Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Ecotoxicol Environ Saf ; 263: 115309, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37517308

ABSTRACT

Epidemiological studies have established an association between chronic exposure to PM2.5 and male infertility. However, the underlying mechanisms were not fully revealed. In this study, we established mice models exposed to PM2.5 for 16 weeks, and a significant decrease in sperm quality accompanied by an increase in testosterone levels were observed after PM2.5 exposure. Moreover, treatment with ferrostatin-1 (Fer-1), a specific ferroptosis inhibitor, effectively mitigated PM2.5-induced testicular dysfunction in mice. And lipid peroxidation and ferritin accumulation were found to be significantly increased in Leydig cells of testes with a PM2.5-dose dependent manner. Further investigations revealed that TM-3 cells, a mouse Leydig cell line, were prone to ferroptosis after PM2.5 exposure, and the cell viability was partly rescued after the intervention of Fer-1. Furthermore, our results supported that the ferroptosis of TM-3 cells was attributed to the upregulation of ferredoxin 1 (FDX1), which was the protein transferring electrons to cytochrome P450 family 11 subfamily A member 1 to aid lysing cholesterol to pregnenolone at initial of steroidogenesis. Mechanically, PM2.5-induced FDX1 upregulation resulted in cellular ROS elevation and ferrous iron overload, which together initiated an autoxidation process of polyunsaturated fatty acids in the cell membrane of Leydig cells until the accumulated lipid peroxides triggered ferroptotic cell death. Simultaneously, upregulation of FDX1 promoted steroidogenesis and let to an increased level of testosterone. In summary, our work suggested that FDX1, a mediator involving steroidogenesis, was a key regulator in PM2.5-induced Leydig cells ferroptosis.


Subject(s)
Ferroptosis , Leydig Cells , Male , Mice , Animals , Leydig Cells/metabolism , Semen , Testosterone/metabolism , Particulate Matter/metabolism
2.
Ecotoxicol Environ Saf ; 232: 113294, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35152113

ABSTRACT

Black soldier fly (Hermetia illucens) larvae (BSFL) are common insects that are known for bioconversion of organic waste into a sustainable utilization resource. However, a strategy to increase antibiotic resistance gene (ARG) elimination in sustainable and economic ways through BSFL is lacking. In the present study, different larval densities were employed to assess the mcr-1 and tetX elimination abilities, and potential mechanisms were investigated. The application and economic value of each larval density were also analyzed. The results showed that the 100 larvae cultured in 100 g of manure group had the best density because the comprehensive disadvantage evaluation ratio was the lowest (14.97%, good bioconversion manure quality, low ARG deposition risk and reasonable larvae input cost). Further investigation showed that mcr-1 could be significantly decreased by BSFL bioconversion (4.42 ×107 copies/g reduced to 4.79 ×106-2.14 ×105 copies/g)(P<0.05); however, mcr-1 was increasingly deposited in the larval gut with increasing larval density. The tetX abundance was stabilized by BSFL bioconversion, except that the abundance at the lowest larval density increased (1.22 ×1010 copies/g increase, 34-fold). Escherichia was the host of mcr-1 and tetX in all samples, especially in fresh manure; Alcaligenes was the host of tetX in bioconversion manure; and the abundance of Alcaligenes was highly correlated with the pH of bioconversion manure. The pH of bioconversion manure was extremely correlated with the density of larvae. Klebsiella and Providencia were both hosts of tetX in the BSF larval gut, and Providencia was also the host of mcr-1 in the BSF larval gut. The density of larvae influenced the bioconversion manure quality and caused the ARG host abundance to change to control the abundance of ARGs, suggesting that larval density adjustment was a useful strategy to manage the ARG risk during BSFL manure bioconversion.


Subject(s)
Diptera , Manure , Animals , Anti-Bacterial Agents , Diptera/genetics , Drug Resistance, Microbial/genetics , Larva , Poultry
3.
BMC Cancer ; 21(1): 1078, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34615494

ABSTRACT

BACKGROUND: Cervical cancer is a common malignancy of the female genital tract. Treatment options for cervical cancer patients diagnosed at FIGO (2009) stage IB2 and IIA2 remains controversial. METHODS: We perform a Bayesian network meta-analysis to directly or indirectly compare various interventions for FIGO (2009) IB2 and IIA2 disease, in order to improve our understand of the optimal treatment strategy for these women. Three databases were searched for articles published between 1971 and 2020. Data on included study characteristics, outcomes, and risk of bias were abstracted by two reviewers. RESULTS: Seven thousand four hundred eighty-six articles were identified. Thirteen randomized controlled trials of FIGO (2009) IB2 and IIA2 cervical cancer patients were included in the final analysis. These trials used six different interventions: concomitant chemoradiotherapy (CCRT), radical surgery (RS), radical surgery following chemoradiotherapy (CCRT+RS), neoadjuvant chemotherapy followed by radical surgery (NACT+RS), adjuvant radiotherapy followed by Radical surgery (RT + RS), radiotherapy alone (RT).SUCRA ranking of OS and Relapse identified CCRT+RS and CCRT as the best interventions, respectively. Systematic clustering analysis identified the CCRT group as a unique cluster. CONCLUSION: These data suggest that CCRT may be the best approach for improving the clinical outcome of cervical cancer patients diagnosed at FIGO (2009) stage IB2/IIA2. Phase III randomized trials should be performed in order to robustly assess the relative efficacy of available treatment strategies in this disease context.


Subject(s)
Chemoradiotherapy , Network Meta-Analysis , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/therapy , Bayes Theorem , Bias , Female , Humans , Neoadjuvant Therapy , Neoplasm Staging , Neoplasms , Radiotherapy, Adjuvant , Randomized Controlled Trials as Topic , Uterine Cervical Neoplasms/mortality , Uterine Cervical Neoplasms/surgery
4.
Biotechnol Lett ; 42(6): 917-926, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32072334

ABSTRACT

OBJECTIVE: Dihydroartemisinin (DHA), a predominant phytoconstituent in Artemisia annua L. (a plant widely used as a traditional medicine in China), inhibits lung tumorigenesis and metastasis. However, its anticancer effect against hepatocellular carcinoma has not yet been investigated. In this study, the anti-tumor potential of DHA was evaluated in vitro against the hepatocellular carcinoma HCCLM6 cell line. RESULTS: DHA (1-100 µM) treatment suppressed the cell proliferation in dose-dependently. In addition, expression of all genes, involved in cellular proliferation (e.g. E2F1, BCL2, PCNA, MKI67 and CCNE2) and cellular motility (e.g. DOCK1, ITGA2, VCL, MMP2, FN1), was significantly downregulated by DHA (50 and 100 µM). Global gene expression profile identified 1731 differentially expressed genes (DEGs); among them, 211 were up-regulated and 1520 were down-regulated. Besides, the extracellular matrix (ECM)-receptor interaction, focal adhesion, regulation of actin cytoskeleton and TNF pathways were enriched by DEGs. Based on the KEGG signal pathway enrichment, the FN1 and integrin-ß1 could be a potential target for DHA for inhibiting proliferation. The expression of FN1 and integrin-ß1 was further analyzed by the qPCR, immunohistochemistry and Western blot assay in vitro and in vivo. The results indicated that DHA decreased the FN1 and integrin-ß1 protein levels and interfered with PI3K-AKT signal transduction pathway. CONCLUSIONS: Our findings revealed that DHA could inhibit proliferation and migration of human hepatocellular carcinoma cells targeting FN1 and ITGB1 via the PI3K-AKT pathway. Therefore, DHA might be a novel drug with a potential effect against liver tumorigenesis and metastasis.


Subject(s)
Antineoplastic Agents/pharmacology , Artemisinins/pharmacology , Fibronectins/metabolism , Integrin beta1/metabolism , Signal Transduction/drug effects , Animals , Cell Line, Tumor , Cell Proliferation , Humans , Male , Mice , Mice, Nude , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Xenograft Model Antitumor Assays
5.
BMC Vet Res ; 15(1): 111, 2019 Apr 11.
Article in English | MEDLINE | ID: mdl-30971240

ABSTRACT

BACKGROUND: PDCoV (Porcine Deltacoronavirus) is a novel porcine coronavirus that causes intestinal necrosis of piglets, thinning of the intestinal wall and severe villus atrophy in the small intestine. PDCoV is a highly contagious infectious disease characterized by diarrhea, dehydration and vomiting. It has been reported that lncRNA has a significant effect on viral replication and increased or decreased virulence. At present, there is almost no research on lncRNA related to PDCoV infection. With the development of the research, a large number of lncRNAs related to PDCoV infection have been discovered. Identifying the role of these lncRNAs in the infection process facilitates the screening of diagnostically significant biomarkers. RESULTS: Using high throughput sequencing to screen differentially expressed long non-coding RNA (lncRNA) during PDCoV infection, we identified 99, 41 and 33 differentially expressed lncRNAs in the early, middle and late stages of infection, respectively. These lncRNAs were involved in glycolysis / gluconeogenesis, histidine metabolism and pentose and Chloroalkane and chloroalkene degradation pathway. We obtained expression data of miRNAs, lncRNAs and mRNAs during PDCoV infection and constructed and investigated an interaction network. The qRT-PCR validation results of 6 differentially expressed lncRNAs were consistent with RNA-Seq results. CONCLUSIONS: This study is the first to examine differentially expressed lncRNAs after PDCoV infection of piglets. These results can provide new insights into PDCoV infection and antiviral strategies.


Subject(s)
Animals, Newborn/virology , Coronavirus Infections/virology , Coronavirus/genetics , RNA, Long Noncoding/genetics , Swine Diseases/virology , Animals , Biomarkers , Real-Time Polymerase Chain Reaction/veterinary , Swine , Viral Load/veterinary
6.
Environ Pollut ; 335: 122324, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37544399

ABSTRACT

Accumulating evidence has suggested that men exposed to air pollution are associated with decreased sperm quality, and seminal plasma plays a pivotal role in maintaining sperm viability. However, the role of seminal plasma in air pollution related sperm quality decline remain unestablished. In current study, we recruited 524 participants from couples who underwent in vitro fertilization treatment due to female factors at a fertility clinic in China from March to August 2020. Conventional sperm parameters, total antioxidant capacity (T-AOC), malondialdehyde (MDA) and testosterone were measured using semen samples. The six main air pollutants (PM2.5, PM10, NO2, SO2, CO, O3) during four key periods of sperm development (meiotic stage, spermiogenesis stage, epididymal stage and total sperm cycle period) were estimated using inverse distance weighting method. Multiple linear regression models were employed to investigate the exposure-outcome relationships. And we found that PM10 exposures were negatively related to sperm total motility and the exposures of PM2.5 and PM10 were inversely associated with sperm progressive motility during epididymal stage. Furthermore, PM2.5 and PM10 exposures were positively associated with seminal plasma MDA and PM10 was negatively related to seminal plasma T-AOC during epididymal stage. PM2.5, PM10 and CO exposures during total sperm cycle period might relate to increased seminal plasma testosterone. Mediation analysis indicated seminal plasma MDA and T-AOC partially mediated PM10 associated reduction of sperm motility during epididymal stage. Our study suggested MDA and T-AOC of seminal plasma played a role in air pollution associated decline of sperm motility.


Subject(s)
Air Pollutants , Air Pollution , Male , Humans , Female , Semen , Antioxidants/pharmacology , Malondialdehyde/analysis , Particulate Matter/analysis , Sperm Motility , Spermatozoa , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollutants/toxicity , Air Pollutants/analysis , China
7.
J Hazard Mater ; 460: 132288, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37611393

ABSTRACT

Microplastics (MPs), as a new type of pollutant, widely exist in livestock and poultry breeding and agricultural soils. However, research on MPs pollution on greenhouse gas emissions in combined planting and breeding systems is lacking, especially from the perspective of phage horizontal gene transfer. Therefore, this paper explores the effects of MPs on functional genes related to CH4 and N2O metabolism in bacteriophages during manure composting and its planting applications. The results of the study indicated that the addition of MPs had an impact on both the physicochemical properties and microbial community structure of manure during the composting process and on the compost-applied rhizosphere soil of lactuca (Lactuca sativa). Specifically, on day 7 of composting, mcrA/pmoA and (nirS+nirK) levels in bacteria in the MP group significantly increased. Additionally, it was observed that the MP group had higher average temperatures during the high-temperature period of composting, which led to a rapid reduction in phages. However, the phage levels quickly recovered during the cooling period. Furthermore, the addition of MPs to the rhizosphere soil resulted in higher levels of nirK. These changes may affect greenhouse gas emissions.


Subject(s)
Bacteriophages , Composting , Greenhouse Gases , Manure , Microplastics , Plastics , Bacteriophages/genetics , Soil
8.
Sci Total Environ ; 854: 158598, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36108849

ABSTRACT

Exposure to PM2.5 increases blood pressure (BP) and cardiovascular morbidity and mortality. We conducted a randomized controlled panel study in Shijiazhuang, China among 55 healthy college students randomly assigned to either the control (CON) or SPORTS group with intervention of 2000 m jogging in 20 min for 3 times in 4 days, and 3-round health examinations from November 15, 2020 to December 6, 2020. We aimed to evaluate whether moderate physical activity (PA) protected BP health against PM2.5 exposure and explore potential mechanisms through myokines and inflammation. Individual PM2.5 exposure was calculated based on outdoor and indoor PM2.5 concentration monitoring data as well as time-activity diary of each subject. In the CON group, the exposure-response curve for SBP was linear with a threshold concentration of approximately 31 µg/m3, while an increment of SBP level was 4.38 mm Hg (95%CI: 0.17 mm Hg, 8.59 mm Hg) at lag03 for each 10-µg/m3 increase in PM2.5, using linear mixed-effect models. For inflammatory indicators, PM2.5 exposure was associated with significant increases in eosinophil counts and proportion in CON group, but decreases in MCP-1 and TNF-α in SPORTS group. Meanwhile, higher myokines including CLU and IL-6 were observed in SPORTS group compared to the CON group. Further mediation analyses revealed that eosinophil counts mediated the elevated BP in CON group, whereas MCP-1 and TNF-α were also crucial mediating cytokines for the SPORTS group, as well as CLU and IL-6 acted as mediators on BP and inflammation indicators in SPORTS group. This study suggests that moderate PA could counteract the elevated BP induced by PM2.5 exposure via myokines-suppressed inflammation pathways.


Subject(s)
Air Pollutants , Air Pollution , Hypertension , Humans , Blood Pressure , Air Pollutants/toxicity , Air Pollutants/analysis , Particulate Matter/toxicity , Particulate Matter/analysis , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Interleukin-6 , Tumor Necrosis Factor-alpha , Inflammation/chemically induced , China , Exercise , Air Pollution/analysis
9.
Sci Total Environ ; 838(Pt 3): 156470, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35660582

ABSTRACT

Microplastics (MPs) provide attachment sites for biofilm formation of microorganisms, which can promote their resistance to environmental stress has been proved. However, the effect of MPs on synergy survival among microorganisms under antibiotic stress remains unclear. In the present study, the proliferation of Escherichia coli and Pseudomonas aeruginosa was assessed under enrofloxacin stress with the influence of MPs. Here, MPs reduced the growth speed of E. coli and enhanced that of P. aeruginosa, especially at 12 h, but the final value of OD600 and CFU of both bacteria not be influenced. E. coli was enrofloxacin sensitive (MIC = 0.25 µg/mL), and a high MP concentration in the presence of enrofloxacin notably enhanced the biofilm formation ability of P. aeruginosa, but proliferation decreased. In the coculture system, the proliferation of E. coli (increased 1.42-fold) and P. aeruginosa (increased 1.06-fold) both increased under enrofloxacin stress (0.25 µg/mL) with high-concentration MP addition. P. aeruginosa may provide the biofilm matrix for E. coli to resist the stress of enrofloxacin. The high concentration of cyclic AMP secreted by E. coli may slightly inhibited biofilm formation, leading to a decrease in the fitness cost of P. aeruginosa; thus, the proliferation of P. aeruginosa increased. The present study is the first to show that MP combined with antibiotics stimulates the metabolic cooperation of bacteria to promote proliferation.


Subject(s)
Escherichia coli , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology , Bacteria , Biofilms , Cell Proliferation , Cyclic AMP/pharmacology , Enrofloxacin , Microbial Sensitivity Tests , Microplastics , Plastics
10.
Biomed Pharmacother ; 155: 113681, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36108392

ABSTRACT

The modern rise in type 2 diabetes mellitus (T2DM) and its correlation to commensal microbiota have elicited global concern about the patterns of microbial action in the host. With the exception of that linked to gut, microbiota were also colonized in pancreas, oral, and lung, contributing to the physiopathology of T2DM. In this study, we aimed to explore the protective effects of Ganoderma atrum polysaccharide (PSG) and White Hyacinth Bean polysaccharide (WHBP) on the intestine, pancreas, oral, and lung microbiota in T2DM rats. Here we showed that, despite capacities of polysaccharides that exerted similar protective effects on hyperglycemia, dyslipidemia, insulin resistance and dysbacteriosis in T2DM rats, PSG and WHBP were able to be characterized by their own "target" bacteria, which could be proposed for activity-fingerprinting of polysaccharide species. Furthermore, we found a mutual bacteria spectrum in the pancreas and lung, and most bacteria could be tracked to oral or gut samples. Notably, the overlapping areas of the microbiota profile between organs (pancreas, lung) and saliva were more than in the gut, suggesting that a saliva sample was also of interest to serve as a "telltale sign" for judging pancreatic injury. Together, these microbiota interactions provided a new potential to harvest alternative samples for disease surveillance. Meanwhile, polysaccharides had anti-T2DM abilities, which could be distinguished by their own characteristic bacteria.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Microbiota , Rats , Animals , Diabetes Mellitus, Experimental/drug therapy , Polysaccharides/pharmacology , Pancreas , Lung
11.
Vet Microbiol ; 274: 109575, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36191572

ABSTRACT

The pre- and post-weaning stages for piglets are critical periods for the maturation of intestinal functions and contamination with antibiotic resistant bacterial pathogens will threaten their intestinal health. The presence of bacteriophage can also alter bacterial populations in the intestine but whether transmission of antibiotic resistance genes (ARG) is affected by phage during maturation of the neonatal piglet intestine is not known. We therefore identified the intestinal virome along with ARGs and mobile genetic elements (MGE) from piglet fecal samples collected from 3 to 28 days representing the different growth stages. We found wide fluctuations for the intestinal virome of weaning piglets and most virus - related antibiotic resistance was derived from temperate phage suggesting a reservoir of multidrug resistance was present in the neonatal porcine gut. Our results provide a comprehensive understanding of ARGs associated with the intestinal virome that therefore represents a potential risk for horizontal ARG transfer to pathogenic bacteria.


Subject(s)
Anti-Bacterial Agents , Bacteriophages , Animals , Swine , Anti-Bacterial Agents/pharmacology , Virome , Drug Resistance, Microbial/genetics , Bacteria , Genes, Bacterial , Bacteriophages/genetics
12.
Bioresour Technol ; 332: 125076, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33819854

ABSTRACT

The mcr-1 and blaNDM-1 elimination in copper contamination poultry manure was evaluated by semi-permeable membrane composting. The results showed the mcr-1 in control and high copper groups could not be removed, but mcr-1 decreased superlatively 80.1% in low copper treatment group. BlaNDM-1 was increased after composting, especially the copper addition groups, the results indicated that the relative abundance of mcr-1 and blaNDM-1 was obviously different in the different pile layers of copper treatment groups. Three mobile gene elements (MEGs) correlated both mcr-1 and blaNDM-1,copB correlated mcr-1, czcA and copA correlated both mcr-1 and blaNDM-1. The major phyla were Firmicutes, Bacteroidota, Actinobacteriota and Proteobacteria in all layers. The correlation analysis showed that the antibiotic resistance genes (ARGs) potential hosts could be influenced by copper form and physicochemical parameters. Semi-permeable membrane composting could decrease the abundance of major potential pathogens. Furthermore, the composting pile was not homogeneous by semi-permeable membrane composting.


Subject(s)
Composting , Animals , Anti-Bacterial Agents , Copper , Genes, Bacterial , Manure , Poultry , beta-Lactamases
13.
Food Chem Toxicol ; 156: 112445, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34332013

ABSTRACT

This study aimed to evaluate the effect of Chimonanthus nitens Oliv. essential oil (named CEO) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in rats. In the present study, 21 compounds were characterized in CEO by gas chromatography-mass spectrometry analysis. Furthermore, animal data suggested that CEO could protect rats against ALI, as evidence by increasing white blood cell count, reducing immune organ index and improving lung histopathological changes in rats subjected to LPS. Reduction of the levels of IL-1ß was also shown during CEO-triggering lung protection in rats. Meanwhile, these protective effects of CEO were accompanied by the attenuation of lipid oxidation, and elevation of antioxidant enzymes, suggesting that enhancement of antioxidant defense was linked to its lung protection. Moreover, a combination with CEO and LPS significantly elevated short-chain fatty acids (SCFAs) compared with LPS alone via increasing propionic, i-butyric, butyric and i-valeric acid on LPS-induced ALI in rats. Therefore, our findings indicated that CEO could alleviate LPS-caused ALI in rats by controlling aberrant inflammation, correcting the redox system, and modulating SCFAs in rats.


Subject(s)
Acute Lung Injury/prevention & control , Laurales/chemistry , Lipopolysaccharides/toxicity , Oils, Volatile/pharmacology , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Animals , Cytokines/metabolism , Gas Chromatography-Mass Spectrometry , Male , Oils, Volatile/analysis , Rats , Rats, Wistar , Spleen/drug effects , Thymus Gland/drug effects
14.
Environ Pollut ; 277: 116790, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33667747

ABSTRACT

Microplastic (MP) contamination in soil has attracted much attention, and increasing evidence suggests that MPs can accumulate in agricultural soils through fertilization by compost. In addition, the most common raw materials for composting are livestock and poultry manure wastes. Because the presence of MPs may threaten the safe utilization of fertilizers composted by livestock and poultry wastes during crop planting, it is necessary to understand the contamination risk of MPs present in livestock and poultry manure. In this study, the distribution of MPs in 19 livestock and poultry farms with 3 different species was investigated by using FTIR microscopy. A total of 115 items manure MPs and 18 items feed MPs were identified as PP and PE types dominated by colorful fragments and fibers. Furthermore, after comparing the compositions of plastic products used in the feeding process, we proposed two transport pathways for MP pollution in manure and one potential transport pathway in feeds. Our result proved that the application of swine and poultry manure directly could be a new route of MPs in agricultural soil, furthermore, the presence of MPs could threaten the safety of resource utilization in agricultural soil by using swine and poultry manure for manure potentially. Not, only that, our study also provided a reference for the remediation of MP-contaminated soil.


Subject(s)
Livestock , Manure , Animals , China , Manure/analysis , Microplastics , Plastics , Poultry , Soil , Swine
15.
J Hazard Mater ; 404(Pt B): 124149, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33069996

ABSTRACT

In this study, the profiles of bacteria/phage-comediated antibiotic resistance genes (b/pARGs) were monitored in water samples collected from 45 pig farm wastewater treatment plants (WWTPs) in seven different regions of China. We found that 8 major types and 112 subtypes of b/pARGs were detected in all the water samples, and the detected number ranged from 53 to 92. The absolute abundances of bARGs and pARGs in the influent were as high as 109 copies/mL and 106 copies/mL, respectively. Anaerobic anoxic/oxic (AAO) and anaerobic short-cut nitrification/denitrification (ASND) treatment plants can effectively reduce the absolute abundance and amount of b/pARGs. Anaerobic treatment plants cannot reduce the absolute abundance of pARGs, and even increase the amount of pARGs. Mobile genetic elements (MGEs), bacterial communities and environmental factors were important factors impacting the b/pARG profile. Among these factors, the bacterial community was the major driver that impacted the bARG profile, while bacterial community and MGEs were the major codrivers impacting the pARG profile. This study was the first to investigate the profiles of b/pARGs in pig farm WWTPs in China on such a large scale, providing a reference for the prevention and control of ARG pollution in agricultural environments.


Subject(s)
Bacteriophages , Water Purification , Animals , Anti-Bacterial Agents , Bacteria/genetics , China , Farms , Genes, Bacterial , Interspersed Repetitive Sequences/genetics , Swine , Wastewater
16.
Environ Sci Pollut Res Int ; 28(10): 13021-13030, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33095895

ABSTRACT

With the development of modern industry and agriculture, plentiful microplastics (MPs) were produced as a result of the abuse of plastic. The widespread presence of MPs in soils has caused coastal ecological environment pollution. Previous research has shown that fertilizer is one pathway for the entry of MPs into agricultural soils. Meanwhile, livestock manure is a major fertilizer for crops, and the application of livestock manure compost creates a potential pathway for MPs to enter soils. Thus, MPs may exist in livestock manure from the process of livestock breeding and ultimately contaminate agricultural soils. Based on the increasing attention to MP pollution, manure-born MPs will attract more interest in the future. Thus, the present study compares the extraction effects of centrifugation with fractional distillation, and an improved method is introduced to extract polypropylene (PP) from different types of swine manure. The numbers of particles and fibers were determined using a camera (MS60) connected to a stereomicroscope (Mshot MZ62), and the results showed that the recovery rate of plastic particles in swine manure based on different added numbers ranged from 71.43% ± 8.36 to 96.67% ± 3.33 with the centrifugation method, and only 31.11% ± 10.56 to 43.33% ± 12.56 using fractional distilling. The recovery rate for fibers was generally higher than for particles, especially using centrifugation, and ranged from 95.67% ± 1.58 to 100% ± 0, while the rate of fiber recovery using fractional distillation ranged from 39.44% ± 10.66 to 39.44 ± 10.66. The results of recovery rates using the two methods show that the effect of extraction by centrifugation is superior to the method of fractional distillation, with a recovery rate of approximately 100% for fibers and 90% for particles. The recovery number of microplastics evaluated with a line regression model was acceptable. Graphical abstract.


Subject(s)
Microplastics , Plastics , Animals , Manure , Plant Breeding , Polypropylenes , Swine
17.
Microbiome ; 9(1): 177, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34433492

ABSTRACT

BACKGROUND: The microbiota in the cecum of laying hens is crucial for host digestion, metabolism, and odor gas production. The results of recent studies have suggested that host microRNAs (miRNAs) can regulate gene expression of the gut microbiota. In the present study, the expression profiles of host-derived miRNAs in the cecal content of two laying hen breeds; Hy-line Gray and Lohmann Pink, which have dissimilar H2S production, were characterized; and their effects on H2S production by regulating the expression of gut microbiota-associated genes were demonstrated. RESULTS: The differential expression of microbial serine O-acetyltransferase, methionine synthase, aspartate aminotransferase, methionine-gamma-lyase, and adenylylsulfate kinase between the two hen breeds resulted in lower H2S production in the Hy-line hens. The results also revealed the presence of miRNA exosomes in the cecal content of laying hens, and an analysis of potential miRNA-target relationships between 9 differentially expressed miRNAs and 9 differentially expressed microbial genes related to H2S production identified two methionine synthase genes, Odosp_3416 and BF9343_2953, that are targeted by gga-miR-222a. Interestingly, in vitro fermentation results showed that gga-miR-222a upregulates the expression of these genes, which increased methionine concentrations but decreased H2S production and soluble sulfide concentrations, indicating the potential of host-derived gga-miR-222a to reduce H2S emission in laying hens. CONCLUSION: The findings of the present study reveal both a physiological role by which miRNAs shape the cecal microbiota of laying hens and a strategy to use host miRNAs to manipulate the microbiome and actively express key microbial genes to reduce H2S emissions and breed environmentally friendly laying hens. Video Abstract.


Subject(s)
Chickens , MicroRNAs , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase , Animals , Bacteria/genetics , Cecum , Chickens/genetics , Female , MicroRNAs/genetics
18.
Environ Int ; 143: 105897, 2020 10.
Article in English | MEDLINE | ID: mdl-32615347

ABSTRACT

The anoxic-oxic (A/O) wastewater treatment process that is widely used in pig farms in China is an important repository for antibiotic resistance genes (ARGs). However, the distribution of ARGs and their hosts in the A/O process has not been well characterized. In this study, the wastewaters in the anoxic and oxic tanks for A/O processes were collected from 38 pig farms. The concentrations of 20 subtypes of ARGs, 5 denitrification-related genes, 2 integrons, and bacterial community composition were investigated. Bacterial genome binning was performed using metagenome sequencing. In this study, 20 subtypes of ARGs and integrons were detected in all sampling sites. A total of 16 of the 20 subtypes of ARGs were detected with the highest abundance in anoxic tanks, and sul1 was detected with a maximum average abundance of 19.21 ± 0.24 log10 (copies/mL). Cooccurrence patterns were observed for some genes in the pig farm A/O process, such as sul1 and intl1, sul1 and tetG, and tetO and tetW. There was a significant cooccurrence pattern between the dominant denitrifying bacteria and some ARGs (blaTEM, ermB, tetC, tetH and tetQ), so the dominant denitrifying bacteria were considered to be potential ARG hosts. In addition, 170 highly abundant bacterial genome bins were assembled and further confirmed that the denitrifying bacteria Brachymonas, Candidatus Competibacter, Thiobacillus and Steroidobacter were the important ARG hosts in the pig farm A/O process, providing a useful reference for the surveillance and risk management of ARGs in pig farm wastewater.


Subject(s)
Anti-Bacterial Agents , Water Purification , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , China , Drug Resistance, Microbial/genetics , Farms , Genes, Bacterial/genetics , Swine , Wastewater
19.
Front Microbiol ; 11: 585197, 2020.
Article in English | MEDLINE | ID: mdl-33193232

ABSTRACT

Alpha-solanine is an alkaloid that can inhibit the growth of pathogens and cancer cells, the present study proved that feeding with Bacillus coagulans R11 increases the concentration of alpha-solanine in the cecum of laying hens, which also decreases the abundance of potential pathogens. In addition, the bacteria genera, metabolism pathways and its proteins involved in the biosynthesis of alpha-solanine in the cecum were also characterized. The results showed that B. coagulans R11 feeding could increase the concentration of alpha-solanine, even with lead exposure. Mevalonic acid and MEP/DOXP pathways were both participated in the biosynthesis of alpha-solanine; at the same time, the gut metabolites (S)-2-amino-6-oxohexanoate, N2-succinyl-L-ornithine and the bacteria proteins atoB, ispH were shown to be crucial role in the biosynthesis of alpha-solanine in the gut. The genera Faecalibacterium sp. An77 and Faecalibacterium sp. An58 2 were important in the biosynthesis of alpha-solanine, which provided the key proteins atoB and ispH. In addition, alpha-solanine could decrease the abundance of Prevotella sp. 109 and Prevotella marshii. In conclusion, alpha-solanine could be biosynthesized by cecal microorganisms with the stimulation of B. coagulans R11 in the intestine of laying hens, in addition, alpha-solanine was the main compound which also decreased the abundance of gut potential.

20.
Int J Biol Macromol ; 142: 693-704, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31739063

ABSTRACT

The present study aimed to evaluate effect of Ganoderma atrum polysaccharide (PSG) on acute lung injury (ALI) rats and its mechanisms. Results showed that PSG exhibited protective effects against ALI by maintaining pulmonary histology, reducing levels of pro-inflammatory cytokines and NO both in serum and lung tissue. Moreover, this study further evaluated the metabolic effects of PSG based on UPLC-Triple-TOF/MS metabolomics analysis in rats. Compared with control group, LysoPC (18:2), LPA (18:1), taurocholic acid, L-histidine, and L-tryptophan were identified as metabolic biomarkers in serum of ALI group. Furthermore, biological pathways analysis demonstrated that histidine metabolism, nitrogen metabolism, tryptophan and part glycerophospholipids metabolism were notably modified by PSG treatment in ALI rats. Additionally, improved gut microbial metabolite short-chain fatty acids were found after intake of PSG in ALI rat. Altogether, PSG could control ALI-induced aberrant inflammation and its mechanisms were linked to inhibit release of pro-inflammatory mediators and reverse metabolic pathway disturbances.


Subject(s)
Acute Lung Injury/drug therapy , Acute Lung Injury/prevention & control , Anti-Inflammatory Agents/chemistry , Ganoderma/chemistry , Polysaccharides/chemistry , Animals , Anti-Inflammatory Agents/pharmacology , Biomarkers/blood , Biomarkers/metabolism , Chromatography, High Pressure Liquid , Cytokines/blood , Cytokines/metabolism , Disease Models, Animal , Fatty Acids, Volatile/metabolism , Histidine/blood , Histidine/metabolism , Lysophosphatidylcholines/blood , Lysophosphatidylcholines/metabolism , Lysophospholipids/blood , Lysophospholipids/metabolism , Male , Metabolomics , Polysaccharides/pharmacology , Rats , Rats, Sprague-Dawley , Signal Transduction , Tandem Mass Spectrometry , Taurocholic Acid/blood , Taurocholic Acid/metabolism , Tryptophan/blood , Tryptophan/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL