Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Pathog Glob Health ; 114(7): 370-378, 2020 10.
Article in English | MEDLINE | ID: mdl-33043870

ABSTRACT

Genetic control strategies aimed to bias the sex of progenies towards males present a promising new paradigm to eliminate malaria-transmitting mosquitoes. A synthetic sex-ratio distortion (SD) system was successfully engineered in Anopheles gambiae by exploiting the meiotic activity of the I-PpoI endonuclease targeting ribosomal DNA (rDNA) repeats, exclusively located on the X chromosome. Males carrying the SD construct produce highly male-biased progenies without evident reduction in fertility. In this study, we investigated the fate of X and Y chromosomes in these SD males and found that ratios of mature X:Y-bearing sperm were comparable to wild-type insects, indicating absence of selection mechanisms during sperm maturation. We therefore tested the effect of meiotic cleavage of both X and Y chromosomes in a lab-generated SD strain carrying rDNA on both sex chromosomes, showing fertility comparable to wild-type and a reduced male-bias compared to SD males in which only the X is targeted. Exposure of Y-linked rDNA to I-PpoI cleavage for consecutive generations rapidly restored the male-bias to typical high frequencies, indicating a correlation between the number of cleavable targets in each sex chromosome and the sex-ratios found in the progeny. Altogether our results indicate that meiotic cleavage of rDNA repeats, located in the sex chromosomes of A. gambiae SD males, affects the competitiveness of mature sperm to fertilize the female oocyte, thereby generating sex-biased progenies. We also show that the presence of rDNA copies on the Y chromosome does not impair the effectiveness of engineered synthetic SD systems for the control of human malaria mosquitoes.


Subject(s)
Anopheles , Germ Cells , Sex Chromosomes , Sex Ratio , Animals , Anopheles/growth & development , Female , Male , Meiosis
2.
Genetics ; 207(2): 729-740, 2017 10.
Article in English | MEDLINE | ID: mdl-28860320

ABSTRACT

Y chromosome function, structure and evolution is poorly understood in many species, including the Anopheles genus of mosquitoes-an emerging model system for studying speciation that also represents the major vectors of malaria. While the Anopheline Y had previously been implicated in male mating behavior, recent data from the Anopheles gambiae complex suggests that, apart from the putative primary sex-determiner, no other genes are conserved on the Y. Studying the functional basis of the evolutionary divergence of the Y chromosome in the gambiae complex is complicated by complete F1 male hybrid sterility. Here, we used an F1 × F0 crossing scheme to overcome a severe bottleneck of male hybrid incompatibilities that enabled us to experimentally purify a genetically labeled A. gambiae Y chromosome in an A. arabiensis background. Whole genome sequencing (WGS) confirmed that the A. gambiae Y retained its original sequence content in the A. arabiensis genomic background. In contrast to comparable experiments in Drosophila, we find that the presence of a heterospecific Y chromosome has no significant effect on the expression of A. arabiensis genes, and transcriptional differences can be explained almost exclusively as a direct consequence of transcripts arising from sequence elements present on the A. gambiae Y chromosome itself. We find that Y hybrids show no obvious fertility defects, and no substantial reduction in male competitiveness. Our results demonstrate that, despite their radically different structure, Y chromosomes of these two species of the gambiae complex that diverged an estimated 1.85 MYA function interchangeably, thus indicating that the Y chromosome does not harbor loci contributing to hybrid incompatibility. Therefore, Y chromosome gene flow between members of the gambiae complex is possible even at their current level of divergence. Importantly, this also suggests that malaria control interventions based on sex-distorting Y drive would be transferable, whether intentionally or contingent, between the major malaria vector species.


Subject(s)
Anopheles/genetics , Chromosomes, Insect/genetics , Evolution, Molecular , Hybridization, Genetic , Mosquito Vectors/genetics , Y Chromosome/genetics , Animals , Gene Flow , Gene Transfer, Horizontal , Genetic Background , Genetic Fitness , Infertility, Male/genetics , Male
SELECTION OF CITATIONS
SEARCH DETAIL