ABSTRACT
Dysregulated Th17 cell responses underlie multiple inflammatory and autoimmune diseases, including autoimmune uveitis and its animal model, EAU. However, clinical trials targeting IL-17A in uveitis were not successful. Here, we report that Th17 cells were regulated by their own signature cytokine, IL-17A. Loss of IL-17A in autopathogenic Th17 cells did not reduce their pathogenicity and instead elevated their expression of the Th17 cytokines GM-CSF and IL-17F. Mechanistic in vitro studies revealed a Th17 cell-intrinsic autocrine loop triggered by binding of IL-17A to its receptor, leading to activation of the transcription factor NF-κB and induction of IL-24, which repressed the Th17 cytokine program. In vivo, IL-24 treatment ameliorated Th17-induced EAU, whereas silencing of IL-24 in Th17 cells enhanced disease. This regulatory pathway also operated in human Th17 cells. Thus, IL-17A limits pathogenicity of Th17 cells by inducing IL-24. These findings may explain the disappointing therapeutic effect of targeting IL-17A in uveitis.
Subject(s)
Cytokines/metabolism , Interleukin-17/metabolism , Th17 Cells/pathology , Uveitis/pathology , Adult , Animals , Cytokines/genetics , Disease Models, Animal , Female , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Interleukin-17/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism , Th17 Cells/immunology , Uveitis/immunology , Young AdultABSTRACT
Oncogene amplification on extrachromosomal DNA (ecDNA) drives the evolution of tumours and their resistance to treatment, and is associated with poor outcomes for patients with cancer1-6. At present, it is unclear whether ecDNA is a later manifestation of genomic instability, or whether it can be an early event in the transition from dysplasia to cancer. Here, to better understand the development of ecDNA, we analysed whole-genome sequencing (WGS) data from patients with oesophageal adenocarcinoma (EAC) or Barrett's oesophagus. These data included 206 biopsies in Barrett's oesophagus surveillance and EAC cohorts from Cambridge University. We also analysed WGS and histology data from biopsies that were collected across multiple regions at 2 time points from 80 patients in a case-control study at the Fred Hutchinson Cancer Center. In the Cambridge cohorts, the frequency of ecDNA increased between Barrett's-oesophagus-associated early-stage (24%) and late-stage (43%) EAC, suggesting that ecDNA is formed during cancer progression. In the cohort from the Fred Hutchinson Cancer Center, 33% of patients who developed EAC had at least one oesophageal biopsy with ecDNA before or at the diagnosis of EAC. In biopsies that were collected before cancer diagnosis, higher levels of ecDNA were present in samples from patients who later developed EAC than in samples from those who did not. We found that ecDNAs contained diverse collections of oncogenes and immunomodulatory genes. Furthermore, ecDNAs showed increases in copy number and structural complexity at more advanced stages of disease. Our findings show that ecDNA can develop early in the transition from high-grade dysplasia to cancer, and that ecDNAs progressively form and evolve under positive selection.
Subject(s)
Adenocarcinoma , Barrett Esophagus , Carcinogenesis , DNA , Disease Progression , Early Detection of Cancer , Esophageal Neoplasms , Humans , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Barrett Esophagus/genetics , Barrett Esophagus/pathology , Case-Control Studies , DNA/genetics , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Carcinogenesis/genetics , Whole Genome Sequencing , Cohort Studies , Biopsy , Oncogenes , Immunomodulation , DNA Copy Number Variations , Gene Amplification , Early Detection of Cancer/methodsABSTRACT
Extrachromosomal DNA (ecDNA) is prevalent in human cancers and mediates high expression of oncogenes through gene amplification and altered gene regulation1. Gene induction typically involves cis-regulatory elements that contact and activate genes on the same chromosome2,3. Here we show that ecDNA hubs-clusters of around 10-100 ecDNAs within the nucleus-enable intermolecular enhancer-gene interactions to promote oncogene overexpression. ecDNAs that encode multiple distinct oncogenes form hubs in diverse cancer cell types and primary tumours. Each ecDNA is more likely to transcribe the oncogene when spatially clustered with additional ecDNAs. ecDNA hubs are tethered by the bromodomain and extraterminal domain (BET) protein BRD4 in a MYC-amplified colorectal cancer cell line. The BET inhibitor JQ1 disperses ecDNA hubs and preferentially inhibits ecDNA-derived-oncogene transcription. The BRD4-bound PVT1 promoter is ectopically fused to MYC and duplicated in ecDNA, receiving promiscuous enhancer input to drive potent expression of MYC. Furthermore, the PVT1 promoter on an exogenous episome suffices to mediate gene activation in trans by ecDNA hubs in a JQ1-sensitive manner. Systematic silencing of ecDNA enhancers by CRISPR interference reveals intermolecular enhancer-gene activation among multiple oncogene loci that are amplified on distinct ecDNAs. Thus, protein-tethered ecDNA hubs enable intermolecular transcriptional regulation and may serve as units of oncogene function and cooperative evolution and as potential targets for cancer therapy.
Subject(s)
Neoplasms , Nuclear Proteins , Azepines/pharmacology , Cell Cycle Proteins/genetics , Cell Line, Tumor , Gene Amplification , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/genetics , Nuclear Proteins/genetics , Oncogenes/genetics , Transcription Factors/geneticsABSTRACT
BACKGROUND AND AIMS: Biliary atresia (BA) is a devastating fibroinflammatory biliary disease that is the leading indication for pediatric liver transplants worldwide. Although cholangiocytes are the primary target cells, the pathogenic mechanisms involving cholangiocytes remain elusive. Here, we aimed to characterize the pathogenic role of cholangiocytes in BA. APPROACH AND RESULTS: Integration of single-cell RNA sequencing of 12 liver tissues (from 9 BA and 3 controls) and the spatial transcriptome of another four liver sections (from 2 BA and 2 controls) provided a comprehensive spatial liver cell atlas of BA. In particular, we identified a cholangiocyte-enriched spatial niche with infiltration of activated HSCs, activated portal fibroblasts, macrovascular endothelial cells, and TREM2 + macrophages that were elevated in the portal triad of BA. This niche was positively correlated with bile duct profiles, liver fibrosis, and poor survival in 2 independent cohorts of patients with BA. Using integrative bioinformatics analyses to mine the cell-cell communication and regulatory network in BA cholangiocytes, we uncovered the fibroinflammatory phenotype of cholangiocytes with TNFSF12-TNFRSF12A as a significant signal. Genetic ablation or blockade of TNFRSF12A suppresses liver injury, inflammation, and bile duct profiles in a mouse model of disease. Using human biliary organoids, we revealed that BA organoids expressed higher levels of CCL2 in response to TNFSF12 stimulation and promoted monocyte chemotaxis via the CCL2-CCR2 axis. CONCLUSIONS: Pathogenic cholangiocytes-enriched niche identifies TNFRSF12A as a potential therapeutic target for BA.
ABSTRACT
Oncogenes are commonly amplified on particles of extrachromosomal DNA (ecDNA) in cancer1,2, but our understanding of the structure of ecDNA and its effect on gene regulation is limited. Here, by integrating ultrastructural imaging, long-range optical mapping and computational analysis of whole-genome sequencing, we demonstrate the structure of circular ecDNA. Pan-cancer analyses reveal that oncogenes encoded on ecDNA are among the most highly expressed genes in the transcriptome of the tumours, linking increased copy number with high transcription levels. Quantitative assessment of the chromatin state reveals that although ecDNA is packaged into chromatin with intact domain structure, it lacks higher-order compaction that is typical of chromosomes and displays significantly enhanced chromatin accessibility. Furthermore, ecDNA is shown to have a significantly greater number of ultra-long-range interactions with active chromatin, which provides insight into how the structure of circular ecDNA affects oncogene function, and connects ecDNA biology with modern cancer genomics and epigenetics.
Subject(s)
Chromatin/genetics , DNA, Circular/metabolism , Gene Expression Regulation, Neoplastic/genetics , Neoplasms/genetics , Oncogenes/genetics , Cell Line, Tumor , Chromatin/chemistry , DNA, Circular/genetics , Humans , Microscopy, Electron, Scanning , Neoplasms/physiopathologyABSTRACT
In glioblastoma (GBM), heterogeneous expression of amplified and mutated epidermal growth factor receptor (EGFR) presents a substantial challenge for the effective use of EGFR-directed therapeutics. Here we demonstrate that heterogeneous expression of the wild-type receptor and its constitutively active mutant form, EGFRvIII, limits sensitivity to these therapies through an interclonal communication mechanism mediated by interleukin-6 (IL-6) cytokine secreted from EGFRvIII-positive tumor cells. IL-6 activates a NF-κB signaling axis in a paracrine and autocrine manner, leading to bromodomain protein 4 (BRD4)-dependent expression of the prosurvival protein survivin (BIRC5) and attenuation of sensitivity to EGFR tyrosine kinase inhibitors (TKIs). NF-κB and survivin are coordinately up-regulated in GBM patient tumors, and functional inhibition of either protein or BRD4 in in vitro and in vivo models restores sensitivity to EGFR TKIs. These results provide a rationale for improving anti-EGFR therapeutic efficacy through pharmacological uncoupling of a convergence point of NF-κB-mediated survival that is leveraged by an interclonal circuitry mechanism established by intratumoral mutational heterogeneity.
Subject(s)
Drug Resistance, Neoplasm/genetics , Glioblastoma/physiopathology , NF-kappa B/genetics , NF-kappa B/metabolism , Signal Transduction/genetics , Animals , Cell Communication , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Humans , Interleukin-6/metabolism , Mice , Mice, Nude , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Kinase Inhibitors/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolismABSTRACT
BACKGROUND & AIMS: Endoplasmic reticulum (ER) stress of hepatocytes plays a causative role in non-alcoholic fatty liver disease (NAFLD). Reduced expression of hepatic nuclear factor 4α (HNF4α) is a critical event in the pathogenesis of NAFLD and other liver diseases. Whether ER stress regulates HNF4α expression remains unknown. The aim of this study was to delineate the machinery of HNF4α protein degradation and explore a therapeutic strategy based on protecting HNF4α stability during NAFLD progression. METHODS: Correlation of HNF4α and tribbles homologue 3 (TRIB3), an ER stress sensor, was evaluated in human and mouse NAFLD tissues. RNA-sequencing, mass spectrometry analysis, co-immunoprecipitation, in vivo and in vitro ubiquitination assays were used to elucidate the mechanisms of TRIB3-mediated HNF4α degradation. Molecular docking and co-immunoprecipitation analyses were performed to identify a cell-penetrating peptide that ablates the TRIB3-HNF4α interaction. RESULTS: TRIB3 directly interacts with HNF4α and mediates ER stress-induced HNF4α degradation. TRIB3 recruits tripartite motif containing 8 (TRIM8) to form an E3 ligase complex that catalyzes K48-linked polyubiquitination of HNF4α on lysine 470. Abrogating the degradation of HNF4α attenuated the effect of TRIB3 on a diet-induced NAFLD model. Moreover, the TRIB3 gain-of-function variant p.Q84R is associated with NAFLD progression in patients, and induces lower HNF4α levels and more severe hepatic steatosis in mice. Importantly, disrupting the TRIB3-HNF4α interaction using a cell-penetrating peptide restores HNF4α levels and ameliorates NAFLD progression in mice. CONCLUSIONS: Our findings unravel the machinery of HNF4α protein degradation and indicate that targeting TRIB3-TRIM8 E3 complex-mediated HNF4α polyubiquitination may be an ideal strategy for NAFLD therapy. IMPACT AND IMPLICATIONS: Reduced expression of hepatic nuclear factor 4α (HNF4α) is a critical event in the pathogenesis of NAFLD and other liver diseases. However, the mechanism of HNF4α protein degradation remains unknown. Herein, we reveal that TRIB3-TRIM8 E3 ligase complex is responsible for HNF4α degradation during NAFLD. Inhibiting the TRIB3-HNF4α interaction effectively stabilized HNF4α protein levels and transcription factor activity in the liver and ameliorated TRIB3-mediated NAFLD progression. Our findings demonstrate that disturbing the TRIM8-TRIB3-HNF4α interaction may provide a novel approach to treat NAFLD and even other liver diseases by stabilizing the HNF4α protein.
Subject(s)
Cell-Penetrating Peptides , Non-alcoholic Fatty Liver Disease , Protein Serine-Threonine Kinases , Animals , Humans , Mice , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell-Penetrating Peptides/metabolism , Liver/pathology , Molecular Docking Simulation , Nerve Tissue Proteins , Non-alcoholic Fatty Liver Disease/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Repressor Proteins , Ubiquitin-Protein Ligases/metabolismABSTRACT
Various regulatory CD8+ T-cell subsets have been proposed for immune tolerance and have been implicated in controlling autoimmune diseases. However, their phenotypic identities and suppression mechanisms are not yet understood. This study found that coculture of T-cell receptor (TCR)- or interferon (IFN)-ß-activated CD8+ T cells significantly suppressed the cytokine production of Th1 and Th17 cells. By experimenting with the experimental autoimmune uveitis (EAU), we found that adoptive transfer of TCR or IFN-ß-activated CD8+ T cells significantly lessened disease development in an IFN-γ-dependent manner with a decreased uveitogenic Th1 and Th17 response. Interestingly, after adoptive transfer into the EAU mice, the IFN-γ+ CD8+ T cells were recruited more efficiently into the secondary lymphoid organs during the disease-priming phase. This recruitment depends on the IFN-γ-inducible chemokine receptor CXCR3; knocking out CXCR3 abolishes the protective effect of CD8+ T cells in EAU. In conclusion, we identified the critical role of IFN-γ for CD8+ T cells to inhibit Th1 and Th17 responses and ameliorate EAU. CXCR3 is necessary to recruit IFN-γ+ CD8+ T cells to the secondary lymphoid organ for the regulation of autoreactive Th1 and Th17 cells.
Subject(s)
CD8-Positive T-Lymphocytes , Interferon-gamma , Retinitis , Male , Female , Animals , Mice , Mice, Inbred C57BL , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Lymphocyte Activation , Retinitis/immunology , Th1 Cells/immunology , Th17 Cells/immunology , Interferon-gamma/immunology , Cell Polarity/immunology , Interleukin-10/immunology , Interferon-beta/pharmacology , Receptors, CXCR3/genetics , Receptors, CXCR3/immunology , Protein Transport/genetics , Spleen/immunologyABSTRACT
The performances of solid-state polymer electrolytes are urgently required to be further improved for high energy density lithium metal batteries. Herein, a highly reinforced ultrathin composite polymer electrolyte (PLPP) is successfully fabricated in a large scale by densely filling the well-dispersed mixture of polyethylene oxide (PEO), Li-salt (LiTFSI) and a polymer of intrinsic microporosity (PIM-1) into porous poly(tetrafluoroethylene) (PTFE) matrix. Based on the macro-plus-micro synergistic enhancement of the PTFE with excellent mechanical properties and the soluble PIM-1 with suitable functional groups, the PLPP electrolyte exhibits excellent properties including mechanical stress, thermal stability, lithium-ion transference number, voltage window and ionic conductivity, which are all superior to the typical PEO/LiTFSI electrolytes. As a result, the Li/PLPP/Li symmetric cell can stably cycle for > 2000 h, and the LiFePO4/PLPP/Li full cell exhibits excellent rate performance (>10 C) and high cycling stability with an initial capacity of 158.8 mAh g-1 and a capacity retention of 78.8% after 300 cycles. In addition, the excellent mechanical properties as well as the wide voltage window reasonably result in the stable operation of full cells with either high-loading cathode up to 28.1 mg cm-2 or high voltage cathode with high energy density.
ABSTRACT
The guided-growth strategy has been widely explored and proved its efficacy in fabricating surface micro/nanostructures in a variety of systems. However, soft materials like polymers are much less investigated partly due to the lack of strong internal driving mechanisms. Herein, the possibility of utilizing liquid crystal (LC) ordering of smectic liquid crystal polymers (LCPs) to induce guided growth of surface topography during the formation of electrohydrodynamic (EHD) patterns is demonstrated. In a two-stage growth, regular stripes are first found to selectively emerge from the homogeneously aligned region of an initially flat LCP film, and then extend neatly along the normal direction of the boundary line between homogeneous and homeotropic alignments. The stripes can maintain their directions for quite a distance before deviating. Coupled with the advanced tools for controlling LC alignment, intricate surface topographies can be produced in LCP films starting from relatively simple designs. The regularity of grown pattern is determined by the LC ordering of the polymer material, and influenced by conditions of EHD growth. The proposed approach provides new opportunities to employ LCPs in optical and electrical applications.
ABSTRACT
BACKGROUND: Although the indoor environment has been proposed to be associated with childhood sleep health, to our knowledge no study has investigated the association between home renovation and childhood sleep problems. METHODS: The study included 186,470 children aged 6-18 years from the National Chinese Children Health Study (2012-2018). We measured childhood sleeping problems via the Chinese version of the Sleep Disturbance Scale for Children (C-SDSC). Information on home renovation exposure within the recent 2 years was collected via parent report. We estimated associations between home renovation and various sleeping problems, defined using both continuous and categorized (binary) C-SDSC t-scores, using generalized mixed models. We fitted models with city as a random effect variable, and other covariates as fixed effects. RESULTS: Out of the overall participants, 89,732 (48%) were exposed to recent home renovations. Compared to the unexposed group, children exposed to home renovations had higher odds of total sleep disorder (odd ratios [OR] = 1.3; 95% confidence interval [CI] = 1.2, 1.4). Associations varied when we considered different types of home renovation materials. Children exposed to multiple types of home renovation had higher odds of sleeping problems. We observed similar findings when considering continuous C-SDSC t-scores. Additionally, sex and age of children modified the associations of home renovation exposure with some of the sleeping problem subtypes. CONCLUSIONS: We found that home renovation was associated with higher odds of having sleeping problems and that they varied when considering the type of renovation, cumulative exposure, sex, and age differences.
Subject(s)
Seizures , Sleep Wake Disorders , Child , Humans , Surveys and Questionnaires , Cities , China/epidemiology , Sleep Wake Disorders/epidemiologyABSTRACT
BACKGROUND: Recent evidences highlight the potential impact of outdoor Light at Night (LAN) on executive function. However, few studies have investigated the association between outdoor LAN exposure and executive function. METHODS: We employed data from 48,502 Chinese children aged 5-12 years in a cross-sectional study conducted in Guangdong province during 2020-2021, to examine the association between outdoor LAN and executive function assessed using the validated parent-completed Behavior Rating Inventory of Executive Function. We assessed children's outdoor LAN exposure using the night-time satellite images based on the residential addresses. We used generalized linear mixed models to estimate the association between outdoor LAN exposure and executive function scores and executive dysfunction. RESULTS: After adjusting for potential covariates, higher quintiles of outdoor LAN exposure were associated with poorer executive function. Compared to the lowest quintile (Q1), all higher quintiles of exposure showed a significant increased global executive composite (GEC) score with ß (95% confidence intervals, CI) of 0.58 (0.28, 0.88) in Q2, 0.59 (0.28, 0.9) in Q3, 0.85 (0.54, 1.16) in Q4, and 0.76 (0.43, 1.09) in Q5. Higher quintiles of exposure were also associated with higher risks for GEC dysfunction with odd ratios (ORs) (95% CI) of 1.34 (1.18, 1.52) in Q2, 1.40 (1.24, 1.59) in Q3, 1.40 (1.23, 1.59) in Q4, and 1.39 (1.22, 1.58) in Q5. And stronger associations were observed in children aged 10-12 years. CONCLUSIONS: Our study suggested that high outdoor LAN exposure was associated with poor executive function in children. These findings suggested that future studies should determine whether interventions to reduce outdoor LAN exposure can have a positive effect on executive function.
Subject(s)
Executive Function , Humans , Child , Male , Female , Cross-Sectional Studies , Child, Preschool , China , Environmental Exposure , Light , Lighting/adverse effects , East Asian PeopleABSTRACT
Human pharyngeal squamous cell carcinoma (HPSCC) is the most common malignancy in the head and neck region, characterized by high mortality and a propensity for metastasis. Fucoxanthin, a carotenoid isolated from brown algae, exhibits pharmacological properties associated with the suppression of tumor proliferation and metastasis. Nevertheless, its potential to inhibit HPSCC proliferation and metastasis has not been fully elucidated. This study represents the first exploration of the inhibitory effects of fucoxanthin on two human pharyngeal squamous carcinoma cell lines (FaDu and Detroit 562), as well as the mechanisms underlying those effects. The results showed dose-dependent decreases in the proliferation, migration, and invasion of HPSCC cells after fucoxanthin treatment. Further studies indicated that fucoxanthin caused a significant reduction in the expression levels of proteins in the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) pathway, as well as the downstream proteins matrix metalloproteinase (MMP)-2 and MMP-9. Specific activators of PI3K/AKT reversed the effects of fucoxanthin on these proteins, as well as on cell proliferation and metastasis, in FaDu and Detroit 562 cells. Molecular docking assays confirmed that fucoxanthin strongly interacted with PI3K, AKT, mTOR, MMP-2, and MMP-9. Overall, fucoxanthin, a functional food component, is a potential therapeutic agent for HPSCC.
Subject(s)
Cell Movement , Cell Proliferation , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Xanthophylls , Humans , TOR Serine-Threonine Kinases/metabolism , Xanthophylls/pharmacology , Xanthophylls/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Cell Proliferation/drug effects , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Pharyngeal Neoplasms/drug therapy , Pharyngeal Neoplasms/pathology , Pharyngeal Neoplasms/metabolism , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Neoplasm Metastasis , Molecular Docking SimulationABSTRACT
To explore whether rs2073244 at PAX9 increased susceptibility for full-term low birth weight infants and whether indoors passive smoking exposure has a combined effect with rs2073244 on newborn low birth weight (LBW), a 1:2 paired case-control study of LBW newborns was conducted at Xiamen University Affiliated Women and Children's Hospital from March 2010 to October 2013. The rate of indoor passive smoking exposure in the LBW group was higher than it in the NBW group (p = 0.019). GG of PAX9 rs2073244 decreased the risk of LBW [OR = 0.38, 95% CI: (0.15-0.98)] and smaller HC [OR = 0.44, 95% CI:(0.20-0.98)]. The relative excess risk for LBW contributed by the additive interaction between the rs2073244 risk genotypes AG/AA and mother pregnancy passive smoking exposure was 10.679 (95%CI 1.728-65.975). Our study suggested that the AG/AA genotype of PAX9 rs2073244 might be a risk factor for LBW of full-term newborns, especially in maternal passive smoking.
ABSTRACT
Polystyrene nanoplastics (PS-NPs) are typical accumulated nanoplastics in the marine environment and organisms, and have strong potential risks to marine ecological environment and human health. MiRNAs could respond to and participate in the response process of environmental stressors. However, the response of miRNAs to nanoplastics has not been fully explored. In this study, miRNA responses of digestive glands in mussels Mytilus galloprovincialis treated by 200 nm PS-NPs (20, 200, 2000 µg/L) for 7 days were characterized by BGISEQ-500 deep sequencing and bioinformatics analysis, along with histopathological quantification with planimetric parameters on hematoxylin and eosin (H&E) staining. Results showed that one novel miRNA (novel_mir63) and seven known miRNAs (miR-34_2, miR-34_5, miR-281_8, let-7-5p_6, miR-10, miR-124, miR-29b-3p) were significantly (adjusted P-value < 0.05) differentially expressed after PS-NPs treatments, and most of them were down-regulated expect for novel_mir63 and miR-34_2. Function analysis of target genes corresponding to these differentially expressed miRNAs indicated that PS-NPs disturbed the process related to metabolism, aging, cardiac function, neural excitation, and repairment. Among them, acetyl-CoA C-acetyltransferase and purine metabolism pathway played vital connection roles. Meanwhile, significantly morphology changes of digestive tubes obtained from H&E stained sections also implied severely disrupted metabolic capability in digestive glands, reflected by significantly increased mean diverticular radius (MDR) and mean luminal radius (MLR) values and the ratio of MLR to mean epithelial thickness (MET), and significantly decreased MET value and MET/MDR. Overall, these findings have revealed new characterization of miRNAs and their target genes in mussel M. galloprovincialis under PS-NPs stress, and provide important clues to further elucidate the toxicity mechanisms of PS-NPs.
Subject(s)
MicroRNAs , Mytilus , Water Pollutants, Chemical , Animals , Humans , Polystyrenes/toxicity , Polystyrenes/metabolism , Mytilus/metabolism , Microplastics/toxicity , Microplastics/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , MicroRNAs/genetics , MicroRNAs/metabolismABSTRACT
The nasolabial folds (NLFs) may be shallowed with the use of nostril base augmentation. This study aimed to design and customize patient-specific implants (PSIs) with computer-aided design/computer-aided manufacturing (CAD/CAM) to correct NLF deepening caused by midfacial aging. The patient's head computed tomography data obtained and were used for reconstruction. The PSIs were customized by CAD/CAM techniques, which were implanted into a nasal base for shallow NLFs caused by midfacial aging. Preoperative and postoperative photos and a wrinkle severity rating scale were used to evaluate the changes in NLFs. Also, the global esthetic improvement scale was used to investigate the surgical satisfaction of patients. Eleven patients (22 NLFs) received PSIs in the nasal base (22 implants). The customized PSI matched well with premaxilla, reducing the difficulty of operation. After 3 to 12 months of follow-up, PSI was stable without foreign body reaction or inflammatory reaction. Postoperative wrinkle severity rating scale scores showed that NLF severity was reduced in all patients, with a significant esthetic improvement compared with preoperatively ( P < 0.01). The global esthetic improvement scale showed an extremely satisfied improved NLF in 27.27% of patients, much improved in 63.63%, and improved in 9.90% (2/22), and none reported change or poor NLF. Patient satisfaction with their midface appearance differed significantly before and after surgery ( P < 0.01). Individualized PSI designed with high precision and matching degree by CAD and prepared using CAM could be applied to overcome the limitations of noncustomized implants.
Subject(s)
Dental Implants , Skin Aging , Humans , Nasolabial Fold , Patient Satisfaction , Aging , Hyaluronic AcidABSTRACT
In recent years, several publications reported that nanoparticles larger than the kidney filtration threshold were found intact in the urine after being injected into laboratory mice. This theoretically should not be possible, as it is widely known that the kidneys prevent molecules larger than 6-8 nm from escaping into the urine. This is interesting because it implies that some nanoparticles can overcome the size limit for renal clearance. What kinds of nanoparticles can "bypass" the glomerular filtration barrier and cross into the urine? What physical and chemical characteristics are essential for nanoparticles to have this ability? And what are the biomolecular and cellular mechanisms that are involved? This review attempts to answer those questions and summarize known reports of renal-clearable large nanoparticles.
Subject(s)
Glomerular Filtration Barrier , Kidney/physiology , Nanoparticles , Animals , MiceABSTRACT
Human uveitis is an autoimmune disease of the central nervous system that is characterized by ocular inflammation with the involvement of uveitogenic Th1 and Th17 responses. In experimental autoimmune uveitis (EAU), the animal model for human uveitis, both responses are proven to be critical in disease development. Therefore, targeting both Th1 and Th17 cells has therapeutic implication for disease resolution. IL-27 is a multifunctional cytokine that can either promote or inhibit T cell responses and is implicated in both autoimmune and infectious diseases. The aim of this study is to characterize the role of IL-27/IL-27R signaling in regulating uveitogenic Th1/Th17 responses in EAU. By immunizing IL-27Rα-/- mice and their wild-type (WT) littermates for EAU, we demonstrated that IL-27 signaling deficiency exacerbated EAU with severe ocular inflammation and impairment of visual function. Furthermore, there was a significant increase in the eye-infiltrating Th1 and Th17 cells in IL-27Rα-/- EAU mice compared to WT. Their retinal antigen-specific Th1 and Th17 responses were also significantly increased, as represented by the elevation of their signature cytokines, IFN-γ and IL-17A, respectively. We also observed the upregulation of another pathogenic cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF), from effector T cells in IL-27Rα-/- EAU mice. Mechanistic studies confirmed that IL-27 inhibited GM-CSF production from Th17 cells. In addition, the induction of IL-10 producing type 1 regulatory T (Tr1) cells was impaired in IL-27Rα-/- EAU mice. These results identified that IL-27 signaling plays a suppressive role in EAU by regulating multiple CD4+ cell subsets, including the effector Th1 and Th17 cells and the regulatory Tr1 cells. Our findings provide new insights for therapeutic potential in controlling uveitis by enhancing IL-27 signaling.
Subject(s)
Autoimmune Diseases/pathology , CD4-Positive T-Lymphocytes/immunology , Interleukin-27/metabolism , Receptors, Interleukin/physiology , Th1 Cells/immunology , Th17 Cells/immunology , Uveitis/pathology , Animals , Autoimmune Diseases/etiology , Autoimmune Diseases/metabolism , Cell Differentiation , Cytokines/metabolism , Disease Models, Animal , Mice , Mice, Inbred C57BL , Mice, Knockout , Uveitis/etiology , Uveitis/metabolismABSTRACT
Our previous studies have revealed the function of long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) in tomato in response to Phytophthora infestans infection. However, the interaction relationships between lncRNAs and miRNAs during tomato resistance to P. infestans infection are unknown. In this study, 9,011 lncRNAs were identified from tomato plants, including 115 upregulated and 81 downregulated lncRNAs. Among these, 148 were found to be differentially expressed and might affect the expression of 771 genes, which are composed of 887 matched lncRNA-mRNA pairs. In total, 88 lncRNAs were identified as endogenous RNAs (ceRNAs) and predicted to decoy 46 miRNAs. Degradome sequencing revealed that 11 miRNAs that were decoyed by 20 lncRNAs could target 30 genes. These lncRNAs, miRNAs, and target genes were predicted to form 10 regulatory modules. Among them, lncRNA42705/lncRNA08711, lncRNA39896, and lncRNA11265/lncRNA15816 might modulate MYB, HD-Zip, and NAC transcription factors by decoying miR159, miR166b, and miR164a-5p, respectively. Upon P. infestans infection, the expression levels of lncRNA42705 and lncRNA08711 displayed a negative correlation with the expression level of miR159 and a positive correlation with the expression levels of MYB genes. Tomato plants in which lncRNA42705 and lncRNA08711 were silenced displayed increased levels of miR159 and decreased levels of MYB, respectively. The result demonstrated that lncRNAs might function as ceRNAs to decoy miRNAs and affect their target genes in tomato plants, increasing resistance to disease.
Subject(s)
MicroRNAs , Phytophthora infestans , RNA, Long Noncoding , Solanum lycopersicum , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Plant DiseasesABSTRACT
We propose and experimentally demonstrate a novel scheme to generate LP11/LP21 modes with tunable mode lobe orientation (MLO). Wherein, the MLOs have an excellent linear relationship with the linearly-polarized states of input fundamental modes. The proposed scheme is composed of a polarization controller (PC), a mode converter, a mode and polarization controller (PMC) which is twined with the few mode fiber (FMF) and a polarizer. Experimental results show that the deviations of MLOs between generated LP11/LP21 modes and simulated ones are less than 3.5 and 8 degrees over C band. Since polarization control up to nanosecond scale is available with GaAs or lithium based electro-optic modulator, the proposed scheme could enable nanosecond time scale MLO control, which would be immensely useful for optical trapping, fiber sensors and optical communications.