Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Environ Sci Technol ; 49(12): 7373-9, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-25961487

ABSTRACT

CuO-CeO2/TiO2 (CuCeTi) catalyst synthesized by a sol-gel method was employed to investigate mercury conversion under a selective catalytic reduction (SCR) atmosphere (NO, NH3 plus O2). Neither NO nor NH3 individually exhibited an inhibitive effect on elemental mercury (Hg(0)) conversion in the presence of O2. However, Hg(0) conversion over the CuCeTi catalyst was greatly inhibited under SCR atmosphere. Systematic experiments were designed to investigate the inconsistency and explore the in-depth mechanisms. The results show that the copresence of NO and NH3 induced reduction of oxidized mercury (Hg(2+), HgO in this study), which offset the effect of catalytic Hg(0) oxidation, and hence resulted in deactivation of Hg(0) conversion. High NO and NH3 concentrations with a NO/NH3 ratio of 1.0 facilitated Hg(2+) reduction and therefore lowered Hg(0) conversion. Hg(2+) reduction over the CuCeTi catalyst was proposed to follow two possible mechanisms: (1) direct reaction, in which NO and NH3 react directly with HgO to form N2 and Hg(0); (2) indirect reaction, in which the SCR reaction consumed active surface oxygen on the CuCeTi catalyst, and reduced species on the CuCeTi catalyst surface such as Cu2O and Ce2O3 robbed oxygen from adjacent HgO. Different from the conventionally considered mechanisms, that is, competitive adsorption responsible for deactivation of Hg(0) conversion, this study reveals that oxidized mercury can transform into Hg(0) under SCR atmosphere. Such knowledge is of fundamental importance in developing efficient and economical mercury control technologies for coal-fired power plants.


Subject(s)
Atmosphere , Cerium/chemistry , Copper/chemistry , Mercury/chemistry , Titanium/chemistry , Adsorption , Ammonia/chemistry , Catalysis , Gases/chemistry , Nitric Oxide/chemistry , Oxidation-Reduction , Oxygen/chemistry , Photoelectron Spectroscopy
2.
J Air Waste Manag Assoc ; 64(1): 95-103, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24620407

ABSTRACT

UNLABELLED: Recovery of elemental sulfur from zinc concentrate direct leaching residue (DLR) using atmospheric distillation was systematically investigated on a pilot-scale system for the first time. Batch operating mode was suggested for recovery of elemental sulfur from water-rich DLR using atmospheric distillation. Elemental sulfur with purity higher than 99% was obtained under certain conditions in batch operating mode. With an appropriate feed amount of 1,200 kg, batch experiment conducted at 460 degrees C resulted in sulfur purity of 96.22% and a recovery rate higher than 85%. Only 0.59 and 1.24 kWh power was needed to handle 1.0 kg DLR and produce 1.0 kg elemental sulfur, respectively. The results suggest that recovery of elemental sulfur from zinc concentrate DLR using atmospheric distillation is technologically and economically feasible. Moreover, other metal elements such as zinc were enriched in the distillation concentrate, which could be used for metal refining. Technologies could effectively lower the moisture content of DLR, and lowering the distillation temperature would be of great value for recovery of elemental sulfur from DLR using a distillation method. IMPLICATIONS: Distillation is a promising solution for recovery of elemental sulfur from DLRs. This work revealed the possibility of separation of elemental sulfur from zinc concentrate DLR using atmospheric distillation. Such knowledge is of fundamental importance in developing field-scale separation and purification technologies and devices in which simultaneous sulfur recovery and precious metal enrichment are possible. Important tasks for follow-up research are also suggested.


Subject(s)
Air Pollutants/chemistry , Sulfur/chemistry , Zinc/chemistry , Atmosphere , Industrial Waste , Microscopy, Electron, Scanning , Pilot Projects
3.
Sci Rep ; 14(1): 14910, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942830

ABSTRACT

The compaction characteristics and bearing capacity of dry filling materials in goaf have a significant influence on stope control and surface stability. Through acoustic emission monitoring and mechanical model analysis, a series of confined compression tests were conducted on crushed waste with varying particle sizes and Talbot coefficients. The deformation, fragmentation, and acoustic emission characteristics under corresponding working conditions were determined. The results indicate that the stress-strain curves of crushed stone with different particle sizes and Talbot coefficients exhibit similar nonlinear behavior during confined compression. However, the strain response varies with changing stress levels. By analyzing the slope change rate of the stress-strain curve, the lateral uniaxial compression process of waste rock can be divided into three deformation stages: rapid compression, stable crushing, and slow compaction. The compressive deformation characteristics of gravel differ based on particle size and Talbot coefficient. Specimens with a higher Talbot coefficient demonstrate stronger compressive resistance and weaker deformation resistance during initial compaction loading. Notably, the internal pressure structure strength is influenced by factors such as maximum particle size D, grading coefficient n, and particle size distribution continuity, rather than solely by the proportion of large particles. The evolution of acoustic emission signals and energy-time curve during waste rock confined axial compression synchronizes with the compaction process. Overall, compaction plays a critical role in maintaining the stability of goaf in dry crushed waste filling.

4.
Food Sci Nutr ; 12(8): 5762-5775, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39139961

ABSTRACT

Monascus red pigments (MRP) may have benefits against NAFLD with an unclear mechanism. This study aimed to explore the protective effect of MRP supplementation against NAFLD through regulation of gut microbiota and metabolites. The C57BL/6 mice animals were randomly allocated into the normal diet (NC), HFHS diet-induced NAFLD model, and MRP intervention group fed with HFHS diet. Serum lipid profiles and liver function parameters were measured. Liver and colon histopathology analysis was conducted to determine the injury in the liver and colon. 16S rRNA gene sequencing was employed to analyze gut microbial composition from fecal samples. Untargeted metabonomics was performed to analyze changes in metabolites in serum and fecal samples. MRP supplementation significantly improved the HFHS-induced alterations in body weight, lipid profiles, and liver function (p < .01). MRP supplementation decreased the abundance of Akkermansia, Candidatus saccharimonas, Dubosiella, and Oscillibacter, while increasing Lactobacillus, Lachnospiraceae NK4A136 group, and Rikenella in mice fed the HFHS diet. Furthermore, MRP supplementation improved the serum and fecal metabolic profiles induced by the HFHS diet, primarily involving the arachidonic acid metabolism, unsaturated fatty acid biosynthesis, and adipocyte lipolysis pathways. Liver function and lipid profiles were closely associated with the abundance of Lactobacillus, Streptococcus, Oscillibacter, Akkemansia, and Desulfovibrio (p < .01). These findings revealed that MRP supplementation may help restore gut microbiota composition and balance its metabolites, thereby improving NAFLD. This study presents a novel outlook on the potential benefits of MRP supplementation in ameliorating NAFLD and supports the application of MRP as a new functional food.

5.
J Food Biochem ; 46(1): e14020, 2022 01.
Article in English | MEDLINE | ID: mdl-34825377

ABSTRACT

Shanzha (Crataegus pinnatifida Bunge), an edible traditional Chinese medicine (TCM), has an effect on dyspepsia. However, the investigations of the pharmacological effects have not been carried out. This study aimed to identify the potential targets and pharmacological mechanisms of Shanzha in the treatment of dyspepsia by network pharmacology and molecular docking. Five active compounds and 13 key targets were obtained by a set of bioinformatics assays. Vitexin 7-glucoside, suchilactone, and 20-hexadecanoylingenol were the main compounds acting on dyspepsia. The key targets were prostaglandin-endoperoxide synthase 2 (PTGS2), serine/threonine-protein kinase mTOR (MTOR), heat shock protein HSP 90-alpha (HSP90AA1), mitogen-activated protein kinase 1 (MAPK1), MAPK3, E3 ubiquitin-protein ligase Mdm2 (MDM2), receptor tyrosine-protein kinase erbB-2 (ERBB2), caspase-3 (CASP3), matrix metalloproteinase-9 (MMP9), estrogen receptor (ESR1), tumor necrosis factor (TNF), phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform (PIK3CA), and peroxisome proliferator-activated receptor gamma (PPARG), which played the vital roles in TNF, prostate cancer, thyroid hormone, hepatitis B and estrogen signaling pathway. The molecular mechanisms of Shanzha regulating dyspepsia were mainly related to reduction of inflammatory response, controlling cell proliferation and survival, increasing intestinal moisture, and promoting intestinal motility. PRACTICAL APPLICATIONS: Shanzha has been used as an edible TCM to improve digestion for a long time. However, the ingredients and mechanisms of Shanzha in the treatment of dyspepsia are not clear. In this research, network pharmacological analysis integrated with molecular docking was conducted to investigate the molecular mechanism. The results suggested that the core targets alleviated dyspepsia by reducing the intestinal inflammatory response, increasing intestinal movement, controlling cell physiological activities, and reducing constipation. In summary, this study demonstrated the multiple compounds, targets, and pathways characteristics of Shanzha in the treatment of dyspepsia, which may provide guidance and foundations for further application of edible medicine.


Subject(s)
Drugs, Chinese Herbal , Network Pharmacology , Animals , Drugs, Chinese Herbal/pharmacology , Male , Medicine, Chinese Traditional , Molecular Docking Simulation
6.
J Food Drug Anal ; 23(1): 136-143, 2015 Mar.
Article in English | MEDLINE | ID: mdl-28911437

ABSTRACT

This study aimed to research the preparation techniques of total flavones from loquat flower (TFLF), its anti-oxidation capacity, and its protective effect on hepatic injury. The best extraction parameters by orthogonal experimentation were water at 100°C, extraction time 2.5 hours, solid/liquid ratio 1:20, and three decoctions. The chromogenic reaction to the flavones showed that loquat flowers mainly contained flavone, flavonol, and flavanone compounds combining ortho-phenolic hydroxyl group structure in the 10-30% ethanol fraction. The anti-oxidant capacity of O2-· was 26.09% and of OH-·was 83.01% by salicylic acid and pyrogallol auto-oxidation. Compared with the model group, TFLF lowered the levels of alanine aminotransferase, aspartate aminotransferase, triglyceride, and malondialdehyde and liver index significantly, and upregulated the expression of adipose triglyceride lipase and Heine oxygenase-1 mRNA. The present findings suggest that TFLF has protective effect on acute alcoholinduced liver injury in mice and may be related to its antioxidant and free-radical scavenging activity.

SELECTION OF CITATIONS
SEARCH DETAIL