Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 806
Filter
Add more filters

Publication year range
1.
Cell ; 176(5): 1206-1221.e18, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30773317

ABSTRACT

Social behaviors, including behaviors directed toward young offspring, exhibit striking sex differences. Understanding how these sexually dimorphic behaviors are regulated at the level of circuits and transcriptomes will provide insights into neural mechanisms of sex-specific behaviors. Here, we uncover a sexually dimorphic role of the medial amygdala (MeA) in governing parental and infanticidal behaviors. Contrary to traditional views, activation of GABAergic neurons in the MeA promotes parental behavior in females, while activation of this population in males differentially promotes parental versus infanticidal behavior in an activity-level-dependent manner. Through single-cell transcriptomic analysis, we found that molecular sex differences in the MeA are specifically represented in GABAergic neurons. Collectively, these results establish crucial roles for the MeA as a key node in the neural circuitry underlying pup-directed behaviors and provide important insight into the connection between sex differences across transcriptomes, cells, and circuits in regulating sexually dimorphic behavior.


Subject(s)
Corticomedial Nuclear Complex/physiology , Sex Characteristics , Sexual Behavior, Animal/physiology , Amygdala/physiology , Animals , Behavior, Animal/physiology , Corticomedial Nuclear Complex/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Neurons/physiology , Parenting , Sex Factors , Social Behavior
2.
Cell ; 178(2): 429-446.e16, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31230711

ABSTRACT

Social interactions involve complex decision-making tasks that are shaped by dynamic, mutual feedback between participants. An open question is whether and how emergent properties may arise across brains of socially interacting individuals to influence social decisions. By simultaneously performing microendoscopic calcium imaging in pairs of socially interacting mice, we find that animals exhibit interbrain correlations of neural activity in the prefrontal cortex that are dependent on ongoing social interaction. Activity synchrony arises from two neuronal populations that separately encode one's own behaviors and those of the social partner. Strikingly, interbrain correlations predict future social interactions as well as dominance relationships in a competitive context. Together, our study provides conclusive evidence for interbrain synchrony in rodents, uncovers how synchronization arises from activity at the single-cell level, and presents a role for interbrain neural activity coupling as a property of multi-animal systems in coordinating and sustaining social interactions between individuals.


Subject(s)
Brain/metabolism , Neurons/metabolism , Animals , Calcium Signaling , Competitive Behavior/physiology , Male , Mice , Mice, Inbred C57BL , Prefrontal Cortex/metabolism , Principal Component Analysis , Social Dominance
3.
Nature ; 626(7997): 136-144, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38267578

ABSTRACT

Humans and animals exhibit various forms of prosocial helping behaviour towards others in need1-3. Although previous research has investigated how individuals may perceive others' states4,5, the neural mechanisms of how they respond to others' needs and goals with helping behaviour remain largely unknown. Here we show that mice engage in a form of helping behaviour towards other individuals experiencing physical pain and injury-they exhibit allolicking (social licking) behaviour specifically towards the injury site, which aids the recipients in coping with pain. Using microendoscopic imaging, we found that single-neuron and ensemble activity in the anterior cingulate cortex (ACC) encodes others' state of pain and that this representation is different from that of general stress in others. Furthermore, functional manipulations demonstrate a causal role of the ACC in bidirectionally controlling targeted allolicking. Notably, this behaviour is represented in a population code in the ACC that differs from that of general allogrooming, a distinct type of prosocial behaviour elicited by others' emotional stress. These findings advance our understanding of the neural coding and regulation of helping behaviour.


Subject(s)
Behavior, Animal , Empathy , Gyrus Cinguli , Helping Behavior , Pain , Social Behavior , Animals , Mice , Empathy/physiology , Gyrus Cinguli/cytology , Gyrus Cinguli/physiology , Behavior, Animal/physiology , Wounds and Injuries , Coping Skills , Stress, Psychological , Grooming
4.
Nature ; 616(7955): 77-83, 2023 04.
Article in English | MEDLINE | ID: mdl-37020008

ABSTRACT

Inorganic superionic conductors possess high ionic conductivity and excellent thermal stability but their poor interfacial compatibility with lithium metal electrodes precludes application in all-solid-state lithium metal batteries1,2. Here we report a LaCl3-based lithium superionic conductor possessing excellent interfacial compatibility with lithium metal electrodes. In contrast to a Li3MCl6 (M = Y, In, Sc and Ho) electrolyte lattice3-6, the UCl3-type LaCl3 lattice has large, one-dimensional channels for rapid Li+ conduction, interconnected by La vacancies via Ta doping and resulting in a three-dimensional Li+ migration network. The optimized Li0.388Ta0.238La0.475Cl3 electrolyte exhibits Li+ conductivity of 3.02 mS cm-1 at 30 °C and a low activation energy of 0.197 eV. It also generates a gradient interfacial passivation layer to stabilize the Li metal electrode for long-term cycling of a Li-Li symmetric cell (1 mAh cm-2) for more than 5,000 h. When directly coupled with an uncoated LiNi0.5Co0.2Mn0.3O2 cathode and bare Li metal anode, the Li0.388Ta0.238La0.475Cl3 electrolyte enables a solid battery to run for more than 100 cycles with a cutoff voltage of 4.35 V and areal capacity of more than 1 mAh cm-2. We also demonstrate rapid Li+ conduction in lanthanide metal chlorides (LnCl3; Ln = La, Ce, Nd, Sm and Gd), suggesting that the LnCl3 solid electrolyte system could provide further developments in conductivity and utility.

5.
Nature ; 611(7936): 532-539, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36323788

ABSTRACT

Neuropsychiatric disorders classically lack defining brain pathologies, but recent work has demonstrated dysregulation at the molecular level, characterized by transcriptomic and epigenetic alterations1-3. In autism spectrum disorder (ASD), this molecular pathology involves the upregulation of microglial, astrocyte and neural-immune genes, the downregulation of synaptic genes, and attenuation of gene-expression gradients in cortex1,2,4-6. However, whether these changes are limited to cortical association regions or are more widespread remains unknown. To address this issue, we performed RNA-sequencing analysis of 725 brain samples spanning 11 cortical areas from 112 post-mortem samples from individuals with ASD and neurotypical controls. We find widespread transcriptomic changes across the cortex in ASD, exhibiting an anterior-to-posterior gradient, with the greatest differences in primary visual cortex, coincident with an attenuation of the typical transcriptomic differences between cortical regions. Single-nucleus RNA-sequencing and methylation profiling demonstrate that this robust molecular signature reflects changes in cell-type-specific gene expression, particularly affecting excitatory neurons and glia. Both rare and common ASD-associated genetic variation converge within a downregulated co-expression module involving synaptic signalling, and common variation alone is enriched within a module of upregulated protein chaperone genes. These results highlight widespread molecular changes across the cerebral cortex in ASD, extending beyond association cortex to broadly involve primary sensory regions.


Subject(s)
Autism Spectrum Disorder , Cerebral Cortex , Genetic Variation , Transcriptome , Humans , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/pathology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Neurons/metabolism , RNA/analysis , RNA/genetics , Transcriptome/genetics , Autopsy , Sequence Analysis, RNA , Primary Visual Cortex/metabolism , Neuroglia/metabolism
6.
Nature ; 599(7884): 262-267, 2021 11.
Article in English | MEDLINE | ID: mdl-34646019

ABSTRACT

The ability to help and care for others fosters social cohesiveness and is vital to the physical and emotional well-being of social species, including humans1-3. Affiliative social touch, such as allogrooming (grooming behaviour directed towards another individual), is a major type of prosocial behaviour that provides comfort to others1-6. Affiliative touch serves to establish and strengthen social bonds between animals and can help to console distressed conspecifics. However, the neural circuits that promote prosocial affiliative touch have remained unclear. Here we show that mice exhibit affiliative allogrooming behaviour towards distressed partners, providing a consoling effect. The increase in allogrooming occurs in response to different types of stressors and can be elicited by olfactory cues from distressed individuals. Using microendoscopic calcium imaging, we find that neural activity in the medial amygdala (MeA) responds differentially to naive and distressed conspecifics and encodes allogrooming behaviour. Through intersectional functional manipulations, we establish a direct causal role of the MeA in controlling affiliative allogrooming and identify a select, tachykinin-expressing subpopulation of MeA GABAergic (γ-aminobutyric-acid-expressing) neurons that promote this behaviour through their projections to the medial preoptic area. Together, our study demonstrates that mice display prosocial comforting behaviour and reveals a neural circuit mechanism that underlies the encoding and control of affiliative touch during prosocial interactions.


Subject(s)
Emotions , Social Behavior , Stress, Psychological , Touch/physiology , Amygdala/cytology , Amygdala/physiology , Animals , Cooperative Behavior , Female , Male , Mice , Neural Pathways , Neurons/physiology , Preoptic Area/cytology , Preoptic Area/physiology , Stress, Psychological/prevention & control , Stress, Psychological/psychology
7.
Nat Methods ; 20(1): 55-64, 2023 01.
Article in English | MEDLINE | ID: mdl-36585454

ABSTRACT

Brain atlases are spatial references for integrating, processing, and analyzing brain features gathered from different individuals, sources, and scales. Here we introduce a collection of joint surface-volume atlases that chart postnatal development of the human brain in a spatiotemporally dense manner from two weeks to two years of age. Our month-specific atlases chart normative patterns and capture key traits of early brain development and are therefore conducive to identifying aberrations from normal developmental trajectories. These atlases will enhance our understanding of early structural and functional development by facilitating the mapping of diverse features of the infant brain to a common reference frame for precise multifaceted quantification of cortical and subcortical changes.


Subject(s)
Brain , Image Processing, Computer-Assisted , Humans , Infant , Brain Mapping , Magnetic Resonance Imaging
8.
Cereb Cortex ; 34(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38836287

ABSTRACT

Somatic mutations have been identified in 10% to 63% of focal cortical dysplasia type II samples, primarily linked to the mTOR pathway. When the causative genetic mutations are not identified, this opens the possibility of discovering new pathogenic genes or pathways that could be contributing to the condition. In our previous study, we identified a novel candidate pathogenic somatic variant of IRS-1 c.1791dupG in the brain tissue of a child with focal cortical dysplasia type II. This study further explored the variant's role in causing type II focal cortical dysplasia through in vitro overexpression in 293T and SH-SY5Y cells and in vivo evaluation via in utero electroporation in fetal brains, assessing effects on neuronal migration, morphology, and network integrity. It was found that the mutant IRS-1 variant led to hyperactivity of p-ERK, increased cell volume, and was predominantly associated with the MAPK signaling pathway. In vivo, the IRS-1 c.1791dupG variant induced abnormal neuron migration, cytomegaly, and network hyperexcitability. Notably, the ERK inhibitor GDC-0994, rather than the mTOR inhibitor rapamycin, effectively rescued the neuronal defects. This study directly highlighted the ERK signaling pathway's role in the pathogenesis of focal cortical dysplasia II and provided a new therapeutic target for cases of focal cortical dysplasia II that are not treatable by rapamycin analogs.


Subject(s)
Insulin Receptor Substrate Proteins , MAP Kinase Signaling System , Mutation , Humans , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , MAP Kinase Signaling System/genetics , Animals , Malformations of Cortical Development, Group I/genetics , Malformations of Cortical Development, Group I/metabolism , Brain/metabolism , Brain/pathology , Neurons/metabolism , Neurons/pathology , Cell Movement/genetics , HEK293 Cells , Female , Focal Cortical Dysplasia , Epilepsy
9.
Med Res Rev ; 44(2): 812-832, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38009264

ABSTRACT

As a widely considerable target in chemical biology and pharmacological research, rat sarcoma (RAS) gene mutations play a critical driving factor in several fatal cancers. Despite the great progress of RAS subtype-specific inhibitors, rapid acquired drug resistance could limit their further clinical applications. Proteolysis targeting chimera (PROTAC) has emerged as a powerful tool to handle "undruggable" targets and exhibited significant therapeutic benefit for the combat of drug resistance. Owing to unique molecular mechanism and binding kinetics, PROTAC is expected to become a feasible strategy to break the bottleneck of classical RAS inhibitors. This review aims to discuss the current advances of RAS inhibitors and especially focus on PROTAC strategy targeting RAS mutations and their downstream effectors for relevant cancer treatment.


Subject(s)
Proteolysis Targeting Chimera , Humans , Kinetics , Mutation
10.
Small ; : e2400516, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38686688

ABSTRACT

Chronic wounds constitute an increasingly prevalent global healthcare issue, characterized by recurring bacterial infections, pronounced oxidative stress, compromised functionality of immune cells, unrelenting inflammatory reactions, and deficits in angiogenesis. In response to these multifaceted challenges, the study introduced a stimulus-responsive glycopeptide hydrogel constructed by oxidized Bletilla striata polysaccharide (OBSP), gallic acid-grafted ε-Polylysine (PLY-GA), and paeoniflorin-loaded micelles (MIC@Pae), called OBPG&MP. The hydrogel emulates the structure of glycoprotein fibers of the extracellular matrix (ECM), exhibiting exceptional injectability, self-healing, and biocompatibility. It adapts responsively to the inflammatory microenvironment of chronic wounds, sequentially releasing therapeutic agents to eradicate bacterial infection, neutralize reactive oxygen species (ROS), modulate macrophage polarization, suppress inflammation, and encourage vascular regeneration and ECM remodeling, playing a critical role across the inflammatory, proliferative, and remodeling phases of wound healing. Both in vitro and in vivo studies confirmed the efficacy of OBPG&MP hydrogel in regulating the wound microenvironment and enhancing the regeneration and remodeling of chronic wound skin tissue. This research supports the vast potential for herb-derived multifunctional hydrogels in tissue engineering and regenerative medicine.

11.
Small ; 20(25): e2311639, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38204283

ABSTRACT

The development of ultraviolet circularly polarized light (UVCPL) sources has the potential to benefit plenty of practical applications but remains a challenge due to limitations in available material systems and a limited understanding of the excited state chirality transfer. Herein, by constructing hybrid structures of the chiral perovskite CsPbBr3 nanoplatelets and organic molecules, excited state chirality transfer is achieved, either via direct binding or triplet energy transfer, leading to efficient UVCPL emission. The underlying photophysical mechanisms of these two scenarios are clarified by comprehensive optical studies. Intriguingly, UVCPL realized via the triple energy transfer, followed by the triplet-triplet annihilation upconversion processes, demonstrates a 50-fold enhanced dissymmetry factor glum. Furthermore, stereoselective photopolymerization of diacetylene monomer is demonstrated by using such efficient UVCPL. This study provides both novel insights and a practical approach for realizing UVCPL, which can also be extended to other material systems and spectral regions, such as visible and near-infrared.

12.
Blood ; 139(3): 333-342, 2022 01 20.
Article in English | MEDLINE | ID: mdl-34665865

ABSTRACT

The study aimed to compare the efficacy and safety of all-trans retinoic acid (ATRA) plus low-dose rituximab (LD-RTX) with LD-RTX monotherapy in corticosteroid-resistant or relapsed immune thrombocytopenia (ITP) patients. Recruited patients were randomized at a ratio of 2:1 into 2 groups: 112 patients received LD-RTX plus ATRA, and 56 patients received LD-RTX monotherapy. Overall response (OR), defined as achieving a platelet count of ≥30 × 109/L confirmed on ≥2 separate occasions (≥7 days apart), at least a doubling of the baseline platelet count without any other ITP-specific treatment, and the absence of bleeding within 1 year after enrollment, was observed in more patients in the LD-RTX plus ATRA group (80%) than in the LD-RTX monotherapy group (59%) (between-group difference, 0.22; 95% CI, 0.07-0.36). Sustained response (SR), defined as maintenance of a platelet count >30 × 109/L, an absence of bleeding, and no requirement for any other ITP-specific treatment for 6 consecutive months after achievement of OR during 1 year following enrollment, was achieved by 68 (61%) patients in the combination group and 23 (41%) patients in the monotherapy group (between-group difference, 0.20; 95% CI, 0.04-0.35). The 2 most common adverse events (AEs) for the combination group were dry skin and headache or dizziness. Our findings demonstrated that ATRA plus LD-RTX significantly increased the overall and sustained response, indicating a promising treatment option for corticosteroid-resistant or relapsed adult ITP. This study is registered at www.clinicaltrials.gov as #NCT03304288.


Subject(s)
Antineoplastic Agents/therapeutic use , Immunologic Factors/therapeutic use , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Rituximab/therapeutic use , Tretinoin/therapeutic use , Adrenal Cortex Hormones/therapeutic use , Adult , Antineoplastic Agents/administration & dosage , Drug Resistance , Drug Therapy, Combination , Female , Humans , Immunologic Factors/administration & dosage , Male , Middle Aged , Recurrence , Rituximab/administration & dosage , Secondary Prevention , Tretinoin/administration & dosage
13.
Opt Express ; 32(4): 6104-6120, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38439321

ABSTRACT

We present a wide-field illumination time-domain (TD) diffusion optical tomography (DOT) for three-dimensional (3-D) reconstruction within a shallow region under the illuminated surface of the turbid medium. The methodological foundation is laid on the single-pixel spatial frequency domain (SFD) imaging that facilitates the adoption of the well-established time-correlated single-photon counting (TCSPC)-based TD detection and generalized pulse spectrum techniques (GPST)-based reconstruction. To ameliorate the defects of the conventional diffusion equation (DE) in the forward modeling of TD-SFD-DOT, mainly the low accuracy in the near-field region and in profiling early-photon migration, we propose a modified model employing the time-dependent δ-P1 approximation and verify its improved accuracy in comparison with both the Monte Carlo and DE-based ones. For a simplified inversion process, a modified GPST approach is extended to TD-SFD-DOT that enables the effective separation of the absorption and scattering coefficients using a steady-state equivalent strategy. Furthermore, we set up a single-pixel TD-SFD-DOT system that employs the TCSPC-based TD detection in the SFD imaging framework. For assessments of the reconstruction approach and the system performance, phantom experiments are performed for a series of scenarios. The results show the effectiveness of the proposed methodology for rapid 3-D reconstruction of the absorption and scattering coefficients within a depth range of about 5 mean free pathlengths.

14.
Pharm Res ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918308

ABSTRACT

PURPOSE: Joint destruction is a major burden and an unsolved problem in rheumatoid arthritis (RA) patients. We designed an intra-articular mesoporous silica nanosystem (MSN-TP@PDA-GlcN) with anti-inflammatory and joint protection effects. The nanosystem was synthesized by encapsulating triptolide (TP) in mesoporous silica nanoparticles and coating it with pH-sensitive polydopamine (PDA) and glucosamine (GlcN) grafting on the PDA. The nano-drug delivery system with anti-inflammatory and joint protection effects should have good potency against RA. METHODS: A template method was used to synthesize mesoporous silica (MSN). MSN-TP@PDA-GlcN was synthesized via MSN loading with TP, coating with PDA and grafting of GlcN on PDA. The drug release behavior was tested. A cellular inflammatory model and a rat RA model were used to evaluate the effects on RA. In vivo imaging and microdialysis (MD) system were used to analyze the sustained release and pharmacokinetics in RA rats. RESULTS: TMSN-TP@PDA-GlcN was stable, had good biocompatibility, and exhibited sustained release of drugs in acidic environments. It had excellent anti-inflammatory effects in vitro and in vivo. It also effectively repaired joint destruction in vivo without causing any tissue toxicity. In vivo imaging and pharmacokinetics experiments showed that the nanosystem prolonged the residence time, lowered the Cmax value and enhanced the relative bioavailability of TP. CONCLUSIONS: These results demonstrated that MSN-TP@PDA-GlcN sustained the release of drugs in inflammatory joints and produced effective anti-inflammatory and joint protection effects on RA. This study provides a new strategy for the treatment of RA.

15.
Rapid Commun Mass Spectrom ; 38(14): e9761, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38714820

ABSTRACT

RATIONALE: Himalayan marmot oil (SPO) has been used for pharmaceutical purposes for centuries, but its composition is still unclear. The bioactivity of SPO highly depends on the techniques used for its processing. This study focused on the comprehensive lipidomics of SPO, especially on the ones derived from dry rendering, wet rendering, cold pressing, and ultrasound-assisted solvent extraction. METHODS: We performed lipid profiling of SPO acquired by different extraction methods using ultrahigh-performance liquid chromatography Q-Exactive Orbitrap mass spectrometry, and 17 classes of lipids (2 BMPs, 12 LysoPCs, 9 LysoPEs, 41 PCs, 24 PEs, 23 Plasmenyl-PCs, 10 Plasmenyl-PEs, 10 MGs, 63 DGs, 187 TGs, 2 MGDGs, 3 Cer[NDS]s, 22 Cer[NS]s, 2 GlcCer[NS]s, 14 SMs, 14 CEs, and 6 AcylCarnitines) were characterized. RESULTS: Fifty-five lipids were differentially altered (VIP > 1.5, p < 0.05) between the extraction techniques, which can be used as potential biomarkers to differentiate SPO extracted by various methods. Additionally, the contents of oleic acid and arachidic acid were abundant in all samples that may suggest their medicinal values and are conducive to in-depth research. CONCLUSIONS: These findings reveal the alterations of lipid profile and free fatty acid composition in SPO obtained with different extraction methods, providing a theoretical foundation for investigating its important components as functional factors in medicines and cosmetics.


Subject(s)
Lipids , Marmota , Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Lipids/chemistry , Lipids/analysis , Mass Spectrometry/methods , Plant Oils/chemistry , Plant Oils/analysis , Lipidomics/methods , Chemical Fractionation/methods
16.
Environ Sci Technol ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38261755

ABSTRACT

Air pollution poses a critical public health threat around many megacities but in an uneven manner. Conventional models are limited to depict the highly spatial- and time-varying patterns of ambient pollutant exposures at the community scale for megacities. Here, we developed a machine-learning approach that leverages the dynamic traffic profiles to continuously estimate community-level year-long air pollutant concentrations in Los Angeles, U.S. We found the introduction of real-world dynamic traffic data significantly improved the spatial fidelity of nitrogen dioxide (NO2), maximum daily 8-h average ozone (MDA8 O3), and fine particulate matter (PM2.5) simulations by 47%, 4%, and 15%, respectively. We successfully captured PM2.5 levels exceeding limits due to heavy traffic activities and providing an "out-of-limit map" tool to identify exposure disparities within highly polluted communities. In contrast, the model without real-world dynamic traffic data lacks the ability to capture the traffic-induced exposure disparities and significantly underestimate residents' exposure to PM2.5. The underestimations are more severe for disadvantaged communities such as black and low-income groups, showing the significance of incorporating real-time traffic data in exposure disparity assessment.

17.
Environ Sci Technol ; 58(18): 7968-7976, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38680115

ABSTRACT

Nitrogen oxide (NOx) emissions from heavy-duty diesel vehicles (HDDVs) have adverse effects on human health and the environment. On-board monitoring (OBM), which can continuously collect vehicle performance and NOx emissions throughout the operation lifespan, is recognized as the core technology for future vehicle in-use compliance, but its large-scale application has not been reported. Here, we utilized OBM data from 22,520 HDDVs in China to evaluate their real-world NOx emissions. Our findings showed that China VI HDDVs had a 73% NOx emission reduction compared with China V vehicles, but a considerable proportion still faced a significant risk of higher NOx emissions than the corresponding limits. The unsatisfactory efficiency of the emission treatment system under disadvantageous driving conditions (e.g., low speed or ambient temperature) resulted in the incompliance of NOx emissions, especially for utility vehicles (sanitation/garbage trucks). Furthermore, the observed intertrip and seasonal variability of NOx emissions demonstrated the need for a long-term continuous monitoring protocol instead of instantaneous evaluation for the OBM. With both functions of emission monitoring and malfunction diagnostics, OBM has the potential to accurately verify the in-use compliance status of large-scale HDDVs and discern the responsibility of high-emitting activities from manufacturers, vehicle operators, and driving conditions.


Subject(s)
Air Pollutants , Environmental Monitoring , Nitrogen Oxides , Vehicle Emissions , Vehicle Emissions/analysis , Environmental Monitoring/methods , Nitrogen Oxides/analysis , Air Pollutants/analysis , China
18.
Hepatol Res ; 54(2): 174-188, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37792600

ABSTRACT

AIM: There has been an increased focus on regulating cell function with Rho family GTPases, including proliferation, migration/invasion, polarity, and adhesion. Due to the challenges involved in targeting Rho family GTPases directly, it may be more effective to target their regulators, such as Rho GTPase-activating protein 1 (ARHGAP1). This present research was performed to define the clinical significance of ARHGAP1 expression, as well as its regulatory mechanisms in hepatocellular carcinoma. METHODS: ARHGAP1 and miR-101-3p expression of liver cancer patients, and their relevance with clinicopathological characteristics and prognosis were analyzed by the Cancer Genome Atlas sequencing data, and verified using samples of hepatocellular carcinoma patients. The interactions between miR-101-3p and ARHGAP1 or circPIP5K1A were validated by bioinformatic analyses, as well as confirmed by quantitative reverse transcription polymerase chain reaction, western blotting, and dual-luciferase reporter analysis. Plate clonality assays, cell adhesion and migration experiments, and proliferation experiments were used for assessing the participation of the circPIP5K1A/miR-101-3p/ARHGAP1 pathway in cell proliferation and motility. RESULTS: Elevated ARHGAP1 and reduced miR-101-3p expression are related to poorer survival. MiR-101-3p targets ARHGAP1 to suppress hepatocellular carcinoma cell colony formation and invasion, whereas miR-101-3p inhibitor reverses liver cancer proliferation and metastasis suppression caused by ARHGAP1 knockdown. In addition, circPIP5K1A, which is mainly distributed in the cytosol, showed carcinogenic effects by sponging miR-101-3p, thus regulating ARHGAP1 expression. CONCLUSIONS: ARHGAP1 serves as an oncogenic gene in liver cancer, and the expression thereof is regulated by circPIP5K1A through sponging miR-101-3p.

19.
Acta Pharmacol Sin ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811775

ABSTRACT

Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the epidermal growth factor precursor homologous domain A (EGF-A) of low-density lipoprotein receptor (LDLR) in the liver and triggers the degradation of LDLR via the lysosomal pathway, consequently leading to an elevation in plasma LDL-C levels. Inhibiting PCSK9 prolongs the lifespan of LDLR and maintains cholesterol homeostasis in the body. Thus, PCSK9 is an innovative pharmacological target for treating hypercholesterolemia and atherosclerosis. In this study, we discovered that E28362 was a novel small-molecule PCSK9 inhibitor by conducting a virtual screening of a library containing 40,000 compounds. E28362 (5, 10, 20 µM) dose-dependently increased the protein levels of LDLR in both total protein and the membrane fraction in both HepG2 and AML12 cells, and enhanced the uptake of DiI-LDL in AML12 cells. MTT assay showed that E28362 up to 80 µM had no obvious toxicity in HepG2, AML12, and HEK293a cells. The effects of E28362 on hyperlipidemia and atherosclerosis were evaluated in three different animal models. In high-fat diet-fed golden hamsters, administration of E28362 (6.7, 20, 60 mg·kg-1·d-1, i.g.) for 4 weeks significantly reduced plasma total cholesterol (TC), triglyceride (TG), low-density lipoprotein-cholesterol (LDL-C) and PCSK9 levels, and reduced liver TC and TG contents. In Western diet-fed ApoE-/- mice (20, 60 mg·kg-1·d-1, i.g.) and human PCSK9 D374Y overexpression mice (60 mg·kg-1·d-1, i.g.), administration of E28362 for 12 weeks significantly decreased plasma LDL-C levels and the area of atherosclerotic lesions in en face aortas and aortic roots. Moreover, E28362 significantly increased the protein expression level of LDLR in the liver. We revealed that E28362 selectively bound to PCSK9 in HepG2 and AML12 cells, blocked the interaction between LDLR and PCSK9, and induced the degradation of PCSK9 through the ubiquitin-proteasome pathway, which finally resulted in increased LDLR protein levels. In conclusion, E28362 can block the interaction between PCSK9 and LDLR, induce the degradation of PCSK9, increase LDLR protein levels, and alleviate hyperlipidemia and atherosclerosis in three distinct animal models, suggesting that E28362 is a promising lead compound for the treatment of hyperlipidemia and atherosclerosis.

20.
BMC Ophthalmol ; 24(1): 145, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38561680

ABSTRACT

BACKGROUND: The purpose of this study was to analyze myopic regression after corneal refractive surgery (CRS) in civilian pilots and to explore the factors that may cause long-term myopic regression. METHODS: We included civilian pilots who had undergone CRS to correct their myopia and who had at least 5 years of follow-up. We collected retrospective data and completed eye examinations and a questionnaire to assess their eye habits. RESULTS: A total of 236 eyes were evaluated in this study. 211 eyes had Intrastromal ablations (167 eyes had laser in situ keratomileusis, LASIK, 44 eyes had small incision lenticule extraction, SMILE) and 25 eyes had subepithelial ablations (15 eyes had laser epithelial keratomileusis, LASEK and 10 eyes had photorefractive keratectomy, PRK). The mean preoperative spherical equivalent (SE) was - 2.92 ± 1.11 D (range from - 1.00 to -5.00 D). A total of 56 eyes (23.6%) suffered from myopic regression after CRS. Comparisons of individual and eye characteristics between the regression and non-regression groups revealed statistically significant differences in age, cumulative flight time, postoperative SE (at 6 months and current), uncorrected visual acuity (UCVA), accommodative amplitude (AA), positive relative accommodation (PRA), postoperative period, types of CRS and eye habits. Generalized propensity score weighting (GPSW) was used to balance the distribution of covariates among different age levels, types of CRS, cumulative flying time, postoperative period and continuous near-work time. The results of GPS weighted logistic regression demonstrated that the associations between age and myopic regression, types of CRS and myopic regression, continuous near-work time and myopic regression were significant. Cumulative flying time and myopic regression, postoperative period and myopic regression were no significant. Specifically, the odds ratio (OR) for age was 1.151 (P = 0.022), and the OR for type of CRS was 2.769 (P < 0.001). The OR for continuous near-work time was 0.635 with a P value of 0.038. CONCLUSIONS: This is the first report to analyze myopic regression after CRS in civilian pilots. Our study found that for each year increase in age, the risk of civilian pilots experiencing myopic regression was increased. Intrastromal ablations had a lower risk of long-term myopia regression than subepithelial ablations. There is a higher risk of myopic progression with continuous near-work time > 45 min and poor accommodative function may be related factors in this specific population.


Subject(s)
Keratomileusis, Laser In Situ , Myopia , Photorefractive Keratectomy , Humans , Infant , Retrospective Studies , Cornea/surgery , Photorefractive Keratectomy/methods , Visual Acuity , Refraction, Ocular , Keratomileusis, Laser In Situ/methods , Lasers, Excimer/therapeutic use , Myopia/surgery , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL