Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 252
Filter
Add more filters

Publication year range
1.
Immunity ; 55(9): 1680-1692.e8, 2022 09 13.
Article in English | MEDLINE | ID: mdl-35977542

ABSTRACT

Malaria transmission-blocking vaccines (TBVs) aim to elicit human antibodies that inhibit sporogonic development of Plasmodium falciparum in mosquitoes, thereby preventing onward transmission. Pfs48/45 is a leading clinical TBV candidate antigen and is recognized by the most potent transmission-blocking monoclonal antibody (mAb) yet described; still, clinical development of Pfs48/45 antigens has been hindered, largely by its poor biochemical characteristics. Here, we used structure-based computational approaches to design Pfs48/45 antigens stabilized in the conformation recognized by the most potently inhibitory mAb, achieving >25°C higher thermostability compared with the wild-type protein. Antibodies elicited in mice immunized with these engineered antigens displayed on liposome-based or protein nanoparticle-based vaccine platforms exhibited 1-2 orders of magnitude superior transmission-reducing activity, compared with immunogens bearing the wild-type antigen, driven by improved antibody quality. Our data provide the founding principles for using molecular stabilization solely from antibody structure-function information to drive improved immune responses against a parasitic vaccine target.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Animals , Antibodies, Blocking , Antibodies, Monoclonal , Antibodies, Protozoan , Antibody Formation , Antigens, Protozoan , Humans , Malaria, Falciparum/prevention & control , Membrane Glycoproteins , Mice , Plasmodium falciparum , Protozoan Proteins , Vaccination
2.
J Am Chem Soc ; 146(23): 15977-15985, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38713009

ABSTRACT

Unveiling innovative mechanisms to design new highly efficient fluorescent materials and, thereby, fabricate high-performance organic light-emitting diodes (OLEDs) is a concerted endeavor in both academic and industrial circles. Polycyclic aromatic hydrocarbons (PAHs) have been widely used as fluorescent emitters in blue OLEDs, but device performances are far from satisfactory. In response, we propose the concept of "nitrogen effects" endowed by doping electron-withdrawing nitrogen atoms into PAH fluorescence emitters. The presence of the n orbital on the imine nitrogen is conducive to promoting electron coupling, which leads to increased molar absorptivity and an accelerated radiative decay rate of emitters, thereby facilitating the Förster energy transfer (FET) process in the OLEDs. Additionally, electronically withdrawing nitrogen atoms enhances host-guest interactions, thereby positively affecting the FET process and the horizontal orientation factor of the emitting layer. To validate the "nitrogen effects" concept, cobalt-catalyzed multiple C-H annulation has been utilized to incorporate alkynes into the imine-based frameworks, which enables various imine-embedded PAH (IE-PAH) fluorescence emitters. The cyclization demonstrates notable regioselectivity, thereby offering a practical tool to precisely introduce peripheral groups at desired positions with bulky alkyl units positioned adjacent to the nitrogen atoms, which were previously beyond reach through the Friedel-Crafts reaction. Blue OLEDs fabricated with IE-PAHs exhibit outstanding performance with a maximum external quantum efficiency (EQEmax) of 32.7%. This achievement sets a groundbreaking record for conventional blue PAH-based fluorescent emitters, which have an EQEmax of 24.0%.

3.
J Am Chem Soc ; 146(2): 1224-1243, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38173272

ABSTRACT

Efficient and streamlined synthetic methods that facilitate the rapid build-up of structurally diverse π-conjugated systems are of paramount importance in the quest for organic optoelectronic materials. Among these methods, transition-metal-catalyzed oxidative Ar-H/Ar-H coupling reactions between two (hetero)arenes have emerged as a concise and effective approach for generating a wide array of bi(hetero)aryl and fused heteroaryl structures. This innovative approach bypasses challenges associated with substrate pre-activation processes, thereby allowing for the creation of frameworks that were previously beyond reach using conventional Ar-X/Ar-M coupling reactions. These inherent advantages have ushered in new design patterns for organic optoelectronic molecules that deviate from traditional methods. This ground-breaking approach enables the transcendence of the limitations of repetitive material structures, ultimately leading to the discovery of novel high-performance materials. In this Perspective, we provide an overview of recent advances in the development of organic optoelectronic materials through the utilization of transition-metal-catalyzed oxidative Ar-H/Ar-H coupling reactions. We introduce several notable synthetic strategies in this domain, covering both directed and non-directed oxidative Ar-H/Ar-H coupling strategies, dual chelation-assisted strategy and directed ortho-C-H arylation/cyclization strategy. Additionally, we shed light on the role of oxidative Ar-H/Ar-H coupling reactions in the advancement of high-performance organic optoelectronic materials. Finally, we discuss the current limitations of existing protocols and offer insights into the future prospects for this field.

4.
J Am Chem Soc ; 146(11): 7467-7479, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38446421

ABSTRACT

Interfacial interaction dictates the overall catalytic performance and catalytic behavior rules of the composite catalyst. However, understanding of interfacial active sites at the microscopic scale is still limited. Importantly, identifying the dynamic action mechanism of the "real" active site at the interface necessitates nanoscale, high spatial-time-resolved complementary-operando techniques. In this work, a Co3O4 homojunction with a well-defined interface effect is developed as a model system to explore the spatial-correlation dynamic response of the interface toward oxygen evolution reaction. Quasi in situ scanning transmission electron microscopy-electron energy-loss spectroscopy with high spatial resolution visually confirms the size characteristics of the interface effect in the spatial dimension, showing that the activation of active sites originates from strong interfacial electron interactions at a scale of 3 nm. Multiple time-resolved operando spectroscopy techniques explicitly capture dynamic changes in the adsorption behavior for key reaction intermediates. Combined with density functional theory calculations, we reveal that the dynamic adjustment of multiple adsorption configurations of intermediates by highly activated active sites at the interface facilitates the O-O coupling and *OOH deprotonation processes. The dual dynamic regulation mechanism accelerates the kinetics of oxygen evolution and serves as a pivotal factor in promoting the oxygen evolution activity of the composite structure. The resulting composite catalyst (Co-B@Co3O4/Co3O4 NSs) exhibits an approximately 70-fold turnover frequency and 20-fold mass activity than the monomer structure (Co3O4 NSs) and leads to significant activity (η10 ∼257 mV). The visual complementary analysis of multimodal operando/in situ techniques provides us with a powerful platform to advance our fundamental understanding of interfacial structure-activity relationships in composite structured catalysts.

5.
J Am Chem Soc ; 2024 Oct 23.
Article in English | MEDLINE | ID: mdl-39443293

ABSTRACT

Understanding the fundamental effect of the oxygen vacancy atomic structure in perovskite oxides on catalytic properties remains challenging due to diverse facets, surface sites, defects, etc. in traditional powder catalysts and the inherent structural complexity. Through quantitative synthesis of tetrahedral (LaCoO2.5-T), pyramidal (LaCoO2.5-P), and octahedral (LaCoO3) epitaxial thin films as model catalysts, we demonstrate the reactivity orders of active-site geometrical configurations in oxygen-deficient perovskites during the CO oxidation model reaction: CoO4 tetrahedron > CoO6 octahedron > CoO5 pyramid. Ambient-pressure Co L-edge and O K-edge XAS spectra clarify the dynamic evolutions of active-site electronic structures during realistic catalytic processes and highlight the important roles of defect geometrical structures. In addition, in situ XAS and resonant inelastic X-ray scattering spectra and density functional theory calculations directly reveal the nature of high reactivity for CoO4 sites and that the derived shallow-acceptor defect levels in the band structure facilitate the adsorption and activation of reactive gases, resulting in more than 23-fold enhancement for catalytic reaction rates than CoO5 sites.

6.
Small ; 20(27): e2309932, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38295134

ABSTRACT

Recently, zeolitic imidazolate frameworks (ZIFs) composites have emerged as promising precursors for synthesizing hollow-structured N-doped carbon-based noble-metal materials with diverse structures and compositions. Here, a strong/weak competitive coordination strategy is presented for synthesizing high-performance electrocatalysts with hollow features. During the competitive coordination process, the cubic zeolitic-imidazole framework-8 (Cube-8)@ZIF-67 with core-shell structures are transformed into Cube-8@ZIF-67@PF/POM with yolk-shell nanostructures employing phosphomolybdic acid (POM) and potassium ferricyanide (PF) as the strong chelator and the weak chelator, respectively. After calcination, the hollow Mo/Fe/Co@NC catalyst exhibits superior performance in both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Interestingly, the Mo/Fe/Co@NC catalyst exhibits efficient electrocatalytic performance for Zn-air batteries (ZABs), with a high power density (≈150 mW cm-2) and superior cycling life (≈500 h) compared to commercial platinum/carbon (Pt/C) and ruthenium dioxide (RuO2) mixture benchmarks catalysts. In addition, the density functional theory further proves that after the introduction of Mo and Fe atoms, the adsorption energy with the adsorption intermediates is weakened by adjusting the d-band center, thus weakening the reaction barrier and promoting the reaction kinetics of OER. Undoubtedly, this study presents novel insights into the fabrication of ZIFs-derived hollow structure bifunctional oxygen electrocatalysts for clean-energy diverse applications.

7.
Small ; 20(22): e2310266, 2024 May.
Article in English | MEDLINE | ID: mdl-38098346

ABSTRACT

The interactions between the catalyst and support are widely used in many important catalytic reactions but the construction of strong interaction with definite microenvironments to understand the structure-activity relationship is still challenging. Here, strongly-interacted composites are prepared via selective exsolution of active NiSe2 from the host matrix of NiFe2O4 (S-NiSe2/NiFe2O4) taking advantage of the differences of migration energy, in which the NiSe2 possessed both high dispersion and small size. The characteristics of spatially resolved scanning transmission X-ray microscopy (STXM) coupled with analytical Mössbauer spectra for the surface and bulk electronic structures unveiled that this strongly interacted composite triggered more charge transfers from the NiSe2 to the host of NiFe2O4 while stabilizing the inherent atomic coordination of NiFe2O4. The obtained S-NiSe2/NiFe2O4 exhibits overpotentials of 290 mV at 10 mA cm-2 for oxygen evolution reaction (OER). This strategy is general and can be extended to other supported catalysts, providing a powerful tool for modulating the catalytic performance of strongly-interacted composites.

8.
Small ; 20(15): e2304574, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38009795

ABSTRACT

Direct selective transformation of greenhouse methane (CH4) to liquid oxygenates (methanol) can substitute energy-intensive two-step (reforming/Fischer-Tropsch) synthesis while creating environmental benefits. The development of inexpensive, selective, and robust catalysts that enable room temperature conversion will decide the future of this technology. Single-atom catalysts (SACs) with isolated active centers embedded in support have displayed significant promises in catalysis to drive challenging reactions. Herein, high-density Ni single atoms are developed and stabilized on carbon nitride (NiCN) via thermal condensation of preorganized Ni-coordinated melem units. The physicochemical characterization of NiCN with various analytical techniques including HAADF-STEM and X-ray absorption fine structure (XAFS) validate the successful formation of Ni single atoms coordinated to the heptazine-constituted CN network. The presence of uniform catalytic sites improved visible absorption and carrier separation in densely populated NiCN SAC resulting in 100% selective photoconversion of (CH4) to methanol using H2O2 as an oxidant. The superior catalytic activity can be attributed to the generation of high oxidation (NiIII═O) sites and selective C─H bond cleavage to generate •CH3 radicals on Ni centers, which can combine with •OH radicals to generate CH3OH.

9.
Chemistry ; 30(46): e202401674, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-38839567

ABSTRACT

Nitrile-aminothiol conjugation (NATC) stands out as a promising biocompatible ligation technique due to its high chemo-selectivity. Herein we investigated the reactivity and substrate scope of NAT conjugation chemistry, thus developing a novel pH dependent orthogonal NATC as a valuable tool for chemical biology. The study of reaction kinetics elucidated that the combination of heteroaromatic nitrile and aminothiol groups led to the formation of an optimal bioorthogonal pairing, which is pH dependent. This pairing system was effectively utilized for sequential and dual conjugation. Subsequently, these rapid (≈1 h) and high yield (>90 %) conjugation strategies were successfully applied to a broad range of complex biomolecules, including oligonucleotides, chelates, small molecules and peptides. The effectiveness of this conjugation chemistry was demonstrated by synthesizing a fluorescently labelled antimicrobial peptide-oligonucleotide complex as a dual conjugate to imaging in live cells. This first-of-its-kind sequential NATC approach unveils unprecedented opportunities in modern chemical biology, showcasing exceptional adaptability in rapidly creating structurally complex bioconjugates. Furthermore, the results highlight its potential for versatile applications across fundamental and translational biomedical research.


Subject(s)
Nitriles , Peptides , Sulfhydryl Compounds , Nitriles/chemistry , Sulfhydryl Compounds/chemistry , Peptides/chemistry , Kinetics , Hydrogen-Ion Concentration , Humans , Oligonucleotides/chemistry , Fluorescent Dyes/chemistry
10.
BMC Gastroenterol ; 24(1): 247, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103772

ABSTRACT

BACKGROUND: This study evaluates the efficacy of integrating MRI deep transfer learning, radiomic signatures, and clinical variables to accurately preoperatively differentiate between stage T2 and T3 rectal cancer. METHODS: We included 361 patients with pathologically confirmed stage T2 or T3 rectal cancer, divided into a training set (252 patients) and a test set (109 patients) at a 7:3 ratio. The study utilized features derived from deep transfer learning and radiomics, with Spearman rank correlation and the Least Absolute Shrinkage and Selection Operator (LASSO) regression techniques to reduce feature redundancy. Predictive models were developed using Logistic Regression (LR), Random Forest (RF), Decision Tree (DT), and Support Vector Machine (SVM), selecting the best-performing model for a comprehensive predictive framework incorporating clinical data. RESULTS: After removing redundant features, 24 key features were identified. In the training set, the area under the curve (AUC)values for LR, RF, DT, and SVM were 0.867, 0.834, 0.900, and 0.944, respectively; in the test set, they were 0.847, 0.803, 0.842, and 0.910, respectively. The combined model, using SVM and clinical variables, achieved AUCs of 0.946 in the trainingset and 0.920 in the test set. CONCLUSION: The study confirms the utility of a combined model of MRI deep transfer learning, radiomic features, and clinical factors for preoperative classification of stage T2 vs. T3 rectal cancer, offering significant technological support for precise diagnosis and potential clinical application.


Subject(s)
Deep Learning , Magnetic Resonance Imaging , Neoplasm Staging , Rectal Neoplasms , Humans , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/pathology , Magnetic Resonance Imaging/methods , Female , Male , Middle Aged , Aged , Support Vector Machine , Logistic Models , Adult , Retrospective Studies , Decision Trees , Preoperative Period , Radiomics
11.
Nature ; 561(7723): 378-382, 2018 09.
Article in English | MEDLINE | ID: mdl-30232427

ABSTRACT

The assembly of uniform nanocrystal building blocks into well ordered superstructures is a fundamental strategy for the generation of meso- and macroscale metamaterials with emergent nanoscopic functionalities1-10. The packing of spherical nanocrystals, which frequently adopt dense, face-centred-cubic or hexagonal-close-packed arrangements at thermodynamic equilibrium, has been much more widely studied than that of non-spherical, polyhedral nanocrystals, despite the fact that the latter have intriguing anisotropic properties resulting from the shapes of the building blocks11-13. Here we report the packing of truncated tetrahedral quantum dot nanocrystals into three distinct superstructures-one-dimensional chiral tetrahelices, two-dimensional quasicrystal-approximant superlattices and three-dimensional cluster-based body-centred-cubic single supercrystals-by controlling the assembly conditions. Using techniques in real and reciprocal spaces, we successfully characterized the superstructures from their nanocrystal translational orderings down to the atomic-orientation alignments of individual quantum dots. Our packing models showed that formation of the nanocrystal superstructures is dominated by the selective facet-to-facet contact induced by the anisotropic patchiness of the tetrahedra. This study provides information about the packing of non-spherical nanocrystals into complex superstructures, and may enhance the potential of self-assembled nanocrystal metamaterials in practical applications.

12.
Angew Chem Int Ed Engl ; : e202415032, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39302057

ABSTRACT

Achieving robust long-term durability with high catalytic activity at low iridium loading remains one of great challenges for proton exchange membrane water electrolyzer (PEMWE). Herein, we report the low-temperature synthesis of iridium oxide foam platelets comprising edge-sharing IrO6 octahedral honeycomb framework, and demonstrate the structural advantages of this material for multilevel tuning of anodic catalyst layer across atomic-to-microscopic scales for PEMWE. The integration of IrO6 octahedral honeycomb framework, foam-like texture and platelet morphology into a single material system assures the generation and exposure of highly active and stable iridium catalytic sites for the oxygen evolution reaction (OER), while facilitating the reduction of both mass transport loss and electronic resistance of catalyst layer. As a proof of concept, the membrane electrode assembly in single-cell PEMWE based on honeycomb-structured IrOx foam platelets, with a low iridium loading (~0.3 mgIr/cm2), is demonstrated to exhibit high catalytic activity at ampere-level current densities and to remain stable for more than 2000 hours.

13.
J Am Chem Soc ; 145(14): 8052-8063, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36994816

ABSTRACT

Single atom catalysts (SACs) possess unique catalytic properties due to low-coordination and unsaturated active sites. However, the demonstrated performance of SACs is limited by low SAC loading, poor metal-support interactions, and nonstable performance. Herein, we report a macromolecule-assisted SAC synthesis approach that enabled us to demonstrate high-density Co single atoms (10.6 wt % Co SAC) in a pyridinic N-rich graphenic network. The highly porous carbon network (surface area of ∼186 m2 g-1) with increased conjugation and vicinal Co site decoration in Co SACs significantly enhanced the electrocatalytic oxygen evolution reaction (OER) in 1 M KOH (η10 at 351 mV; mass activity of 2209 mA mgCo-1 at 1.65 V) with more than 300 h stability. Operando X-ray absorption near-edge structure demonstrates the formation of electron-deficient Co-O coordination intermediates, accelerating OER kinetics. Density functional theory (DFT) calculations reveal the facile electron transfer from cobalt to oxygen species-accelerated OER.

14.
Small ; 19(42): e2302271, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37328440

ABSTRACT

Amine-containing derivatives are important intermediates in drug manufacturing; sustainable synthesis of amine compounds from green carbon-based biomass derivatives has attracted increasing attention, especially the reductive amination of biomass molecules via electrochemical upgrading. To achieve efficient reductive amination of 5-(hydroxymethyl)furfural (HMF) via electrocatalytic biomass upgrading, this work proposes a new HMF biomass upgrading strategy based on metal supported on Mo2 B2 MBene nanosheets using a density functional theory comprehensive study. HMF and methylamine (CH3 CH2 ) can be reduced to 5-(hydroxymethyl) aldiminefurfural (HMMAMF) via electrocatalytic biomass upgrading, which is identified as a promising technology to produce pharmaceutical intermediates. Based on the proposed reaction mechanisms of HMF reductive amination, this work performs a systematic study of HMF amination to HMMAMF using an atomic model simulation method. This study aims to design a high-efficiency catalyst based on Mo2 B2 @TM nanosheets via the reductive amination of 5-HMF and provide insights into the intrinsic relation between thermochemical and material electronic properties and the role of dopant metals. This work establishes the Gibbs free energy profiles of each reaction HMF Biomass Upgrading on Mo2 B2 systems and obtained the limiting potentials of the rate-determining step, which included the kinetic stability of dopants, HMF adsorbability, and the catalytic activity and selectivity of the hydrogen evolution reaction or surface oxidation. Furthermore, charge transfer, d-band center (εd ), and material property (φ) descriptors are applied to establish a linear correlation to determine promising candidate catalysts for reductive amination of HMF. The candidates Mo2 B2 @Cr, Mo2 B2 @Zr, Mo2 B2 @Nb, Mo2 B2 @Ru, Mo2 B2 @Rh, and Mo2 B2 @Os are suitable high-efficiency catalysts for HMF amination. This work may contribute to the experimental application of biomass upgrading catalysts for biomass energy and guide the future development of biomass conversion strategies and utilization.

15.
J Neural Transm (Vienna) ; 130(2): 111-123, 2023 02.
Article in English | MEDLINE | ID: mdl-36662282

ABSTRACT

To evaluate the efficacy of high-frequency repetitive transcranial magnetic stimulation (rTMS) in patients with primary progressive aphasia (PPA). In this randomized, double-blind trial in a single center, patients who were diagnosed with PPA were randomly assigned to receive either real rTMS or sham rTMS treatment. High-frequency rTMS was delivered to the dorsolateral prefrontal cortex (DLPFC). The primary outcome was the change in Boston Naming Test (BNT) score at each follow-up compared to the baseline. The secondary outcomes included change in CAL (Communicative Activity Log) and WAB (Western Aphasia Battery) compared to baseline and neuropsychological assessments. Forty patients (16 with nonfluent, 12 with semantic and 12 with logopenic variant PPA) were enrolled and randomly assigned to the rTMS or sham rTMS group, with 20 patients in each group. Thirty-five patients (87.5%) completed a 6-month follow-up. Compared to the sham rTMS group, the BNT improvement and WAB improvement in the real rTMS group were significantly higher. These significant improvements could be observed throughout the entire 6-month follow-up. At 1 month and 3 months after treatment, CAL improvements of real rTMS were significantly higher than sham rTMS. The improvements in BNT, CAL and WAB did not significantly differ among PPA variants. No significant improvement in neuropsychological assessments was observed. High-frequency rTMS delivered to DLPFC improved language functions in patients with different PPA variants. The efficacy was still observed after 6 months of treatment. Trial registration: NCT04431401 ( https://clinicaltrials.gov/ct2/show/NCT04431401 ).


Subject(s)
Aphasia, Primary Progressive , Transcranial Magnetic Stimulation , Humans , Neuropsychological Tests , Double-Blind Method , Aphasia, Primary Progressive/therapy , Treatment Outcome , Prefrontal Cortex/physiology
16.
Anticancer Drugs ; 34(5): 699-706, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36730477

ABSTRACT

Although neoadjuvant target therapy has been used to treat patients with non-small-cell lung cancer (NSCLC), most of these patients have mutations in the epidermal growth factor receptor (EGFR) gene. Few patients to date have received neoadjuvant target therapy for NSCLC containing variants in genes encoding anaplastic lymphoma kinase-tyrosine kinase inhibitors (ALK-TKIs). Herein, we present a 51-year-old man with a lung mass in the left lower lobe with enlarged mediastinal lymph nodes. He was diagnosed with NSCLC after needle lung biopsy, with next-generation sequencing showing an echinoderm microtubule-associated protein-like 4 gene-anaplastic lymphoma kinase (EML4-ALK) fusion variant. The patient received neoadjuvant ensartinib, a second-generation ALK-TKI, for 5 months, followed by successful lobectomy through uniportal video-assisted thoracic surgery and adjuvant ensartinib. To our knowledge, few patients with ALK-positive NSCLC had received neoadjuvant treatment with ensartinib. Findings in this patient may widen indications for neoadjuvant target therapy in the treatment of resectable stage II-IIIA ALK-positive NSCLC.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Male , Humans , Middle Aged , Anaplastic Lymphoma Kinase/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Neoadjuvant Therapy , Protein Kinase Inhibitors/pharmacology , Oncogene Proteins, Fusion/metabolism
17.
Nanotechnology ; 34(49)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37643586

ABSTRACT

In recent years, defect engineering has shown great potential to improve the properties of metal oxide nanomaterials for various applications thus received extensive investigations. While traditional techniques mostly focus on controlling the defects during the synthesis of the material, laser irradiation has emerged as a promising post-deposition technique to further modulate the properties of defects yet there is still limited information. In this article, defects such as oxygen vacancies are tailored in ZnO nanorods through nanosecond (ns) laser irradiation. The relation between laser parameters and the temperature rise in the ZnO due to laser heating was established based on the observation in the SEM and the simulation. Raman spectra indicated that the concentration of the oxygen vacancies in the ZnO is temperature-dependent and can be controlled by changing the laser fluence and exposure time. This is also supported by the absorption spectra and the photoluminescence spectra of ZnO NRs irradiated under these conditions. On the other hand, the distribution of the oxygen vacancies was studied by XPS depth profiling, and it was confirmed that the surface-to-bulk ratio of the oxygen vacancies can be modulated by varying the laser fluence and exposure time. Based on these results, four distinctive regimes containing different ratios of surface-to-bulk oxygen vacancies have been identified. Laser-processed ZnO nanorods were also used as the catalyst for the photocatalytic degradation of rhodamine B (RhB) dye to demonstrate the efficacy of this laser engineering technique.

18.
Lasers Med Sci ; 37(9): 3517-3525, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35951124

ABSTRACT

The aims of this study were to identify the microbiological changes in the periodontal pockets following an Er:YAG laser (ERL) irradiation and mechanical debridement to compare the effectiveness of ERL irradiation to mechanical debridement for peri-implantitis treatment through randomized controlled trials. Twenty-three patients with peri-implantitis lesions were treated in either a test group, ERL set at energy level of 100 mJ/pulse, frequency of 10 Hz, pulse duration was 100 µs, and irradiated by three passages, or a control group, with mechanical debridement using an ultrasonic scaler. An examiner measured the following clinical parameters at different stages (a baseline and at 3- and 6-month post-treatment): probing depth (PD), bleeding on probing (BOP), marginal bone loss (MBL), and anaerobic bacteria counts. Linear regression, with generalized estimation equations, was used to compare the clinical parameters and anaerobic bacterial counts at different stages and between groups. The anaerobic bacterial counts significantly decreased within the control group during the follow-ups. At the 6-month follow-up, both groups showed a significant reduction in PD (test group: mean difference of 0.84 mm; control group: mean difference of 0.41 mm), and the test group showed a significantly higher PD reduction on the buccal site (1.31 mm) compared to that of the control group (0.25 mm). Both ERL and mechanical debridement treatments led to significant improvements in PD. When mechanical debridement therapy was used, significant anaerobic bacterial count reductions were observed. Future treatment of peri-implantitis should involve a combination of both of these therapies.


Subject(s)
Dental Implants , Lasers, Solid-State , Peri-Implantitis , Humans , Peri-Implantitis/radiotherapy , Lasers, Solid-State/therapeutic use , Periodontal Pocket , Debridement , Bacterial Load , Treatment Outcome , Randomized Controlled Trials as Topic
19.
Environ Monit Assess ; 194(3): 154, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35132444

ABSTRACT

Sustainable agriculture is important for preserving environmental health and simultaneously gaining economic profits while maintaining social and economic equity. One way to evaluate sustainable agriculture is by studying agricultural eco-efficiency (AEE). Hence, this study constructed a data-driven method to evaluate and optimize AEE with the aim of providing a basis for improving the sustainable development of regional agriculture. Sixteen cities in Anhui Province, China, were considered in the study, and the variables used were agricultural resource inputs, environmental pollution, and agricultural economic development. Agricultural non-point source pollution (NPSP) emissions were considered the undesired output to build an AEE evaluation index system. Furthermore, a data envelopment analysis (DEA) model was established to analyse AEE from the static and dynamic perspectives. The spatial development and the temporal and spatial characteristics of AEE were also analysed. In addition, we applied a random effect (RE) panel Tobit model to quantitatively analyse the influencing factors of AEE from the input perspective and then proposed reasonable suggestions for improving the sustainable development of regional agriculture. Our findings show that the overall agricultural development in the 16 cities in Anhui Province has been continuously improving, even though there is an agglomeration of spatial development in some regions. In conclusion, this study provides suggestions and references for policy makers and agricultural practitioners regarding how to improve regional AEE and promote the sustainable development of the regional agricultural economy.


Subject(s)
Agriculture , Environmental Monitoring , China , Economic Development , Efficiency
20.
Muscle Nerve ; 63(5): 697-702, 2021 05.
Article in English | MEDLINE | ID: mdl-33501683

ABSTRACT

INTRODUCTION: Peripheral nerve hyperexcitability syndrome (PNHS) is characterized by muscle fasciculations and spasms. Nerve hyperexcitability and after-discharges can be observed in electrophysiological studies. Autoimmune mechanisms play a major role in the pathophysiology of primary PNHS. METHODS: We retrospectively conducted a case-control study recruiting patients with clinical and electrophysiological features of PNHS. Control patients were diagnosed with other neuronal or muscular diseases. Contactin-associated protein2 (CASPR2) and leucine-rich glioma-inactivated1 (LGI1) antibodies were examined. RESULTS: A total of 19 primary PNHS patients and 39 control patients were analyzed. The most common symptoms for the case group were fasciculations (11/19) and muscle spasms (13/19). Case group patients were likely to demonstrate electrodiagnostic findings of nerve hyperexcitability (17/19) and after-discharges in the tibial nerve (19/19). We found high prevalence of CASPR2 (9/19) and LGI1 (6/19) antibodies in the case group. DISCUSSION: Primary PNHS patients were likely to show after-discharges in the tibial nerve. The pathogenesis of PNHS is autoimmune CASPR2 and LGI1 antibodies are possible pathogenic antibodies for primary PNHS.


Subject(s)
Autoantibodies/immunology , Fasciculation/diagnosis , Peripheral Nervous System Diseases/diagnosis , Spasm/diagnosis , Adult , Aged , Case-Control Studies , Cell Adhesion Molecules, Neuronal/immunology , Electrodiagnosis , Fasciculation/immunology , Fasciculation/physiopathology , Female , Humans , Intracellular Signaling Peptides and Proteins/immunology , Male , Middle Aged , Peripheral Nervous System Diseases/immunology , Peripheral Nervous System Diseases/physiopathology , Retrospective Studies , Spasm/immunology , Spasm/physiopathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL