Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Nat Immunol ; 21(4): 381-387, 2020 04.
Article in English | MEDLINE | ID: mdl-32205881

ABSTRACT

Protein ubiquitination regulates protein stability and modulates the composition of signaling complexes. A20 is a negative regulator of inflammatory signaling, but the molecular mechanisms involved are ill understood. Here, we generated Tnfaip3 gene-targeted A20 mutant mice bearing inactivating mutations in the zinc finger 7 (ZnF7) and ZnF4 ubiquitin-binding domains, revealing that binding to polyubiquitin is essential for A20 to suppress inflammatory disease. We demonstrate that a functional ZnF7 domain was required for recruiting A20 to the tumor necrosis factor receptor 1 (TNFR1) signaling complex and to suppress inflammatory signaling and cell death. The combined inactivation of ZnF4 and ZnF7 phenocopied the postnatal lethality and severe multiorgan inflammation of A20-deficient mice. Conditional tissue-specific expression of mutant A20 further revealed the key role of ubiquitin-binding in myeloid and intestinal epithelial cells. Collectively, these results demonstrate that the anti-inflammatory and cytoprotective functions of A20 are largely dependent on its ubiquitin-binding properties.


Subject(s)
Inflammation/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Animals , Epithelial Cells/metabolism , Humans , Mice , Mice, Inbred C57BL , Myeloid Cells/metabolism , Polyubiquitin/metabolism , Protein Binding/physiology , Signal Transduction/physiology , Tumor Necrosis Factor-alpha/metabolism , Ubiquitin/metabolism , Ubiquitination/physiology , Zinc Fingers/physiology
2.
Immunity ; 47(2): 339-348.e4, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28801232

ABSTRACT

The gut microbiota regulate susceptibility to multiple human diseases. The Nlrp6-ASC inflammasome is widely regarded as a hallmark host innate immune axis that shapes the gut microbiota composition. This notion stems from studies reporting dysbiosis in mice lacking these inflammasome components when compared with non-littermate wild-type animals. Here, we describe microbial analyses in inflammasome-deficient mice while minimizing non-genetic confounders using littermate-controlled Nlrp6-deficient mice and ex-germ-free littermate-controlled ASC-deficient mice that were all allowed to shape their gut microbiota naturally after birth. Careful microbial phylogenetic analyses of these cohorts failed to reveal regulation of the gut microbiota composition by the Nlrp6- and ASC-dependent inflammasomes. Our results obtained in two geographically separated animal facilities dismiss a generalizable impact of Nlrp6- and ASC-dependent inflammasomes on the composition of the commensal gut microbiota and highlight the necessity for littermate-controlled experimental design in assessing the influence of host immunity on gut microbial ecology.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Bacteria/genetics , Colitis/immunology , Dysbiosis/immunology , Gastrointestinal Microbiome/immunology , Inflammasomes/metabolism , Receptors, Cell Surface/metabolism , Animals , CARD Signaling Adaptor Proteins , Cells, Cultured , Colitis/chemically induced , Colitis/microbiology , Dysbiosis/microbiology , Female , Genetic Background , Immunity, Innate , Mice , Mice, Inbred C57BL , Mice, Knockout , Microbiota , RNA, Ribosomal, 16S/analysis , Receptors, Cell Surface/genetics , Sodium Dodecyl Sulfate
3.
Immunity ; 44(3): 553-567, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26982364

ABSTRACT

Intestinal epithelial cells (IECs) regulate gut immune homeostasis, and impaired epithelial responses are implicated in the pathogenesis of inflammatory bowel diseases (IBD). IEC-specific ablation of nuclear factor κB (NF-κB) essential modulator (NEMO) caused Paneth cell apoptosis and impaired antimicrobial factor expression in the ileum, as well as colonocyte apoptosis and microbiota-driven chronic inflammation in the colon. Combined RelA, c-Rel, and RelB deficiency in IECs caused Paneth cell apoptosis but not colitis, suggesting that NEMO prevents colon inflammation by NF-κB-independent functions. Inhibition of receptor-interacting protein kinase 1 (RIPK1) kinase activity or combined deficiency of Fas-associated via death domain protein (FADD) and RIPK3 prevented epithelial cell death, Paneth cell loss, and colitis development in mice with epithelial NEMO deficiency. Therefore, NEMO prevents intestinal inflammation by inhibiting RIPK1 kinase activity-mediated IEC death, suggesting that RIPK1 inhibitors could be effective in the treatment of colitis in patients with NEMO mutations and possibly in IBD.


Subject(s)
Inflammatory Bowel Diseases/immunology , Intestinal Mucosa/pathology , Intracellular Signaling Peptides and Proteins/metabolism , Paneth Cells/physiology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , Apoptosis/genetics , Cells, Cultured , Fas-Associated Death Domain Protein/genetics , Fas-Associated Death Domain Protein/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism , Proto-Oncogene Proteins c-rel/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Transcription Factor RelA/genetics , Transcription Factor RelB/genetics
4.
EMBO Rep ; 23(7): e54339, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35574994

ABSTRACT

Cryopyrin-associated periodic syndromes (CAPS) are a spectrum of autoinflammatory disorders caused by gain-of-function NLRP3 mutant proteins that form hyperactive inflammasomes leading to overproduction of the pro-inflammatory cytokines IL-1ß and IL-18. Expressing the murine gain-of-function Nlrp3A350V mutant selectively in neutrophils recapitulates several autoinflammatory features of human CAPS, but the potential contribution of macrophage inflammasome hyperactivation to CAPS development is poorly defined. Here, we show that expressing Nlrp3A350V in macrophages is sufficient for driving severe multi-organ autoinflammation leading to perinatal lethality in mice. In addition, we show that macrophages contribute to autoinflammation also in adult mice, as depleting macrophages in mice ubiquitously expressing Nlrp3A350V significantly diminishes splenic and hepatic IL-1ß production. Interestingly, inflammation induced by macrophage-selective Nlrp3A350V expression does not provoke an influx of mature neutrophils, while neutrophil influx is still occurring in macrophage-depleted mice with body-wide Nlrp3A350V expression. These observations identify macrophages as important cellular drivers of CAPS in mice and support a cooperative cellular model of CAPS development in which macrophages and neutrophils act independently of each other in propagating severe autoinflammation.


Subject(s)
Cryopyrin-Associated Periodic Syndromes , Inflammasomes , Animals , Cryopyrin-Associated Periodic Syndromes/genetics , Cryopyrin-Associated Periodic Syndromes/metabolism , Inflammasomes/metabolism , Inflammation/genetics , Inflammation/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Macrophages/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/genetics
5.
EMBO Rep ; 23(10): e54277, 2022 10 06.
Article in English | MEDLINE | ID: mdl-35899491

ABSTRACT

Neutrophils are the most prevalent immune cells in circulation, but the repertoire of canonical inflammasomes in neutrophils and their respective involvement in neutrophil IL-1ß secretion and neutrophil cell death remain unclear. Here, we show that neutrophil-targeted expression of the disease-associated gain-of-function Nlrp3A350V mutant suffices for systemic autoinflammatory disease and tissue pathology in vivo. We confirm the activity of the canonical NLRP3 and NLRC4 inflammasomes in neutrophils, and further show that the NLRP1b, Pyrin and AIM2 inflammasomes also promote maturation and secretion of interleukin (IL)-1ß in cultured bone marrow neutrophils. Notably, all tested canonical inflammasomes promote GSDMD cleavage in neutrophils, and canonical inflammasome-induced pyroptosis and secretion of mature IL-1ß are blunted in GSDMD-knockout neutrophils. In contrast, GSDMD is dispensable for PMA-induced NETosis. We also show that Salmonella Typhimurium-induced pyroptosis is markedly increased in Nox2/Gp91Phox -deficient neutrophils that lack NADPH oxidase activity and are defective in PMA-induced NETosis. In conclusion, we establish the canonical inflammasome repertoire in neutrophils and identify differential roles for GSDMD and the NADPH complex in canonical inflammasome-induced neutrophil pyroptosis and mitogen-induced NETosis, respectively.


Subject(s)
Extracellular Traps , Inflammasomes , Neutrophils , Phosphate-Binding Proteins , Pore Forming Cytotoxic Proteins , Pyroptosis , Animals , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Inbred C57BL , Mitogens/metabolism , NADP/metabolism , NADPH Oxidases/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Neutrophils/metabolism , Phosphate-Binding Proteins/metabolism , Pore Forming Cytotoxic Proteins/metabolism , Pyrin/metabolism
6.
J Allergy Clin Immunol ; 152(1): 230-243, 2023 07.
Article in English | MEDLINE | ID: mdl-36822481

ABSTRACT

BACKGROUND: Familial Mediterranean fever (FMF), caused by mutations in the pyrin-encoding MEFV gene, is characterized by uncontrolled caspase-1 activation and IL-1ß secretion. A similar mechanism drives inflammation in cryopyrin-associated periodic fever syndrome (CAPS) caused by mutations in NLRP3. CAPS and FMF, however, result in largely different clinical manifestations, pointing to additional, autoinflammatory pathways involved in FMF. Another hallmark of FMF is extraordinarily high expression of S100A8 and S100A9. These alarmins are ligands of Toll-like receptor 4 and amplifiers of inflammation. However, the relevance of this inflammatory pathway for the pathogenesis of FMF is unknown. OBJECTIVE: This study investigated whether mutations in pyrin result in specific secretion of S100A8/A9 alarmins through gasdermin D pores' amplifying FMF pathology. METHODS: S100A8/A9 levels in FMF patients were quantified by enzyme-linked immunosorbent assay. In vitro models with knockout cell lines and specific protein inhibitors were used to unravel the S100A8/A9 secretion mechanism. The impact of S100A8/A9 to the pathophysiology of FMF was analyzed with FMF (MEFVV726A/V726A) and S100A9-/- mouse models. Pyrin-S100A8/A9 interaction was investigated by coimmunoprecipitation, immunofluorescence, and enzyme-linked immunosorbent assay studies. RESULTS: The S100A8/A9 complexes directly interacted with pyrin. Knocking out pyrin, caspase-1, or gasdermin D inhibited the secretion of these S100 alarmins. Inflammatory S100A8/A9 dimers were inactivated by tetramer formation. Blocking this inactivation by targeted S100A9 deletion in a murine FMF model demonstrated the relevance of this novel autoinflammatory pathway in FMF. CONCLUSION: This is the first proof that members of the S100 alarmin family are released in a pyrin/caspase-1/gasdermin D-dependent pathway and directly drive autoinflammation in vivo.


Subject(s)
Cryopyrin-Associated Periodic Syndromes , Familial Mediterranean Fever , Animals , Mice , Alarmins , Calgranulin A/genetics , Caspases/metabolism , Cryopyrin-Associated Periodic Syndromes/genetics , Familial Mediterranean Fever/genetics , Gasdermins , Inflammation , Pyrin/genetics
7.
J Clin Immunol ; 44(1): 8, 2023 12 22.
Article in English | MEDLINE | ID: mdl-38129719

ABSTRACT

Pyrin is a cytosolic protein encoded by the MEFV gene, predominantly expressed in innate immune cells. Upon activation, it forms an inflammasome, a multimolecular complex that enables the activation and secretion of IL-1ß and IL-18. In addition, the Pyrin inflammasome activates Gasdermin D leading to pyroptosis, a highly pro-inflammatory cell death. Four autoinflammatory syndromes are associated with Pyrin inflammasome dysregulation: familial Mediterranean fever, hyper IgD syndrome/mevalonate kinase deficiency, pyrin-associated autoinflammation with neutrophilic dermatosis, and pyogenic arthritis, pyoderma gangrenosum, and acne syndrome. In this review, we discuss recent advances in understanding the molecular mechanisms regulating the two-step model of Pyrin inflammasome activation. Based on these insights, we discuss current pharmacological options and identify a series of existing molecules with therapeutic potential for the treatment of pyrin-associated autoinflammatory syndromes.


Subject(s)
Familial Mediterranean Fever , Mevalonate Kinase Deficiency , Pyoderma Gangrenosum , Humans , Inflammasomes/metabolism , Pyrin/genetics , Familial Mediterranean Fever/genetics , Syndrome , Mevalonate Kinase Deficiency/therapy , Mevalonate Kinase Deficiency/genetics
9.
Proc Natl Acad Sci U S A ; 116(38): 19055-19063, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31484767

ABSTRACT

Juvenile-onset recurrent respiratory papillomatosis (JRRP) is a rare and debilitating childhood disease that presents with recurrent growth of papillomas in the upper airway. Two common human papillomaviruses (HPVs), HPV-6 and -11, are implicated in most cases, but it is still not understood why only a small proportion of children develop JRRP following exposure to these common viruses. We report 2 siblings with a syndromic form of JRRP associated with mild dermatologic abnormalities. Whole-exome sequencing of the patients revealed a private homozygous mutation in NLRP1, encoding Nucleotide-Binding Domain Leucine-Rich Repeat Family Pyrin Domain-Containing 1. We find the NLRP1 mutant allele to be gain of function (GOF) for inflammasome activation, as demonstrated by the induction of inflammasome complex oligomerization and IL-1ß secretion in an overexpression system. Moreover, patient-derived keratinocytes secrete elevated levels of IL-1ß at baseline. Finally, both patients displayed elevated levels of inflammasome-induced cytokines in the serum. Six NLRP1 GOF mutations have previously been described to underlie 3 allelic Mendelian diseases with differing phenotypes and modes of inheritance. Our results demonstrate that an autosomal recessive, syndromic form of JRRP can be associated with an NLRP1 GOF mutation.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics , Gain of Function Mutation , Homozygote , Papillomavirus Infections/genetics , Papillomavirus Infections/pathology , Respiratory Tract Infections/genetics , Respiratory Tract Infections/pathology , Child, Preschool , Cytokines/metabolism , Female , Humans , Infant , Inflammasomes , Keratinocytes/cytology , Keratinocytes/immunology , Keratinocytes/metabolism , Male , NLR Proteins , Pedigree , Siblings , Syndrome
10.
PLoS Pathog ; 15(4): e1007709, 2019 04.
Article in English | MEDLINE | ID: mdl-31017981

ABSTRACT

Norovirus infection is the leading cause of food-borne gastroenteritis worldwide, being responsible for over 200,000 deaths annually. Studies with murine norovirus (MNV) showed that protective STAT1 signaling controls viral replication and pathogenesis, but the immune mechanisms that noroviruses exploit to induce pathology are elusive. Here, we show that gastrointestinal MNV infection leads to widespread IL-1ß maturation in MNV-susceptible STAT1-deficient mice. MNV activates the canonical Nlrp3 inflammasome in macrophages, leading to maturation of IL-1ß and to Gasdermin D (GSDMD)-dependent pyroptosis. STAT1-deficient macrophages displayed increased MAVS-mediated expression of pro-IL-1ß, facilitating elevated Nlrp3-dependent release of mature IL-1ß upon MNV infection. Accordingly, MNV-infected Stat1-/- mice showed Nlrp3-dependent maturation of IL-1ß as well as Nlrp3-dependent pyroptosis as assessed by in vivo cleavage of GSDMD to its active N-terminal fragment. While MNV-induced diarrheic responses were not affected, Stat1-/- mice additionally lacking either Nlrp3 or GSDMD displayed lower levels of the fecal inflammatory marker Lipocalin-2 as well as delayed lethality after gastrointestinal MNV infection. Together, these results uncover new insights into the mechanisms of norovirus-induced inflammation and cell death, thereby revealing Nlrp3 inflammasome activation and ensuing GSDMD-driven pyroptosis as contributors to MNV-induced immunopathology in susceptible STAT1-deficient mice.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Caliciviridae Infections/pathology , Gastrointestinal Tract/pathology , Inflammasomes/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis/physiology , STAT1 Transcription Factor/physiology , Animals , Apoptosis Regulatory Proteins/genetics , Caliciviridae Infections/immunology , Caliciviridae Infections/metabolism , Caliciviridae Infections/virology , Cells, Cultured , Gastrointestinal Tract/immunology , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/virology , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Intracellular Signaling Peptides and Proteins , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Macrophages/virology , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Norovirus/immunology , Norovirus/pathogenicity , Phosphate-Binding Proteins
11.
Curr Top Microbiol Immunol ; 397: 1-22, 2016.
Article in English | MEDLINE | ID: mdl-27460802

ABSTRACT

The complementary actions of the innate and adaptive immune systems often provide effective host defense against microbial pathogens and harmful environmental agents. Germline-encoded pattern recognition receptors (PRRs) endow the innate immune system with the ability to detect and mount a rapid response against a given threat. Members of several intracellular PRR families, including the nucleotide-binding domain and leucine-rich repeat containing receptors (NLRs), the AIM2-like receptors (ALRs), and the tripartite motif-containing (TRIM) protein Pyrin/TRIM20, nucleate the formation of inflammasomes. These cytosolic scaffolds serve to recruit and oligomerize the cysteine protease caspase-1 in filaments that promote its proximity-induced autoactivation. This oligomerization occurs either directly or indirectly through intervention of the bipartite adaptor protein ASC, apoptosis-associated speck-like protein containing a caspase recruitment domain (CARD), which is needed for the domain interaction. Caspase-1 cleaves the precursors of the inflammatory cytokines interleukin (IL)-1ß and IL-18 and triggers their release into the extracellular space, where they act on effector cells to promote both local and systemic immune responses. Additionally, inflammasome activation gives rise to a lytic mode of cell death, named pyroptosis, which is thought to contribute to initial host defense against infection by eliminating replication niches of intracellular pathogens and exposing them to the immune system. Inflammasome-induced host defense responses are the subject of intense investigation, and understanding their physiological roles during infection and the regulatory circuits that are involved is becoming increasingly detailed. Here, we discuss current understanding of the activation mechanisms and biological outcomes of inflammasome activation.


Subject(s)
Inflammasomes/immunology , Animals , Humans , Immunity, Innate , Inflammasomes/genetics , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Receptors, Pattern Recognition/genetics , Receptors, Pattern Recognition/immunology , Signal Transduction
12.
Nature ; 477(7364): 330-4, 2011 Jul 31.
Article in English | MEDLINE | ID: mdl-21804564

ABSTRACT

Intestinal immune homeostasis depends on a tightly regulated cross talk between commensal bacteria, mucosal immune cells and intestinal epithelial cells (IECs). Epithelial barrier disruption is considered to be a potential cause of inflammatory bowel disease; however, the mechanisms regulating intestinal epithelial integrity are poorly understood. Here we show that mice with IEC-specific knockout of FADD (FADD(IEC-KO)), an adaptor protein required for death-receptor-induced apoptosis, spontaneously developed epithelial cell necrosis, loss of Paneth cells, enteritis and severe erosive colitis. Genetic deficiency in RIP3, a critical regulator of programmed necrosis, prevented the development of spontaneous pathology in both the small intestine and colon of FADD(IEC-KO) mice, demonstrating that intestinal inflammation is triggered by RIP3-dependent death of FADD-deficient IECs. Epithelial-specific inhibition of CYLD, a deubiquitinase that regulates cellular necrosis, prevented colitis development in FADD(IEC-KO) but not in NEMO(IEC-KO) mice, showing that different mechanisms mediated death of colonic epithelial cells in these two models. In FADD(IEC-KO) mice, TNF deficiency ameliorated colon inflammation, whereas MYD88 deficiency and also elimination of the microbiota prevented colon inflammation, indicating that bacteria-mediated Toll-like-receptor signalling drives colitis by inducing the expression of TNF and other cytokines. However, neither CYLD, TNF or MYD88 deficiency nor elimination of the microbiota could prevent Paneth cell loss and enteritis in FADD(IEC-KO) mice, showing that different mechanisms drive RIP3-dependent necrosis of FADD-deficient IECs in the small and large bowel. Therefore, by inhibiting RIP3-mediated IEC necrosis, FADD preserves epithelial barrier integrity and antibacterial defence, maintains homeostasis and prevents chronic intestinal inflammation. Collectively, these results show that mechanisms preventing RIP3-mediated epithelial cell death are critical for the maintenance of intestinal homeostasis and indicate that programmed necrosis of IECs might be implicated in the pathogenesis of inflammatory bowel disease, in which Paneth cell and barrier defects are thought to contribute to intestinal inflammation.


Subject(s)
Colitis/pathology , Colon/pathology , Enteritis/pathology , Epithelial Cells/pathology , Fas-Associated Death Domain Protein/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , Apoptosis , Chronic Disease , Colitis/enzymology , Colitis/metabolism , Colon/enzymology , Colon/metabolism , Cysteine Endopeptidases/metabolism , Deubiquitinating Enzyme CYLD , Enteritis/enzymology , Enteritis/metabolism , Epithelial Cells/enzymology , Epithelial Cells/metabolism , Fas-Associated Death Domain Protein/deficiency , Inflammatory Bowel Diseases/enzymology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/metabolism , Metagenome/physiology , Mice , Myeloid Differentiation Factor 88/deficiency , Myeloid Differentiation Factor 88/metabolism , Necrosis , Paneth Cells/pathology , Signal Transduction , Tumor Necrosis Factors/deficiency
13.
Gut ; 65(6): 935-43, 2016 06.
Article in English | MEDLINE | ID: mdl-25761602

ABSTRACT

OBJECTIVE: The gut microbiota modulates host susceptibility to intestinal inflammation, but the cell types and the signalling pathways orchestrating this bacterial regulation of intestinal homeostasis remain poorly understood. Here, we investigated the function of intestinal epithelial toll-like receptor (TLR) responses in the dextran sodium sulfate (DSS)-induced mouse model of colitis. DESIGN: We applied an in vivo genetic approach allowing intestinal epithelial cell (IEC)-specific deletion of the critical TLR signalling adaptors, MyD88 and/or TIR-domain-containing adapter-inducing interferon-ß (TRIF), as well as the downstream ubiquitin ligase TRAF6 in order to reveal the IEC-intrinsic function of these TLR signalling molecules during DSS colitis. RESULTS: Mice lacking TRAF6 in IECs showed exacerbated DSS-induced inflammatory responses that ensued in the development of chronic colon inflammation. Antibiotic pretreatment abolished the increased DSS susceptibility of these mice, showing that epithelial TRAF6 signalling pathways prevent the gut microbiota from driving excessive colitis. However, in contrast to epithelial TRAF6 deletion, blocking epithelial TLR signalling by simultaneous deletion of MyD88 and TRIF specifically in IECs did not affect DSS-induced colitis severity. This in vivo functional comparison between TRAF6 and MyD88/TRIF deletion in IECs shows that the colitis-protecting effects of epithelial TRAF6 signalling are not triggered by TLRs. CONCLUSIONS: Intestinal epithelial TRAF6-dependent but MyD88/TRIF-independent and, thus, TLR-independent signalling pathways are critical for preventing propagation of DSS-induced colon inflammation by the gut microbiota. Moreover, our experiments using mice with dual MyD88/TRIF deletion in IECs unequivocally show that the gut microbiota trigger non-epithelial TLRs rather than epithelial TLRs to restrict DSS colitis severity.


Subject(s)
Colitis/genetics , Colitis/prevention & control , TNF Receptor-Associated Factor 6/genetics , Toll-Like Receptors/genetics , Animals , Colitis/etiology , Colitis/pathology , Colon/metabolism , Dextran Sulfate/pharmacology , Disease Models, Animal , Genetic Markers/genetics , Intestinal Mucosa/metabolism , Mice , Microbiota/genetics , Signal Transduction/genetics
14.
Front Immunol ; 15: 1373745, 2024.
Article in English | MEDLINE | ID: mdl-38680500

ABSTRACT

Background: Protective immunity against intestinal helminths requires induction of robust type-2 immunity orchestrated by various cellular and soluble effectors which promote goblet cell hyperplasia, mucus production, epithelial proliferation, and smooth muscle contractions to expel worms and re-establish immune homeostasis. Conversely, defects in type-2 immunity result in ineffective helminth clearance, persistent infection, and inflammation. Macrophages are highly plastic cells that acquire an alternatively activated state during helminth infection, but they were previously shown to be dispensable for resistance to Trichuris muris infection. Methods: We use the in vivo mouse model A20myel-KO, characterized by the deletion of the potent anti-inflammatory factor A20 (TNFAIP3) specifically in the myeloid cells, the excessive type-1 cytokine production, and the development of spontaneous arthritis. We infect A20myel-KO mice with the gastrointestinal helminth Trichuris muris and we analyzed the innate and adaptive responses. We performed RNA sequencing on sorted myeloid cells to investigate the role of A20 on macrophage polarization and type-2 immunity. Moreover, we assess in A20myel-KO mice the pharmacological inhibition of type-1 cytokine pathways on helminth clearance and the infection with Salmonella typhimurium. Results: We show that proper macrophage polarization is essential for helminth clearance, and we identify A20 as an essential myeloid factor for the induction of type-2 immune responses against Trichuris muris. A20myel-KO mice are characterized by persistent Trichuris muris infection and intestinal inflammation. Myeloid A20 deficiency induces strong classical macrophage polarization which impedes anti-helminth type-2 immune activation; however, it promotes detrimental Th1/Th17 responses. Antibody-mediated neutralization of the type-1 cytokines IFN-γ, IL-18, and IL-12 prevents myeloid-orchestrated Th1 polarization and re-establishes type-2-mediated protective immunity against T. muris in A20myel-KO mice. In contrast, the strong Th1-biased immunity in A20myel-KO mice offers protection against Salmonella typhimurium infection. Conclusions: We hereby identify A20 as a critical myeloid factor for correct macrophage polarization and appropriate adaptive mucosal immunity in response to helminth and enteric bacterial infection.


Subject(s)
Disease Resistance , Macrophage Activation , Macrophages , Trichuriasis , Tumor Necrosis Factor alpha-Induced Protein 3 , Animals , Mice , Cytokines/metabolism , Cytokines/immunology , Disease Models, Animal , Disease Resistance/genetics , Disease Resistance/immunology , Immunity, Innate , Macrophage Activation/immunology , Macrophages/immunology , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells/immunology , Th2 Cells/immunology , Trichuriasis/immunology , Trichuris/immunology , Tumor Necrosis Factor alpha-Induced Protein 3/immunology , Tumor Necrosis Factor alpha-Induced Protein 3/genetics
15.
Nature ; 446(7135): 557-61, 2007 Mar 29.
Article in English | MEDLINE | ID: mdl-17361131

ABSTRACT

Deregulation of intestinal immune responses seems to have a principal function in the pathogenesis of inflammatory bowel disease. The gut epithelium is critically involved in the maintenance of intestinal immune homeostasis-acting as a physical barrier separating luminal bacteria and immune cells, and also expressing antimicrobial peptides. However, the molecular mechanisms that control this function of gut epithelial cells are poorly understood. Here we show that the transcription factor NF-kappaB, a master regulator of pro-inflammatory responses, functions in gut epithelial cells to control epithelial integrity and the interaction between the mucosal immune system and gut microflora. Intestinal epithelial-cell-specific inhibition of NF-kappaB through conditional ablation of NEMO (also called IkappaB kinase-gamma (IKKgamma)) or both IKK1 (IKKalpha) and IKK2 (IKKbeta)-IKK subunits essential for NF-kappaB activation-spontaneously caused severe chronic intestinal inflammation in mice. NF-kappaB deficiency led to apoptosis of colonic epithelial cells, impaired expression of antimicrobial peptides and translocation of bacteria into the mucosa. Concurrently, this epithelial defect triggered a chronic inflammatory response in the colon, initially dominated by innate immune cells but later also involving T lymphocytes. Deficiency of the gene encoding the adaptor protein MyD88 prevented the development of intestinal inflammation, demonstrating that Toll-like receptor activation by intestinal bacteria is essential for disease pathogenesis in this mouse model. Furthermore, NEMO deficiency sensitized epithelial cells to tumour-necrosis factor (TNF)-induced apoptosis, whereas TNF receptor-1 inactivation inhibited intestinal inflammation, demonstrating that TNF receptor-1 signalling is crucial for disease induction. These findings demonstrate that a primary NF-kappaB signalling defect in intestinal epithelial cells disrupts immune homeostasis in the gastrointestinal tract, causing an inflammatory-bowel-disease-like phenotype. Our results identify NF-kappaB signalling in the gut epithelium as a critical regulator of epithelial integrity and intestinal immune homeostasis, and have important implications for understanding the mechanisms controlling the pathogenesis of human inflammatory bowel disease.


Subject(s)
Colitis/immunology , Colitis/pathology , Epithelial Cells/enzymology , Epithelial Cells/immunology , I-kappa B Kinase/metabolism , Immunity, Innate/immunology , Animals , Apoptosis/drug effects , Chronic Disease , Colitis/enzymology , Colon/immunology , Colon/pathology , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Homeostasis , I-kappa B Kinase/deficiency , Intestines/enzymology , Intestines/immunology , Intestines/microbiology , Intestines/pathology , Mice , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , Signal Transduction , Tumor Necrosis Factors/pharmacology
16.
Cell Death Dis ; 14(4): 282, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37080966

ABSTRACT

Citrobacter rodentium is an enteropathogen that causes intestinal inflammatory responses in mice reminiscent of the pathology provoked by enteropathogenic and enterohemorrhagic Escherichia coli infections in humans. C. rodentium expresses various virulence factors that target specific signaling proteins involved in executing apoptotic, necroptotic and pyroptotic cell death, suggesting that each of these distinct cell death modes performs essential host defense functions that the pathogen aims to disturb. However, the relative contributions of apoptosis, necroptosis and pyroptosis in protecting the host against C. rodentium have not been elucidated. Here we used mice with single or combined deficiencies in essential signaling proteins controlling apoptotic, necroptotic or pyroptotic cell death to reveal the roles of these cell death modes in host defense against C. rodentium. Gastrointestinal C. rodentium infections in mice lacking GSDMD and/or MLKL showed that both pyroptosis and necroptosis were dispensable for pathogen clearance. In contrast, while RIPK3-deficient mice showed normal C. rodentium clearance, mice with combined caspase-8 and RIPK3 deficiencies failed to clear intestinal pathogen loads. Although this demonstrated a crucial role for caspase-8 signaling in establishing intestinal host defense, Casp8-/-Ripk3-/- mice remained capable of preventing systemic pathogen persistence. This systemic host defense relied on inflammasome signaling, as Casp8-/-Ripk3-/- mice with combined caspase-1 and -11 deletion succumbed to C. rodentium infection. Interestingly, although it is known that C. rodentium can activate the non-canonical caspase-11 inflammasome, selectively disabling canonical inflammasome signaling by single caspase-1 deletion sufficed to render Casp8-/-Ripk3-/- mice vulnerable to C. rodentium-induced lethality. Moreover, Casp8-/-Ripk3-/- mice lacking GSDMD survived a C. rodentium infection, suggesting that pyroptosis was not crucial for the protective functions of canonical inflammasomes in these mice. Taken together, our mouse genetic experiments revealed an essential cooperation between caspase-8 signaling and GSDMD-independent canonical inflammasome signaling to establish intestinal and systemic host defense against gastrointestinal C. rodentium infection.


Subject(s)
Citrobacter rodentium , Inflammasomes , Animals , Humans , Mice , Caspase 1/metabolism , Caspase 8/genetics , Caspase 8/metabolism , Caspases/metabolism , Citrobacter rodentium/metabolism , Gasdermins , Inflammasomes/metabolism , Mice, Inbred C57BL
17.
Sci Immunol ; 8(89): eadf4404, 2023 11 24.
Article in English | MEDLINE | ID: mdl-38000038

ABSTRACT

Loss-of-function mutations in the deubiquitinase OTULIN result in an inflammatory pathology termed "OTULIN-related autoinflammatory syndrome" (ORAS). Genetic mouse models revealed essential roles for OTULIN in inflammatory and cell death signaling, but the mechanisms by which OTULIN deficiency connects cell death to inflammation remain unclear. Here, we identify OTULIN deficiency as a cellular condition that licenses RIPK3-mediated cell death in murine macrophages, leading to Nlrp3 inflammasome activation and subsequent IL-1ß secretion. OTULIN deficiency uncoupled Nlrp3 inflammasome activation from gasdermin D-mediated pyroptosis, instead allowing RIPK3-dependent cell death to act as an Nlrp3 inflammasome activator and mechanism for IL-1ß release. Accordingly, elevated serum IL-1ß levels in myeloid-specific OTULIN-deficient mice were diminished by deleting either Ripk3 or Nlrp3. These findings identify OTULIN as an inhibitor of RIPK3-mediated IL-1ß release in mice.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Mice , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Cell Death , Pyroptosis , Inflammation/pathology
18.
Front Immunol ; 14: 1272639, 2023.
Article in English | MEDLINE | ID: mdl-38090573

ABSTRACT

Background: Autoinflammation with infantile enterocolitis (AIFEC) is an often fatal disease caused by gain-of-function mutations in the NLRC4 inflammasome. This inflammasomopathy is characterized by macrophage activation syndrome (MAS)-like episodes as well as neonatal-onset enterocolitis. Although elevated IL-18 levels were suggested to take part in driving AIFEC pathology, the triggers for IL-18 production and its ensuing pathogenic effects in these patients are incompletely understood. Methods: Here, we developed and characterized a novel genetic mouse model expressing a murine version of the AIFEC-associated NLRC4V341A mutation from its endogenous Nlrc4 genomic locus. Results: NLRC4V341A expression in mice recapitulated increased circulating IL-18 levels as observed in AIFEC patients. Housing NLRC4V341A-expressing mice in germfree (GF) conditions showed that these systemic IL-18 levels were independent of the microbiota, and unmasked an additional IL-18-inducing effect of NLRC4V341A expression in the intestines. Remarkably, elevated IL-18 levels did not provoke detectable intestinal pathologies in NLRC4V341A-expressing mice, even not upon genetically ablating IL-18 binding protein (IL-18BP), which is an endogenous IL-18 inhibitor that has been used therapeutically in AIFEC. In addition, NLRC4V341A expression did not alter susceptibility to the NLRC4-activating gastrointestinal pathogens Salmonella Typhimurium and Citrobacter rodentium. Conclusion: As observed in AIFEC patients, mice expressing a murine NLRC4V341A mutant show elevated systemic IL-18 levels, suggesting that the molecular mechanisms by which this NLRC4V341A mutant induces excessive IL-18 production are conserved between humans and mice. However, while our GF and infection experiments argue against a role for commensal or pathogenic bacteria, identifying the triggers and mechanisms that synergize with IL-18 to drive NLRC4V341A-associated pathologies will require further research in this NLRC4V341A mouse model.


Subject(s)
Enterocolitis , Macrophage Activation Syndrome , Humans , Mice , Infant, Newborn , Animals , CARD Signaling Adaptor Proteins/metabolism , Interleukin-18/genetics , Interleukin-18/metabolism , Mutation , Macrophage Activation Syndrome/genetics , Enterocolitis/genetics , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism
19.
Sci Rep ; 13(1): 17992, 2023 10 21.
Article in English | MEDLINE | ID: mdl-37865713

ABSTRACT

A20 serves as a critical brake on NF-κB-dependent inflammation. In humans, polymorphisms in or near the TNFAIP3/A20 gene have been linked to various inflammatory disorders, including systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Experimental gene knockout studies in mice have confirmed A20 as a susceptibility gene for SLE and RA. Here, we examine the significance of protein citrullination and NET formation in the autoimmune pathology of A20 mutant mice because autoimmunity directed against citrullinated antigens released by neutrophil extracellular traps (NETs) is central to the pathogenesis of RA and SLE. Furthermore, genetic variants impairing the deubiquitinase (DUB) function of A20 have been shown to contribute to autoimmune susceptibility. Our findings demonstrate that genetic disruption of A20 DUB function in A20 C103R knockin mice does not result in autoimmune pathology. Moreover, we show that PAD4 deficiency, which abolishes protein citrullination and NET formation, does not prevent the development of autoimmunity in A20 deficient mice. Collectively, these findings provide experimental confirmation that PAD4-dependent protein citrullination and NET formation do not serve as pathogenic mechanisms in the development of RA and SLE pathology in mice with A20 mutations.


Subject(s)
Arthritis, Rheumatoid , Extracellular Traps , Lupus Erythematosus, Systemic , Humans , Animals , Mice , Citrullination , Arthritis, Rheumatoid/metabolism , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Inflammation/metabolism , Autoimmunity/genetics , Extracellular Traps/metabolism
20.
Endocr Rev ; 28(4): 365-86, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17431229

ABSTRACT

The proinflammatory cytokine TNF has a pivotal role in liver pathophysiology because it holds the capacity to induce both hepatocyte cell death and hepatocyte proliferation. This dual effect of TNF on hepatocytes reflects its ability to induce both nuclear factor kappaB (NF-kappaB)-dependent gene expression and cell death. Multiple studies have demonstrated the crucial role of the transcription factor NF-kappaB in the decision between life and death of a hepatocyte. Massive hepatocyte apoptosis preceding embryonic lethality in NF-kappaB-deficient mice constituted the first indication of an essential antiapoptotic function of NF-kappaB in the liver. Although many studies confirmed this crucial cytoprotective role of NF-kappaB in adult liver, a number of genetic studies recently obtained conflicting results on the exact role of NF-kappaB in different mouse models of TNF hepatotoxicity, demonstrating that caution should be taken when interpreting studies using different NF-kappaB-deficient mice in distinct models of liver injury. Recent reports showing a role for hepatic NF-kappaB activation in the proliferation of malignant cells during hepatocarcinogenesis, and in the progression of fatty liver diseases to insulin resistance and type 2 diabetes mellitus demonstrate that NF-kappaB can also have more detrimental effects in the liver. Moreover, its role in the development of the metabolic syndrome emphasizes that hepatic NF-kappaB activation might also have adverse effects on the endocrine system. Therefore, understanding the regulation of hepatic TNF signaling and NF-kappaB activation is of critical therapeutic importance. In this review, we summarize how studies on the role of NF-kappaB in different mouse models of liver pathologies have contributed to this understanding.


Subject(s)
Homeostasis/physiology , Liver/physiology , NF-kappa B/physiology , Signal Transduction/physiology , Tumor Necrosis Factor-alpha/physiology , Animals , Apoptosis/physiology , Cell Proliferation , Disease Models, Animal , Liver/cytology , Liver Diseases/etiology , Liver Diseases/pathology , Liver Diseases/physiopathology , Liver Neoplasms/etiology , Liver Neoplasms/pathology , Liver Neoplasms/physiopathology , Liver Regeneration/physiology , Mice , NF-kappa B/genetics
SELECTION OF CITATIONS
SEARCH DETAIL