Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 460
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(10): e2317240121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38427600

ABSTRACT

Nuclear and organellar genomes can evolve at vastly different rates despite occupying the same cell. In most bilaterian animals, mitochondrial DNA (mtDNA) evolves faster than nuclear DNA, whereas this trend is generally reversed in plants. However, in some exceptional angiosperm clades, mtDNA substitution rates have increased up to 5,000-fold compared with closely related lineages. The mechanisms responsible for this acceleration are generally unknown. Because plants rely on homologous recombination to repair mtDNA damage, we hypothesized that mtDNA copy numbers may predict evolutionary rates, as lower copy numbers may provide fewer templates for such repair mechanisms. In support of this hypothesis, we found that copy number explains 47% of the variation in synonymous substitution rates of mtDNA across 60 diverse seed plant species representing ~300 million years of evolution. Copy number was also negatively correlated with mitogenome size, which may be a cause or consequence of mutation rate variation. Both relationships were unique to mtDNA and not observed in plastid DNA. These results suggest that homologous recombinational repair plays a role in driving mtDNA substitution rates in plants and may explain variation in mtDNA evolution more broadly across eukaryotes. Our findings also contribute to broader questions about the relationships between mutation rates, genome size, selection efficiency, and the drift-barrier hypothesis.


Subject(s)
DNA Copy Number Variations , Genome , Animals , DNA, Plant/genetics , DNA Copy Number Variations/genetics , Phylogeny , DNA, Mitochondrial/genetics , Plants/genetics
2.
Nature ; 584(7821): 403-409, 2020 08.
Article in English | MEDLINE | ID: mdl-32760000

ABSTRACT

The tuatara (Sphenodon punctatus)-the only living member of the reptilian order Rhynchocephalia (Sphenodontia), once widespread across Gondwana1,2-is an iconic species that is endemic to New Zealand2,3. A key link to the now-extinct stem reptiles (from which dinosaurs, modern reptiles, birds and mammals evolved), the tuatara provides key insights into the ancestral amniotes2,4. Here we analyse the genome of the tuatara, which-at approximately 5 Gb-is among the largest of the vertebrate genomes yet assembled. Our analyses of this genome, along with comparisons with other vertebrate genomes, reinforce the uniqueness of the tuatara. Phylogenetic analyses indicate that the tuatara lineage diverged from that of snakes and lizards around 250 million years ago. This lineage also shows moderate rates of molecular evolution, with instances of punctuated evolution. Our genome sequence analysis identifies expansions of proteins, non-protein-coding RNA families and repeat elements, the latter of which show an amalgam of reptilian and mammalian features. The sequencing of the tuatara genome provides a valuable resource for deep comparative analyses of tetrapods, as well as for tuatara biology and conservation. Our study also provides important insights into both the technical challenges and the cultural obligations that are associated with genome sequencing.


Subject(s)
Evolution, Molecular , Genome/genetics , Phylogeny , Reptiles/genetics , Animals , Conservation of Natural Resources/trends , Female , Genetics, Population , Lizards/genetics , Male , Molecular Sequence Annotation , New Zealand , Sex Characteristics , Snakes/genetics , Synteny
4.
Nucleic Acids Res ; 52(D1): D770-D776, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37930838

ABSTRACT

Rhinovirus (RV), a prominent causative agent of both upper and lower respiratory diseases, ranks among the most prevalent human respiratory viruses. RV infections are associated with various illnesses, including colds, asthma exacerbations, croup and pneumonia, imposing significant and extended societal burdens. Characterized by a high mutation rate and genomic diversity, RV displays a diverse serological landscape, encompassing a total of 174 serotypes identified to date. Understanding RV genetic diversity is crucial for epidemiological surveillance and investigation of respiratory diseases. This study introduces a comprehensive and high-quality RV data resource, designated RVdb (http://rvdb.mgc.ac.cn), covering 26 909 currently identified RV strains, along with RV-related sequences, 3D protein structures and publications. Furthermore, this resource features a suite of web-based utilities optimized for easy browsing and searching, as well as automatic sequence annotation, multiple sequence alignment (MSA), phylogenetic tree construction, RVdb BLAST and a serotyping pipeline. Equipped with a user-friendly interface and integrated online bioinformatics tools, RVdb provides a convenient and powerful platform on which to analyse the genetic characteristics of RVs. Additionally, RVdb also supports the efforts of virologists and epidemiologists to monitor and trace both existing and emerging RV-related infectious conditions in a public health context.


Subject(s)
Asthma , Enterovirus Infections , Picornaviridae Infections , Rhinovirus , Humans , Genomics , Phylogeny , Picornaviridae Infections/genetics , Rhinovirus/genetics
5.
Mol Biol Evol ; 41(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38391484

ABSTRACT

The interaction and coevolution between nuclear and cytoplasmic genomes are one of the fundamental hallmarks of eukaryotic genome evolution and, 2 billion yr later, are still major contributors to the formation of new species. Although many studies have investigated the role of cytonuclear interactions following allopolyploidization, the relative magnitude of the effect of subgenome dominance versus cytonuclear interaction on genome evolution remains unclear. The Brassica triangle of U features 3 diploid species that together have formed 3 separate allotetraploid species on similar evolutionary timescales, providing an ideal system for understanding the contribution of the cytoplasmic donor to hybrid polyploid. Here, we investigated the evolutionary pattern of organelle-targeted genes in Brassica carinata (BBCC) and 2 varieties of Brassica juncea (AABB) at the whole-genome level, with particular focus on cytonuclear enzyme complexes. We found partial evidence that plastid-targeted genes experience selection to match plastid genomes, but no obvious corresponding signal in mitochondria-targeted genes from these 2 separately formed allopolyploids. Interestingly, selection acting on plastid genomes always reduced the retention rate of plastid-targeted genes encoded by the B subgenome, regardless of whether the Brassica nigra (BB) subgenome was contributed by the paternal or maternal progenitor. More broadly, this study illustrates the distinct selective pressures experienced by plastid- and mitochondria-targeted genes, despite a shared pattern of inheritance and natural history. Our study also highlights an important role for subgenome dominance in allopolyploid genome evolution, even in genes whose function depends on separately inherited molecules.


Subject(s)
Evolution, Molecular , Genome, Plant , Mustard Plant/genetics , Plastids/genetics , Polyploidy
6.
Mol Biol Evol ; 41(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38324417

ABSTRACT

Cytonuclear interaction refers to the complex and ongoing process of coevolution between nuclear and organelle genomes, which are responsible for cellular respiration, photosynthesis, lipid metabolism, etc. and play a significant role in adaptation and speciation. There have been a large number of studies to detect signatures of cytonuclear interactions. However, identification of the specific nuclear and organelle genetic polymorphisms that are involved in these interactions within a species remains relatively rare. The recent surge in whole genome sequencing has provided us an opportunity to explore cytonuclear interaction from a population perspective. In this study, we analyzed a total of 3,439 genomes from 7 species to identify signals of cytonuclear interactions by association (linkage disequilibrium) analysis of variants in both the mitochondrial and nuclear genomes across flowering plants. We also investigated examples of nuclear loci identified based on these association signals using subcellular localization assays, gene editing, and transcriptome sequencing. Our study provides a novel perspective on the investigation of cytonuclear coevolution, thereby enriching our understanding of plant fitness and offspring sterility.


Subject(s)
Cell Nucleus , Mitochondria , Cell Nucleus/genetics , Mitochondria/genetics , Genome , Polymorphism, Genetic , Plants/genetics
7.
Brief Bioinform ; 24(1)2023 01 19.
Article in English | MEDLINE | ID: mdl-36644898

ABSTRACT

Unlike the typical single circular structure of most animal mitochondrial genomes (mitogenome), the drastic structural variation of plant mitogenomes is a result of a mixture of molecules of various sizes and structures. Obtaining the full panoramic plant mitogenome is still considered a roadblock in evolutionary biology. In this study, we developed a graph-based sequence assembly toolkit (GSAT) to construct the pan-structural landscape of plant mitogenome with high-quality mitochondrial master graphs (MMGs) for model species including rice (Oryza sativa) and thale cress (Arabidopsis thaliana). The rice and thale cress MMGs have total lengths of 346 562 and 358 041 bp, including 9 and 6 contigs and 12 and 8 links, respectively, and could be further divided into 6 and 3 minimum master circles and 4 and 2 minimum secondary circles separately. The nuclear mitochondrial DNA segments (NUMTs) in thale cress strongly affected the frequency evaluation of the homologous structures in the mitogenome, while the effects of NUMTs in rice were relatively weak. The mitochondrial plastid DNA segments (MTPTs) in both species had no effects on the assessment of the MMGs. All potential recombinant structures were evaluated, and the findings revealed that all, except for nuclear-homologous structures, MMG structures are present at a much higher frequency than non-MMG structures are. Investigations of potential circular and linear molecules further supported multiple dominant structures in the mitogenomes and could be completely summarized in the MMG. Our study provided an efficient and accurate model for assembling and applying graph-based plant mitogenomes to assess their pan-structural variations.


Subject(s)
Genome, Mitochondrial , Animals , DNA, Mitochondrial/genetics , Biological Evolution , Mitochondria/genetics , Plants/genetics , Phylogeny
8.
PLoS Pathog ; 19(1): e1011116, 2023 01.
Article in English | MEDLINE | ID: mdl-36689489

ABSTRACT

Bat coronavirus RaTG13 shares about 96.2% nucleotide sequence identity with that of SARS-CoV-2 and uses human and Rhinolophus affinis (Ra) angiotensin-converting enzyme 2 (ACE2) as entry receptors. Whether there are bat species other than R. affinis susceptible to RaTG13 infection remains elusive. Here, we show that, among 18 different bat ACE2s tested, only RaACE2 is highly susceptible to transduction by RaTG13 S pseudovirions, indicating that the bat species harboring RaTG13 might be very limited. RaACE2 has seven polymorphic variants, RA-01 to RA-07, and they show different susceptibilities to RaTG13 S pseudovirions transduction. Sequence and mutagenesis analyses reveal that residues 34, 38, and 83 in RaACE2 might play critical roles in interaction with the RaTG13 S protein. Of note, RaACE2 polymorphisms have minimal effect on S proteins of SARS-CoV-2 and several SARS-CoV-2 related CoVs (SC2r-CoVs) including BANAL-20-52 and BANAL-20-236 in terms of binding, membrane fusion, and pseudovirus entry. Further mutagenesis analyses identify residues 501 and 505 in S proteins critical for the recognition of different RaACE2 variants and pangolin ACE2 (pACE2), indicating that RaTG13 might have not been well adapted to R. affinis bats. While single D501N and H505Y changes in RaTG13 S protein significantly enhance the infectivity and minimize the difference in susceptibility among different RaACE2 variants, an N501D substitution in SARS-CoV-2 S protein displays marked disparity in transduction efficiencies among RaACE2 variants with a significant reduction in infectivity on several RaACE2 variants. Finally, a T372A substitution in RaTG13 S protein not only significantly increases infectivity on all RaACE2 variants, but also markedly enhances entry on several bat ACE2s including R. sinicus YN, R. pearsonii, and R. ferrumeiqunum. However, the T372A mutant is about 4-fold more sensitive to neutralizing sera from mice immunized with BANAL-20-52 S, suggesting that the better immune evasion ability of T372 over A372 might contribute to the natural selective advantage of T372 over A372 among bat CoVs. Together, our study aids a better understanding of coronavirus entry, vaccine design, and evolution.


Subject(s)
COVID-19 , Chiroptera , Animals , Mice , Humans , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2 , Spike Glycoprotein, Coronavirus/metabolism
9.
BMC Plant Biol ; 24(1): 44, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38200455

ABSTRACT

BACKGROUND: Hemerocallis citrina Baroni (Huang hua cai in Chinese) is a perennial herbaceous plant grown for its flower buds that are eaten fresh or dried and is known as the vegetarian three treasures. The nuclear genome of H. citrina has been reported, but the intraspecific variation of the plastome (plastid genome) has not yet been studied. Therefore, the panplastome of this species collected from diverse locations is reported here for the first time. RESULTS: In this study, 65 H. citrina samples were resequenced, de novo assembled, and aligned with the published plastome of H. citrina to resolve the H. citrina panplastome. The sizes of the 65 newly assembled complete plastomes of H. citrina ranged from 156,048 bp to 156,263 bp, and the total GC content ranged from 37.31 to 37.34%. The structure of the complete plastomes showed a typical tetrameric structure, including a large single copy (LSC), a small single copy (SSC), and a pair of inverted repeat regions (IRA and IRB). Many nucleotide variants were identified between plastomes, among which the variants in the intergenic spacer region were the most abundant, with the highest number of variants concentrated in the LSC region. Based on the phylogenetic tree constructed using the ML method, population structure analysis, and principal component analysis (PCA), the panplastome data were subdivided into five genetic clusters. The C5 genetic cluster was mostly represented by samples from Qidong, Hunan Province, while samples from Shanxi and Shaanxi Provinces were classified into the C4 genetic cluster. The greatest genetic diversity was found in the C1 genetic cluster, and the greatest genetic distance between any two clusters was found between the C4 and C5 clusters. CONCLUSION: The resolution of the panplastome and the analysis of the population structure of H. citrina plastomes provide important data for future breeding projects and germplasm preservation.


Subject(s)
Hemerocallis , Phylogeny , Plant Breeding , DNA, Intergenic , Genetic Variation , Plants, Edible
10.
Small ; : e2401815, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573922

ABSTRACT

Currently, research on thermal interface materials (TIMs) is primarily focused on enhancing thermal conductivity. However, strong adhesion and multifunctionality are also important characteristics for TIMs when pursing more stable interface heat conduction. Herein, a novel poly(urethane-urea-imide) (PUUI) elastomer containing abundant dynamic hydrogen bonds network and reversible disulfide linkages is successfully synthesized for application as a TIM matrix. The PUUI can self-adapt to the metal substrate surface at moderate temperatures (80 °C) and demonstrates a high adhesion strength of up to 7.39 MPa on aluminum substrates attributed its noncovalent interactions and strong intrinsic cohesion. Additionally, the PUUI displays efficient self-healing capability, which can restore 94% of its original mechanical properties after self-healing for 6 h at room temperature. Furthermore, PUUI composited with aluminum nitride and liquid metal hybrid fillers demonstrates a high thermal conductivity of 3.87 W m-1 K-1 while maintaining remarkable self-healing capability and adhesion. When used as an adhesive-type TIM, it achieves a low thermal contact resistance of 22.1 mm2 K W-1 at zero pressure, only 16.7% of that of commercial thermal pads. This study is expected to break the current research paradigm of TIMs and offers new insights for the development of advanced, reliable, and sustainable TIMs.

11.
Brief Bioinform ; 23(1)2022 01 17.
Article in English | MEDLINE | ID: mdl-34905767

ABSTRACT

Clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR/Cas9) technology has become a popular tool for the study of genome function, and the use of this technology can achieve large-scale screening studies of specific phenotypes. Several analysis tools for CRISPR/Cas9 screening data have been developed, while high false positive rate remains a great challenge. To this end, we developed iCRISEE, an integrative analysis of CRISPR ScrEEn by reducing false positive hits. iCRISEE can dramatically reduce false positive hits and it is robust to different single guide RNA (sgRNA) library by introducing precise data filter and normalization, model selection and valid sgRNA number correction in data preprocessing, sgRNA ranking and gene ranking. Furthermore, a powerful web server has been presented to automatically complete the whole CRISPR/Cas9 screening analysis, where we integrated the main hypothesis in multiple algorithms as a full workflow, including quality control, sgRNA extracting, sgRNA alignment, sgRNA ranking, gene ranking and pathway enrichment. In addition, output of iCRISEE, including result mapping, sample clustering, sgRNA ranking and gene ranking, can be easily visualized and downloaded for publication. Taking together, iCRISEE presents to be the state-of-the-art and user-friendly tool for CRISPR screening data analysis. iCRISEE is available at https://www.icrisee.com.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Algorithms , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism
12.
Nat Rev Genet ; 19(10): 635-648, 2018 10.
Article in English | MEDLINE | ID: mdl-30018367

ABSTRACT

The partitioning of genetic material between the nucleus and cytoplasmic (mitochondrial and plastid) genomes within eukaryotic cells necessitates coordinated integration between these genomic compartments, with important evolutionary and biomedical implications. Classic questions persist about the pervasive reduction of cytoplasmic genomes via a combination of gene loss, transfer and functional replacement - and yet why they are almost always retained in some minimal form. One striking consequence of cytonuclear integration is the existence of 'chimeric' enzyme complexes composed of subunits encoded in two different genomes. Advances in structural biology and comparative genomics are yielding important insights into the evolution of such complexes, including correlated sequence changes and recruitment of novel subunits. Thus, chimeric cytonuclear complexes provide a powerful window into the mechanisms of molecular co-evolution.


Subject(s)
Cell Nucleus/genetics , Cytoplasm/genetics , Evolution, Molecular , Genome, Mitochondrial , Genome, Plastid
13.
Nucleic Acids Res ; 50(D1): D943-D949, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34634795

ABSTRACT

Emerging infectious diseases significantly threaten global public health and socioeconomic security. The majority of emerging infectious disease outbreaks are caused by zoonotic/vector-borne viruses. Bats and rodents are the two most important reservoir hosts of many zoonotic viruses that can cross species barriers to infect humans, whereas mosquitos and ticks are well-established major vectors of many arboviral diseases. Moreover, some emerging zoonotic diseases require a vector to spread or are intrinsically vector-borne and zoonotically transmitted. In this study, we present a newly upgraded database of zoonotic and vector-borne viruses designated ZOVER (http://www.mgc.ac.cn/ZOVER). It incorporates two previously released databases, DBatVir and DRodVir, for bat- and rodent-associated viruses, respectively, and further collects up-to-date knowledge on mosquito- and tick-associated viruses to establish a comprehensive online resource for zoonotic and vector-borne viruses. Additionally, it integrates a set of online visualization tools for convenient comparative analyses to facilitate the discovery of potential patterns of virome diversity and ecological characteristics between/within different viral hosts/vectors. The ZOVER database will be a valuable resource for virologists, zoologists and epidemiologists to better understand the diversity and dynamics of zoonotic and vector-borne viruses and conduct effective surveillance to monitor potential interspecies spillover for efficient prevention and control of future emerging zoonotic diseases.


Subject(s)
Communicable Diseases, Emerging/epidemiology , Databases, Factual , Software , Virus Diseases/epidemiology , Viruses/pathogenicity , Zoonoses/epidemiology , Animals , Chiroptera/virology , Communicable Diseases, Emerging/transmission , Communicable Diseases, Emerging/virology , Culicidae/virology , Datasets as Topic , Disease Vectors/classification , Epidemiological Monitoring , Host-Pathogen Interactions , Humans , Internet , Molecular Sequence Annotation , Rodentia/virology , Ticks/virology , Virus Diseases/transmission , Virus Diseases/virology , Viruses/classification , Viruses/genetics , Zoonoses/transmission , Zoonoses/virology
14.
Ecotoxicol Environ Saf ; 280: 116588, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38878332

ABSTRACT

Simultaneous heterotrophic nitrification and aerobic denitrification (SND) is gaining tremendous attention due to its high efficiency and low cost in water treatment. However, SND on an industrial scale is still immature since effects of coexisting pollutants, for example, heavy metals, on nitrogen removal remains largely unresolved. In this study, a HNAD bacterium (Pseudomonas sp. XF-4) was isolated. It could almost completely remove ammonium and nitrate at pH 5-9 and temperature 20 ℃-35 ℃ within 10 h, and also showed excellently simultaneous nitrification and denitrification efficiency under the coexistence of any two of inorganic nitrogen sources with no intermediate accumulation. XF-4 could rapidly grow again after ammonium vanish when nitrite or nitrate existed. There was no significant effects on nitrification and denitrification when Cd(II) was lower than 10 mg/L, and 95 % of Cd(II) was removed by XF-4. However, electron carrier and electron transport system activity was inhibited, especially at high concentration of Cd(II). Overall, this study reported a novel strain capable of simultaneous nitrification and denitrification coupled with Cd(II) removal efficiently. The results provided new insights into treatment of groundwater or wastewater contaminated by heavy metals and nitrogen.


Subject(s)
Cadmium , Denitrification , Nitrification , Nitrogen , Pseudomonas , Water Pollutants, Chemical , Cadmium/metabolism , Pseudomonas/metabolism , Water Pollutants, Chemical/metabolism , Nitrogen/metabolism , Heterotrophic Processes , Nitrates/metabolism , Wastewater/microbiology , Wastewater/chemistry , Biodegradation, Environmental , Aerobiosis , Water Purification/methods , Ammonium Compounds/metabolism
15.
J Fish Biol ; 104(2): 399-409, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36648015

ABSTRACT

The age, growth, reproduction and resource development status of Ptychidio jordani, as a critically endangered freshwater fish in the Hongshui River, China, was studied in this work. A total of 525 specimens were collected monthly using the cages and gillnets from October 2021 to September 2022 in the Hongshui River. The scale was used for age determination, and the maximum age for both female and male was estimated to be 5 years and 3 years, respectively. Female and male P. jordani showed different growth patterns, which were expressed as Lt  = 261.3 (1-e-0.4885(t-0.1476) ) and Lt  = 251.2 (1-e-0.4758(t+0.9643) ), respectively. The overall sex ratio was 1:0.47 (female:male). Female attained sex maturity at 2.34 years (192 mm body length). Month variation of the gonad somatic index indicated that the spawning period occurred from April to October. The absolute fecundity was estimated at 9046 ± 3434 eggs per individual, and the relative fecundity was 38.08 ± 15.77 eggs per gram. The exploitation rate of female and male was 0.233 and 0.495, which indicated that P. jordani was not overfishing. This study provided data on the key life-history traits of P. jordani, which has not been known previously and is essential for conservation strategy and policy development.


Subject(s)
Reproduction , Rivers , Female , Male , Animals , Fertility , Fresh Water , Fishes , Seasons
16.
J Obstet Gynaecol ; 44(1): 2372645, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38943550

ABSTRACT

BACKGROUND: This study examined the improvement of dysmenorrhoea and menorrhagia after uterine artery embolisation (UAE) in women with symptomatic adenomyosis and identified factors that could predict the improvement of dysmenorrhoea and menorrhagia. METHODS: This retrospective study included women with adenomyosis who underwent bilateral UAE between December 2014 and December 2016. The percentage of the volume of the absence of contrast enhancement on T1-weighted images was evaluated 5-7 days after UAE. A receiver operating characteristic (ROC) analysis was used to determine a cut-off point and predict the improvement of dysmenorrhoea and menorrhagia. RESULTS: Forty-eight patients were included. At 24 and 36 months after UAE, the improvement rates for dysmenorrhoea and menorrhagia were 60.4% (29/48) and 85.7% (30/35), and the recurrence rates were 19.4% (7/36) and 9.1% (3/33), respectively. Only the percentage of the volume of the absence of contrast enhancement on T1-weighted images was associated with the improvement of dysmenorrhoea (p = 0.001, OR = 1.051; 95% CI: 1.02-1.08) and menorrhagia (p = 0.006, OR = 1.077; 95% CI: 1.021-1.136). When the cut-off value of the ROC analysis was 73.1%, sensitivity, specificity, positive predictive value, and negative predictive value for the improvement of dysmenorrhoea were 58.6%, 94.7%, 94.4%, and 60%, while they were 58.9%, 80%, 100%, 100%, and 45.5% for the improvement of dysmenorrhoea. CONCLUSION: Bilateral UAE for symptomatic adenomyosis led to good improvement of dysmenorrhoea and menorrhagia. The percentage of the volume of the absence of contrast enhancement on T1-weighted images of the uterus in postoperative magnetic resonance imaging might be associated with the improvement of dysmenorrhoea and menorrhagia.


This study examined the improvement of dysmenorrhoea and menorrhagia after uterine artery embolisation in women with symptomatic adenomyosis and identified factors that could predict the improvement of dysmenorrhoea and menorrhagia. This retrospective study included women with adenomyosis who underwent uterine artery embolisation. A total of 48 patients were included. Only the percentage of the volume of the absence of contrast enhancement on T1-weighted images was associated with improvement of dysmenorrhoea and menorrhagia. Bilateral uterine artery embolisation for symptomatic adenomyosis led to good improvement. The percentage of the volume of the absence of contrast enhancement on images in postoperative T1-weighted magnetic resonance imaging of the uterus might be associated with the improvement of dysmenorrhoea and menorrhagia.


Subject(s)
Adenomyosis , Dysmenorrhea , Menorrhagia , Uterine Artery Embolization , Humans , Female , Menorrhagia/etiology , Menorrhagia/therapy , Adenomyosis/complications , Dysmenorrhea/etiology , Dysmenorrhea/therapy , Retrospective Studies , Uterine Artery Embolization/methods , Adult , Treatment Outcome , Middle Aged , Magnetic Resonance Imaging , ROC Curve
17.
Plant J ; 112(3): 738-755, 2022 11.
Article in English | MEDLINE | ID: mdl-36097957

ABSTRACT

The abundant repeats in plant mitochondrial genomes can cause rapid genome rearrangements and are also a major obstacle in short-read sequencing studies. Nuclear-encoded proteins such as MSH1 are known to suppress the generation of repeat-associated mitochondrial genome variants, but our understanding of these mechanisms has been constrained by the limitations of short-read technologies. Here, we used highly accurate long-read sequencing (PacBio HiFi) to characterize mitochondrial and plastid genome variants in Arabidopsis thaliana msh1 mutant individuals. The HiFi reads provided a global view of recombination dynamics with detailed quantification of parental and crossover recombination products for both large and small repeats. We found that recombination breakpoints were distributed relatively evenly across the length of repeated sequences and detected widespread internal exchanges of sequence variants between pairs of imperfect repeats in the mitochondrial genome of msh1 mutants. Long-read assemblies of mitochondrial genomes from seven other A. thaliana wild-type accessions differed by repeat-mediated structural rearrangements similar to those observed in msh1 mutants, but they were all in a simple low-heteroplasmy state. The Arabidopsis plastid genome generally lacks small repeats and exhibited a very different pattern of variant accumulation in msh1 mutants compared with the mitochondrial genome. Our data illustrate the power of HiFi technology in studying repeat-mediated recombination in plant organellar genomes and improved the sequence resolution for recombinational processes suppressed by MSH1. Plant organellar genomes can undergo rapid rearrangements. Long-read sequencing provides a detailed and quantitative view of mitochondrial and plastid genome variants normally suppressed by MSH1, advancing our understanding of plant organellar genome dynamics.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Genome, Mitochondrial , Genome, Plastid , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , MutS DNA Mismatch-Binding Protein/genetics , MutS DNA Mismatch-Binding Protein/metabolism , Genome, Mitochondrial/genetics , Sequence Analysis, DNA
18.
BMC Plant Biol ; 23(1): 212, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37088810

ABSTRACT

BACKGROUND: Tartary buckwheat (Fagopyrum tataricum) is an important food and medicine crop plant, which has been cultivated for 4000 years. A nuclear genome has been generated for this species, while an intraspecific pan-plastome has yet to be produced. As such a detailed understanding of the maternal genealogy of Tartary buckwheat has not been thoroughly investigated. RESULTS: In this study, we de novo assembled 513 complete plastomes of Fagopyrum and compared with 8 complete plastomes of Fagopyrum downloaded from the NCBI database to construct a pan-plastome for F. tartaricum and resolve genomic variation. The complete plastomes of the 513 newly assembled Fagopyrum plastome sizes ranged from 159,253 bp to 159,576 bp with total GC contents ranged from 37.76 to 37.97%. These plastomes all maintained the typical quadripartite structure, consisting of a pair of inverted repeat regions (IRA and IRB) separated by a large single copy region (LSC) and a small single copy region (SSC). Although the structure and gene content of the Fagopyrum plastomes are conserved, numerous nucleotide variations were detected from which population structure could be resolved. The nucleotide variants were most abundant in the non-coding regions of the genome and of those the intergenic regions had the most. Mutational hotspots were primarily found in the LSC regions. The complete 521 Fagopyrum plastomes were divided into five genetic clusters, among which 509 Tartary buckwheat plastomes were divided into three genetic clusters (Ft-I/Ft-II/Ft-III). The genetic diversity in the Tartary buckwheat genetic clusters was the greatest in Ft-III, and the genetic distance between Ft-I and Ft-II was the largest. Based on the results of population structure and genetic diversity analysis, Ft-III was further subdivided into three subgroups Ft-IIIa, Ft-IIIb, and Ft-IIIc. Divergence time estimation indicated that the genera Fagopyrum and Rheum (rhubarb) shared a common ancestor about 48 million years ago (mya) and that intraspecies divergence in Tartary buckwheat began around 0.42 mya. CONCLUSIONS: The resolution of pan-plastome diversity in Tartary buckwheat provides an important resource for future projects such as marker-assisted breeding and germplasm preservation.


Subject(s)
Fagopyrum , Fagopyrum/genetics , Gene Expression Profiling , Plant Breeding , Mutation , Nucleotides , Phylogeny
19.
BMC Plant Biol ; 23(1): 91, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36782130

ABSTRACT

BACKGROUND: Mitochondria are organelles within eukaryotic cells that are central to the metabolic processes of cellular respiration and ATP production. However, the evolution of mitochondrial genomes (mitogenomes) in plants is virtually unknown compared to animal mitogenomes or plant plastids, due to complex structural variation and long stretches of repetitive DNA making accurate genome assembly more challenging. Comparing the structural and sequence differences of organellar genomes within and between sorghum species is an essential step in understanding evolutionary processes such as organellar sequence transfer to the nuclear genome as well as improving agronomic traits in sorghum related to cellular metabolism. RESULTS: Here, we assembled seven sorghum mitochondrial and plastid genomes and resolved reticulated mitogenome structures with multilinked relationships that could be grouped into three structural conformations that differ in the content of repeats and genes by contig. The grouping of these mitogenome structural types reflects the two domestication events for sorghum in east and west Africa. CONCLUSIONS: We report seven mitogenomes of sorghum from different cultivars and wild sources. The assembly method used here will be helpful in resolving complex genomic structures in other plant species. Our findings give new insights into the structure of sorghum mitogenomes that provides an important foundation for future research into the improvement of sorghum traits related to cellular respiration, cytonuclear incompatibly, and disease resistance.


Subject(s)
Genome, Mitochondrial , Sorghum , Genome, Mitochondrial/genetics , Sorghum/genetics , Phylogeny , Domestication , Plants/genetics , Cell Nucleus , Evolution, Molecular , Genome, Plant/genetics
20.
Environ Res ; 236(Pt 1): 116770, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37516268

ABSTRACT

Full-scale anaerobic ammonium oxidation (anammox) engineering applications are vastly limited by the sensitivity of anammox bacteria to the complex mainstream ambience factors. Therefore, it is of great necessity to comprehensively summarize and overcome performance-related challenges in mainstream anammox process at the macro/micro level, including the macroscopic process variable regulation and microscopic biological metabolic enhancement. This article systematically reviewed the recent important advances in the enrichment and retention of anammox bacteria and main factors affecting metabolic regulation under mainstream conditions, and proposed key strategies for the related performance optimization. The characteristics and behavior mechanism of anammox consortia in response to mainstream environment were then discussed in details, and we revealed that the synergistic nitrogen metabolism of multi-functional bacterial genera based on anammox microbiome was conducive to mainstream anammox nitrogen removal processes. Finally, the critical outcomes of anammox extracellular electron transfer (EET) at the micro level were well presented, carbon-based conductive materials or exogenous electron shuttles can stimulate and mediate anammox EET in mainstream environments to optimize system performance from a micro perspective. Overall, this review advances the extensive implementation of mainstream anammox practice in future as well as shedding new light on the related EET and microbial mechanisms.


Subject(s)
Ammonium Compounds , Wastewater , Denitrification , Ammonium Compounds/metabolism , Anaerobic Ammonia Oxidation , Oxidation-Reduction , Bioreactors/microbiology , Bacteria/metabolism , Anaerobiosis , Nitrogen/metabolism , Sewage/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL