Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.293
Filter
Add more filters

Publication year range
1.
Cell ; 186(23): 4996-5014.e24, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37949056

ABSTRACT

A formal demonstration that mammalian pluripotent stem cells possess preimplantation embryonic cell-like (naive) pluripotency is the generation of chimeric animals through early embryo complementation with homologous cells. Whereas such naive pluripotency has been well demonstrated in rodents, poor chimerism has been achieved in other species including non-human primates due to the inability of the donor cells to match the developmental state of the host embryos. Here, we have systematically tested various culture conditions for establishing monkey naive embryonic stem cells and optimized the procedures for chimeric embryo culture. This approach generated an aborted fetus and a live chimeric monkey with high donor cell contribution. A stringent characterization pipeline demonstrated that donor cells efficiently (up to 90%) incorporated into various tissues (including the gonads and placenta) of the chimeric monkeys. Our results have major implications for the study of primate naive pluripotency and genetic engineering of non-human primates.


Subject(s)
Embryonic Stem Cells , Genetic Engineering , Haplorhini , Animals , Female , Pregnancy , Haplorhini/genetics , Live Birth , Mammals , Pluripotent Stem Cells , Primates , Genetic Engineering/methods
2.
Cell ; 185(10): 1777-1792.e21, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35512705

ABSTRACT

Spatially resolved transcriptomic technologies are promising tools to study complex biological processes such as mammalian embryogenesis. However, the imbalance between resolution, gene capture, and field of view of current methodologies precludes their systematic application to analyze relatively large and three-dimensional mid- and late-gestation embryos. Here, we combined DNA nanoball (DNB)-patterned arrays and in situ RNA capture to create spatial enhanced resolution omics-sequencing (Stereo-seq). We applied Stereo-seq to generate the mouse organogenesis spatiotemporal transcriptomic atlas (MOSTA), which maps with single-cell resolution and high sensitivity the kinetics and directionality of transcriptional variation during mouse organogenesis. We used this information to gain insight into the molecular basis of spatial cell heterogeneity and cell fate specification in developing tissues such as the dorsal midbrain. Our panoramic atlas will facilitate in-depth investigation of longstanding questions concerning normal and abnormal mammalian development.


Subject(s)
Organogenesis , Transcriptome , Animals , DNA/genetics , Embryo, Mammalian , Female , Gene Expression Profiling/methods , Mammals/genetics , Mice , Organogenesis/genetics , Pregnancy , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Transcriptome/genetics
3.
Cell ; 184(2): 404-421.e16, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33357445

ABSTRACT

Hepatocellular carcinoma (HCC) has high relapse and low 5-year survival rates. Single-cell profiling in relapsed HCC may aid in the design of effective anticancer therapies, including immunotherapies. We profiled the transcriptomes of ∼17,000 cells from 18 primary or early-relapse HCC cases. Early-relapse tumors have reduced levels of regulatory T cells, increased dendritic cells (DCs), and increased infiltrated CD8+ T cells, compared with primary tumors, in two independent cohorts. Remarkably, CD8+ T cells in recurrent tumors overexpressed KLRB1 (CD161) and displayed an innate-like low cytotoxic state, with low clonal expansion, unlike the classical exhausted state observed in primary HCC. The enrichment of these cells was associated with a worse prognosis. Differential gene expression and interaction analyses revealed potential immune evasion mechanisms in recurrent tumor cells that dampen DC antigen presentation and recruit innate-like CD8+ T cells. Our comprehensive picture of the HCC ecosystem provides deeper insights into immune evasion mechanisms associated with tumor relapse.


Subject(s)
Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Neoplasm Recurrence, Local/pathology , Single-Cell Analysis , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/immunology , Gene Expression Regulation, Neoplastic , Humans , Killer Cells, Natural/immunology , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Myeloid Cells/metabolism , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/immunology , Phenotype , RNA-Seq , Tumor Microenvironment
4.
Nature ; 605(7909): 315-324, 2022 05.
Article in English | MEDLINE | ID: mdl-35314832

ABSTRACT

After fertilization, the quiescent zygote experiences a burst of genome activation that initiates a short-lived totipotent state. Understanding the process of totipotency in human cells would have broad applications. However, in contrast to in mice1,2, demonstration of the time of zygotic genome activation or the eight-cell (8C) stage in in vitro cultured human cells has not yet been reported, and the study of embryos is limited by ethical and practical considerations. Here we describe a transgene-free, rapid and controllable method for producing 8C-like cells (8CLCs) from human pluripotent stem cells. Single-cell analysis identified key molecular events and gene networks associated with this conversion. Loss-of-function experiments identified fundamental roles for DPPA3, a master regulator of DNA methylation in oocytes3, and TPRX1, a eutherian totipotent cell homeobox (ETCHbox) family transcription factor that is absent in mice4. DPPA3 induces DNA demethylation throughout the 8CLC conversion process, whereas TPRX1 is a key executor of 8CLC gene networks. We further demonstrate that 8CLCs can produce embryonic and extraembryonic lineages in vitro or in vivo in the form of blastoids5 and complex teratomas. Our approach provides a resource to uncover the molecular process of early human embryogenesis.


Subject(s)
Embryo, Mammalian , Embryonic Development , Pluripotent Stem Cells , Zygote , Humans , Chromosomal Proteins, Non-Histone/genetics , Embryo, Mammalian/cytology , Homeodomain Proteins/genetics , Pluripotent Stem Cells/cytology , Transcription Factors/genetics , Zygote/cytology
5.
Nature ; 604(7907): 723-731, 2022 04.
Article in English | MEDLINE | ID: mdl-35418686

ABSTRACT

Studying tissue composition and function in non-human primates (NHPs) is crucial to understand the nature of our own species. Here we present a large-scale cell transcriptomic atlas that encompasses over 1 million cells from 45 tissues of the adult NHP Macaca fascicularis. This dataset provides a vast annotated resource to study a species phylogenetically close to humans. To demonstrate the utility of the atlas, we have reconstructed the cell-cell interaction networks that drive Wnt signalling across the body, mapped the distribution of receptors and co-receptors for viruses causing human infectious diseases, and intersected our data with human genetic disease orthologues to establish potential clinical associations. Our M. fascicularis cell atlas constitutes an essential reference for future studies in humans and NHPs.


Subject(s)
Macaca fascicularis , Transcriptome , Animals , Cell Communication , Macaca fascicularis/genetics , Receptors, Virus/genetics , Transcriptome/genetics , Wnt Signaling Pathway
6.
EMBO J ; 42(21): e112963, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37743772

ABSTRACT

The large intestine harbors microorganisms playing unique roles in host physiology. The beneficial or detrimental outcome of host-microbiome coexistence depends largely on the balance between regulators and responder intestinal CD4+ T cells. We found that ulcerative colitis-like changes in the large intestine after infection with the protist Blastocystis ST7 in a mouse model are associated with reduction of anti-inflammatory Treg cells and simultaneous expansion of pro-inflammatory Th17 responders. These alterations in CD4+ T cells depended on the tryptophan metabolite indole-3-acetaldehyde (I3AA) produced by this single-cell eukaryote. I3AA reduced the Treg subset in vivo and iTreg development in vitro by modifying their sensing of TGFß, concomitantly affecting recognition of self-flora antigens by conventional CD4+ T cells. Parasite-derived I3AA also induces over-exuberant TCR signaling, manifested by increased CD69 expression and downregulation of co-inhibitor PD-1. We have thus identified a new mechanism dictating CD4+ fate decisions. The findings thus shine a new light on the ability of the protist microbiome and tryptophan metabolites, derived from them or other sources, to modulate the adaptive immune compartment, particularly in the context of gut inflammatory disorders.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Mice , Eukaryota/metabolism , Tryptophan/metabolism , T-Lymphocytes, Regulatory
7.
Hum Mol Genet ; 33(4): 342-354, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37944069

ABSTRACT

Peripheral blood mononuclear cells (PBMCs) reflect systemic immune response during cancer progression. However, a comprehensive understanding of the composition and function of PBMCs in cancer patients is lacking, and the potential of these features to assist cancer diagnosis is also unclear. Here, the compositional and status differences between cancer patients and healthy donors in PBMCs were investigated by single-cell RNA sequencing (scRNA-seq), involving 262,025 PBMCs from 68 cancer samples and 14 healthy samples. We observed an enhanced activation and differentiation of most immune subsets in cancer patients, along with reduction of naïve T cells, expansion of macrophages, impairment of NK cells and myeloid cells, as well as tumor promotion and immunosuppression. Based on characteristics including differential cell type abundances and/or hub genes identified from weight gene co-expression network analysis (WGCNA) modules of each major cell type, we applied logistic regression to construct cancer diagnosis models. Furthermore, we found that the above models can distinguish cancer patients and healthy donors with high sensitivity. Our study provided new insights into using the features of PBMCs in non-invasive cancer diagnosis.


Subject(s)
Leukocytes, Mononuclear , Neoplasms , Humans , Single-Cell Gene Expression Analysis , Neoplasms/diagnosis , Neoplasms/genetics , Cell Differentiation , Cell Transformation, Neoplastic
8.
Plant Cell ; 35(10): 3697-3711, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37378548

ABSTRACT

FLOWERING PROMOTING FACTOR1 (FPF1), a small protein without any known domains, promotes flowering in several plants; however, its functional mechanism remains unknown. Here, we characterized 2 FPF1-like proteins, FPL1 and FPL7, which, in contrast, function as flowering repressors in Brachypodium distachyon. FPL1 and FPL7 interact with the components of the florigen activation complex (FAC) and inhibit FAC activity to restrict expression of its critical target, VERNALIZATION1 (VRN1), in leaves, thereby preventing overaccumulation of FLOWERING LOCUS T1 (FT1) at the juvenile stage. Further, VRN1 can directly bind to the FPL1 promoter and repress FPL1 expression; hence, as VRN1 gradually accumulates during the late vegetative stage, FAC is released. This accurate feedback regulation of FPL1 by VRN1 allows proper FT1 expression in leaves and ensures sufficient FAC formation in shoot apical meristems to trigger timely flowering. Overall, we define a sophisticated modulatory loop for flowering initiation in a temperate grass, providing insights toward resolving the molecular basis underlying fine-tuning flowering time in plants.

9.
Cell ; 145(2): 173-4, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21496638

ABSTRACT

The stability and translation efficiency of many messenger RNAs is regulated by microRNAs (miRNAs), which exert their effects through associated Argonaute proteins. In this issue, Zhu, Zhang, and colleagues reveal that plants also exploit miRNA binding by Argonautes as a sequestering mechanism that prevents miRNAs from fulfilling their normal roles.

10.
Plant J ; 118(6): 1955-1971, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38491864

ABSTRACT

Photoperiod employs complicated networks to regulate various developmental processes in plants, including flowering transition. However, the specific mechanisms by which photoperiod affects epigenetic modifications and gene expression variations in plants remain elusive. In this study, we conducted a comprehensive analysis of DNA methylation, small RNA (sRNA) accumulation, and gene expressions under different daylengths in facultative long-day (LD) grass Brachypodium distachyon and short-day (SD) grass rice. Our results showed that while overall DNA methylation levels were minimally affected by different photoperiods, CHH methylation levels were repressed under their favorable light conditions, particularly in rice. We identified numerous differentially methylated regions (DMRs) that were influenced by photoperiod in both plant species. Apart from differential sRNA clusters, we observed alterations in the expression of key components of the RNA-directed DNA methylation pathway, DNA methyltransferases, and demethylases, which may contribute to the identified photoperiod-influenced CHH DMRs. Furthermore, we identified many differentially expressed genes in response to different daylengths, some of which were associated with the DMRs. Notably, we discovered a photoperiod-responsive gene MYB11 in the transcriptome of B. distachyon, and further demonstrated its role as a flowering inhibitor by repressing FT1 transcription. Together, our comparative and functional analysis sheds light on the effects of daylength on DNA methylation, sRNA accumulation, and gene expression variations in LD and SD plants, thereby facilitating better designing breeding programs aimed at developing high-yield crops that can adapt to local growing seasons.


Subject(s)
DNA Methylation , Gene Expression Regulation, Plant , Oryza , Photoperiod , RNA, Plant , Oryza/genetics , Oryza/metabolism , Oryza/physiology , RNA, Plant/genetics , RNA, Plant/metabolism , Brachypodium/genetics , Brachypodium/metabolism , Brachypodium/physiology , Epigenesis, Genetic , Flowers/genetics , Flowers/physiology , Plant Proteins/genetics , Plant Proteins/metabolism
11.
Stem Cells ; 42(8): 752-762, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38829368

ABSTRACT

Bone marrow mesenchymal stem cells (BMSCs) possess the potential to differentiate into cartilage cells. Long noncoding RNA (lncRNAs) urothelial carcinoma associated 1 (UCA1) has been confirmed to improve the chondrogenic differentiation of marrow mesenchymal stem cells (MSCs). Herein, we further investigated the effects and underlying mechanisms of these processes. The expression of UCA1 was positively associated with chondrogenic differentiation and the knockdown of UCA1 has been shown to attenuate the expression of chondrogenic markers. RNA pull-down assay and RNA immunoprecipitation showed that UCA1 could directly bind to PARP1 protein. UCA1 could improve PARP1 protein via facilitating USP9X-mediated PARP1 deubiquitination. Then these processes stimulated the NF-κB signaling pathway. In addition, PARP1 was declined in UCA1 knockdown cells, and silencing of PARP1 could diminish the increasing effects of UCA1 on the chondrogenic differentiation from MSCs and signaling pathway activation. Collectively, these outcomes suggest that UCA1 could act as a mediator of PARP1 protein ubiquitination and develop the chondrogenic differentiation of MSCs.


Subject(s)
Cell Differentiation , Chondrogenesis , Mesenchymal Stem Cells , Poly (ADP-Ribose) Polymerase-1 , RNA, Long Noncoding , Ubiquitination , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Humans , Cell Differentiation/genetics , Chondrogenesis/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Signal Transduction , Bone Marrow Cells/metabolism , Bone Marrow Cells/cytology , NF-kappa B/metabolism
12.
EMBO Rep ; 24(1): e54969, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36327141

ABSTRACT

T cell activation and effector functions are determined by the affinity of the interaction between T cell receptor (TCR) and its antigenic peptide MHC (pMHC) ligand. A better understanding of the quantitative aspects of TCR-pMHC affinity-dependent T cell activation is critical for the development of new immunotherapeutic strategies. However, the role of TCR-pMHC affinity in regulating the kinetics of CD8+ T cell commitment to proliferation and differentiation is unknown. Here, we show that the stronger the TCR-pMHC affinity, the shorter the time of T cell-APC co-culture required to commit CD8+ T cells to proliferation. The time threshold for T cell cytokine production is much lower than that for cell proliferation. There is a strong correlation between affinity-dependent differences in AKT phosphorylation and T cell proliferation. The cytokine IL-15 increases the poor proliferation of T cells stimulated with low affinity pMHC, suggesting that pro-inflammatory cytokines can override the affinity-dependent features of T cell proliferation.


Subject(s)
CD8-Positive T-Lymphocytes , Cytokines , Receptors, Antigen, T-Cell/metabolism , Histocompatibility Antigens/metabolism , Lymphocyte Activation , Protein Binding , Cell Proliferation
13.
Exp Cell Res ; 441(1): 114167, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39004202

ABSTRACT

This research aims to explore the mechanism by which microRNAs may regulate the biological behavior of tumor cells in ALDH1+ fibrosarcoma. We identified differentially expressed miRNAs in ALDH + NMFH-1 cells, screened genes related to sarcoma metastasis in the TCGA database, and finally obtained key genes regulated by miRNAs that are involved in metastasis. The function and mechanism of these key genes were then validated at the cellular level. Using the ULCAN database, a significant correlation was found between hsa-mir-206 and mortality in sarcoma patients. WGCNA analysis identified 352 genes related to tumor metastasis. Through Venn diagrams, we obtained 15 metastasis-related genes regulated by hsa-mir-206. Survival analysis showed that SYNPO2 expression is significantly correlated with survival rate and is significantly underexpressed in multiple tumors. SYNPO2 showed a negative correlation with macrophages and a positive correlation with CD8+ T cells. After inhibiting the expression of hsa-mir-206 with siRNA plasmids, the mRNA expression of SYNPO2 was significantly upregulated. The results of CCK8 assay, scratch assay, and transwell assay showed that the proliferation and migration ability of NFMH-1 cells were promoted after SYNPO2 was inhibited. ALDH1+ tumor stem cells promote the proliferation and invasion of malignant fibrous histiocytoma cells by inhibiting SYNPO2 through hsa-mir-206.


Subject(s)
Aldehyde Dehydrogenase 1 Family , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , MicroRNAs , Neoplastic Stem Cells , Retinal Dehydrogenase , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Aldehyde Dehydrogenase 1 Family/genetics , Aldehyde Dehydrogenase 1 Family/metabolism , Cell Proliferation/genetics , Retinal Dehydrogenase/genetics , Retinal Dehydrogenase/metabolism , Cell Movement/genetics , Cell Line, Tumor , Fibrosarcoma/pathology , Fibrosarcoma/genetics , Fibrosarcoma/metabolism , Disease Progression , Mice , Animals
14.
Nucleic Acids Res ; 51(19): 10238-10260, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37650633

ABSTRACT

Plant pathogens are challenged by host-derived iron starvation or excess during infection, but the mechanism through which pathogens counteract iron stress is unclear. Here, we found that Fusarium graminearum encounters iron excess during the colonization of wheat heads. Deletion of heme activator protein X (FgHapX), siderophore transcription factor A (FgSreA) or both attenuated virulence. Further, we found that FgHapX activates iron storage under iron excess by promoting histone H2B deubiquitination (H2B deub1) at the promoter of the responsible gene. Meanwhile, FgSreA is shown to inhibit genes mediating iron acquisition during iron excess by facilitating the deposition of histone variant H2A.Z and histone 3 lysine 27 trimethylation (H3K27 me3) at the first nucleosome after the transcription start site. In addition, the monothiol glutaredoxin FgGrx4 is responsible for iron sensing and control of the transcriptional activity of FgHapX and FgSreA via modulation of their enrichment at target genes and recruitment of epigenetic regulators, respectively. Taken together, our findings elucidated the molecular mechanisms for adaptation to iron excess mediated by FgHapX and FgSreA during infection in F. graminearum and provide novel insights into regulation of iron homeostasis at the chromatin level in eukaryotes.


Subject(s)
Fusarium , Histones , Iron , Chromatin , Histones/genetics , Histones/metabolism , Iron/metabolism , Nucleosomes , Siderophores/genetics , Fusarium/metabolism
15.
Proc Natl Acad Sci U S A ; 119(31): e2203167119, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35881786

ABSTRACT

Heparan sulfate proteoglycans (HSPGs) mediate essential interactions throughout the extracellular matrix (ECM), providing signals that regulate cellular growth and development. Altered HSPG composition during tumorigenesis strongly aids cancer progression. Heparanase (HPSE) is the principal enzyme responsible for extracellular heparan sulfate catabolism and is markedly up-regulated in aggressive cancers. HPSE overactivity degrades HSPGs within the ECM, facilitating metastatic dissemination and releasing mitogens that drive cellular proliferation. Reducing extracellular HPSE activity reduces cancer growth, but few effective inhibitors are known, and none are clinically approved. Inspired by the natural glycosidase inhibitor cyclophellitol, we developed nanomolar mechanism-based, irreversible HPSE inhibitors that are effective within physiological environments. Application of cyclophellitol-derived HPSE inhibitors reduces cancer aggression in cellulo and significantly ameliorates murine metastasis. Mechanism-based irreversible HPSE inhibition is an unexplored anticancer strategy. We demonstrate the feasibility of such compounds to control pathological HPSE-driven malignancies.


Subject(s)
Glucuronidase , Glycoside Hydrolase Inhibitors , Neoplasm Metastasis , Animals , Cell Proliferation/drug effects , Glucuronidase/antagonists & inhibitors , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/therapeutic use , Heparan Sulfate Proteoglycans/metabolism , Heparitin Sulfate/metabolism , Humans , Mice , Neoplasm Metastasis/drug therapy
16.
Nano Lett ; 24(3): 914-919, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38190329

ABSTRACT

Magnetic topological insulators are a fertile platform for studying the interplay between magnetism and topology. The unique electronic band structure can induce exotic transport and optical properties. However, a comprehensive optical study at both near-infrared and terahertz frequencies has been lacking. Here, we report magneto-optical effects from a heterostructure of a Cr-incorporated topological insulator, CBST. By measuring the magneto-optical Kerr effect, we observe a high temperature ferromagnetic transition (160 K) in the CBST film. We also use time-domain terahertz polarimetry to reveal a terahertz Faraday rotation of 1.5 mrad and a terahertz Kerr rotation of 3.6 mrad at 2 K. The calculated terahertz Hall conductance is 0.42 e2/h. Our work shows the optical responses of an artificially layered magnetic topological insulator, paving the way toward a high-temperature quantum anomalous Hall effect via heterostructure engineering.

17.
Nano Lett ; 24(4): 1231-1237, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38251914

ABSTRACT

Ferroelectricity, especially the Si-compatible type recently observed in hafnia-based materials, is technologically useful for modern memory and logic applications, but it is challenging to differentiate intrinsic ferroelectric polarization from the polar phase and oxygen vacancy. Here, we report electrically controllable ferroelectricity in a Hf0.5Zr0.5O2-based heterostructure with Sr-doped LaMnO3, a mixed ionic-electronic conductor, as an electrode. Electrically reversible extraction and insertion of an oxygen vacancy into Hf0.5Zr0.5O2 are macroscopically characterized and atomically imaged in situ. Utilizing this reversible process, we achieved multilevel polarization states modulated by the electric field. Our study demonstrates the usefulness of the mixed conductor to repair, create, manipulate, and utilize advanced ferroelectric functionality. Furthermore, the programmed ferroelectric heterostructures with Si-compatible doped hafnia are desirable for the development of future ferroelectric electronics.

18.
J Infect Dis ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38412342

ABSTRACT

BACKGROUND: Coinfection of human immunodeficiency virus type 1 (HIV-1) is the most significant risk factor for tuberculosis (TB). The immune responses of the lung are essential to restrict the growth of Mycobacterium tuberculosis and avoid the emergence of the disease. Nevertheless, there is still limited knowledge about the local immune response in people with HIV-1-TB coinfection. METHODS: We employed single-cell RNA sequencing (scRNA-seq) on bronchoalveolar lavage fluid from 9 individuals with HIV-1-TB coinfection and 10 with pulmonary TB. RESULTS: A total of 19 058 cells were grouped into 4 major cell types: myeloid cells, T/natural killer (NK) cells, B cells, and epithelial cells. The myeloid cells and T/NK cells were further divided into 10 and 11 subsets, respectively. The proportions of dendritic cell subsets, CD4+ T cells, and NK cells were lower in the HIV-1-TB coinfection group compared to the TB group, while the frequency of CD8+ T cells was higher. Additionally, we identified numerous differentially expressed genes between the CD4+ and CD8+ T-cell subsets between the 2 groups. CONCLUSIONS: HIV-1 infection not only affects the abundance of immune cells in the lungs but also alters their functions in patients with pulmonary TB.

19.
J Am Chem Soc ; 146(32): 22590-22599, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39082835

ABSTRACT

Anion exchange membrane fuel cells promise a sustainable and ecofriendly energy conversion pathway yet suffer from insufficient performance and durability. Drawing inspiration from mussel foot adhesion proteins for the first time, we herein demonstrate catechol-modified ionomers that synergistically reinforce the membrane electrode assembly interface and triple-phase boundary inside catalyst layers. The resulting ionomers present exceptional alkaline stability with only slight ionic conductivity declines after treatment in 2 M NaOH aqueous solution at 80 °C for 2500 h. Adopting catechol-modified ionomer as both anion exchange membrane and binder achieves a single-cell performance increase of 34%, and more importantly, endows fuel cell operation at a current density of 0.4 A cm-2 for over 300 h with negligible performance degradation (with a cell voltage decay rate of 0.03 mV h-1). Combining theoretical and experimental investigations, we reveal the molecular adhesion mechanism between the catechol-modified ionomer and Pt catalyst and illuminate the effect on the catalyst layer microstructure. Of fundamental interest, this bioadhesive-inspired strategy is critical to enabling knowledge-driven ionomer design and is promising for diverse membrane electrode assembly configurational applications.

20.
J Am Chem Soc ; 146(1): 125-133, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38118176

ABSTRACT

Siastatin B is a potent and effective iminosugar inhibitor of three diverse glycosidase classes, namely, sialidases, ß-d-glucuronidases, and N-acetyl-glucosaminidases. The mode of inhibition of glucuronidases, in contrast to sialidases, has long been enigmatic as siastatin B appears too bulky and incorrectly substituted to be accommodated within a ß-d-glucuronidase active site pocket. Herein, we show through crystallographic analysis of protein-inhibitor complexes that siastatin B generates both a hemiaminal and a 3-geminal diol iminosugar (3-GDI) that are, rather than the parent compound, directly responsible for enzyme inhibition. The hemiaminal product is the first observation of a natural product that belongs to the noeuromycin class of inhibitors. Additionally, the 3-GDI represents a new and potent class of the iminosugar glycosidase inhibitor. To substantiate our findings, we synthesized both the gluco- and galacto-configured 3-GDIs and characterized their binding both structurally and kinetically to exo-ß-d-glucuronidases and the anticancer target human heparanase. This revealed submicromolar inhibition of exo-ß-d-glucuronidases and an unprecedented binding mode by this new class of inhibitor. Our results reveal the mechanism by which siastatin B acts as a broad-spectrum glycosidase inhibitor, identify a new class of glycosidase inhibitor, and suggest new functionalities that can be incorporated into future generations of glycosidase inhibitors.


Subject(s)
Enzyme Inhibitors , Glucuronidase , Piperidines , Humans , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Glucuronidase/metabolism , Glycoside Hydrolases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL