LPS) induced acute liver injury (ALI) in BALB/c mice were used to study the protective effects (ALT, AST, MDA, SOD, histopathology and neutrophils/macrophages filtration) and the underlying protection mechanisms of ALI amelioration (Nrf2 and NF-κB signaling pathway) of T11. Firstly, the results showed that T11 can not only effectively decrease the productions of inflammatory cytokines (TNF-α, IL-6 and IL-1ß), ROS and NO in LPS-stimulated RAW 264.7 cells, but also further significantly increase the activity of Nrf2 in HEK-293T cells. Secondly, the results suggested that T11 could dramatically decrease the oxidative stress responses (SOD and MDA) and inflammation (histopathology, neutrophils/macrophages filtration, TNF-α, IL-6 and IL-1ß production) in LPS-induced ALI in BALB/c mice. Finally, the results implied that T11 could dramatically increase Nrf2 protein expression and decrease p-TAK1, p-IκBα and NF-κB protein expression both in vivo and in vitro. In conclusion, our findings indicated that T11 could alleviate LPS induced oxidative stress and inflammation by regulating Nrf2 and NF-κB signaling pathways in vitro and in vivo, which offers a novel insights for the application of TwHF in clinical.