Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 162(2): 287-299, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-26165940

ABSTRACT

Spindle assembly requires the coordinated action of multiple cellular structures to nucleate and organize microtubules in a precise spatiotemporal manner. Among them, the contributions of centrosomes, chromosomes, and microtubules have been well studied, yet the involvement of membrane-bound organelles remains largely elusive. Here, we provide mechanistic evidence for a membrane-based, Golgi-derived microtubule assembly pathway in mitosis. Upon mitotic entry, the Golgi matrix protein GM130 interacts with importin α via a classical nuclear localization signal that recruits importin α to the Golgi membranes. Sequestration of importin α by GM130 liberates the spindle assembly factor TPX2, which activates Aurora-A kinase and stimulates local microtubule nucleation. Upon filament assembly, nascent microtubules are further captured by GM130, thus linking Golgi membranes to the spindle. Our results reveal an active role for the Golgi in regulating spindle formation to ensure faithful organelle inheritance.


Subject(s)
Autoantigens/metabolism , Cell Cycle Proteins/metabolism , Golgi Apparatus/metabolism , Membrane Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Nuclear Proteins/metabolism , Animals , Aurora Kinase A/metabolism , HeLa Cells , Humans , Karyopherins/metabolism , Mice , Microtubules/metabolism , Mitosis , Phosphoproteins/metabolism , Spindle Apparatus , Xenopus/metabolism , Xenopus Proteins/metabolism
2.
Nature ; 629(8014): 1174-1181, 2024 May.
Article in English | MEDLINE | ID: mdl-38720073

ABSTRACT

Phosphorylation of proteins on tyrosine (Tyr) residues evolved in metazoan organisms as a mechanism of coordinating tissue growth1. Multicellular eukaryotes typically have more than 50 distinct protein Tyr kinases that catalyse the phosphorylation of thousands of Tyr residues throughout the proteome1-3. How a given Tyr kinase can phosphorylate a specific subset of proteins at unique Tyr sites is only partially understood4-7. Here we used combinatorial peptide arrays to profile the substrate sequence specificity of all human Tyr kinases. Globally, the Tyr kinases demonstrate considerable diversity in optimal patterns of residues surrounding the site of phosphorylation, revealing the functional organization of the human Tyr kinome by substrate motif preference. Using this information, Tyr kinases that are most compatible with phosphorylating any Tyr site can be identified. Analysis of mass spectrometry phosphoproteomic datasets using this compendium of kinase specificities accurately identifies specific Tyr kinases that are dysregulated in cells after stimulation with growth factors, treatment with anti-cancer drugs or expression of oncogenic variants. Furthermore, the topology of known Tyr signalling networks naturally emerged from a comparison of the sequence specificities of the Tyr kinases and the SH2 phosphotyrosine (pTyr)-binding domains. Finally we show that the intrinsic substrate specificity of Tyr kinases has remained fundamentally unchanged from worms to humans, suggesting that the fidelity between Tyr kinases and their protein substrate sequences has been maintained across hundreds of millions of years of evolution.


Subject(s)
Phosphotyrosine , Protein-Tyrosine Kinases , Substrate Specificity , Tyrosine , Animals , Humans , Amino Acid Motifs , Evolution, Molecular , Mass Spectrometry , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Phosphorylation , Phosphotyrosine/metabolism , Protein-Tyrosine Kinases/drug effects , Protein-Tyrosine Kinases/metabolism , Proteome/chemistry , Proteome/metabolism , Proteomics , Signal Transduction , src Homology Domains , Tyrosine/metabolism , Tyrosine/chemistry
3.
Biochem J ; 477(17): 3253-3269, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32776146

ABSTRACT

The carbohydrate response element binding protein (ChREBP) is a glucose-responsive transcription factor that plays a critical role in glucose-mediated induction of genes involved in hepatic glycolysis and lipogenesis. In response to fluctuating blood glucose levels ChREBP activity is regulated mainly by nucleocytoplasmic shuttling of ChREBP. Under high glucose ChREBP binds to importin α and importin ß and translocates into the nucleus to initiate transcription. We have previously shown that the nuclear localization signal site (NLS) for ChREBP is bipartite with the NLS extending from Arg158 to Lys190. Here, we report the 2.5 Šcrystal structure of the ChREBP-NLS peptide bound to importin α. The structure revealed that the NLS binding is monopartite, with the amino acid residues K171RRI174 from the ChREBP-NLS interacting with ARM2-ARM5 on importin α. We discovered that importin α also binds to the primary binding site of the 14-3-3 proteins with high affinity, which suggests that both importin α and 14-3-3 are each competing with the other for this broad-binding region (residues 117-196) on ChREBP. We screened a small compound library and identified two novel compounds that inhibit the ChREBP-NLS/importin α interaction, nuclear localization, and transcription activities of ChREBP. These candidate molecules support developing inhibitors of ChREBP that may be useful in treatment of obesity and the associated diseases.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/chemistry , Nuclear Localization Signals/chemistry , alpha Karyopherins/chemistry , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Crystallography, X-Ray , Hep G2 Cells , Humans , Nuclear Localization Signals/genetics , Nuclear Localization Signals/metabolism , alpha Karyopherins/genetics , alpha Karyopherins/metabolism
4.
J Biol Chem ; 293(25): 9604-9613, 2018 06 22.
Article in English | MEDLINE | ID: mdl-29739849

ABSTRACT

The pyruvate dehydrogenase complex (PDC) is a key control point of energy metabolism and is subject to regulation by multiple mechanisms, including posttranslational phosphorylation by pyruvate dehydrogenase kinase (PDK). Pharmacological modulation of PDC activity could provide a new treatment for diabetic cardiomyopathy, as dysregulated substrate selection is concomitant with decreased heart function. Dichloroacetate (DCA), a classic PDK inhibitor, has been used to treat diabetic cardiomyopathy, but the lack of specificity and side effects of DCA indicate a more specific inhibitor of PDK is needed. This study was designed to determine the effects of a novel and highly selective PDK inhibitor, 2((2,4-dihydroxyphenyl)sulfonyl) isoindoline-4,6-diol (designated PS10), on pyruvate oxidation in diet-induced obese (DIO) mouse hearts compared with DCA-treated hearts. Four groups of mice were studied: lean control, DIO, DIO + DCA, and DIO + PS10. Both DCA and PS10 improved glucose tolerance in the intact animal. Pyruvate metabolism was studied in perfused hearts supplied with physiological mixtures of long chain fatty acids, lactate, and pyruvate. Analysis was performed using conventional 1H and 13C isotopomer methods in combination with hyperpolarized [1-13C]pyruvate in the same hearts. PS10 and DCA both stimulated flux through PDC as measured by the appearance of hyperpolarized [13C]bicarbonate. DCA but not PS10 increased hyperpolarized [1-13C]lactate production. Total carbohydrate oxidation was reduced in DIO mouse hearts but increased by DCA and PS10, the latter doing so without increasing lactate production. The present results suggest that PS10 is a more suitable PDK inhibitor for treatment of diabetic cardiomyopathy.


Subject(s)
Carbohydrates/chemistry , Diet/adverse effects , Heart/physiology , Obesity/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyruvic Acid/metabolism , Animals , Energy Metabolism , Heart/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/drug therapy , Obesity/etiology , Obesity/pathology , Oxidation-Reduction , Protein Kinase Inhibitors/chemistry , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Pyruvate Dehydrogenase Complex/antagonists & inhibitors
5.
J Biol Chem ; 291(20): 10515-27, 2016 May 13.
Article in English | MEDLINE | ID: mdl-26984404

ABSTRACT

The carbohydrate-response element-binding protein (ChREBP) is a glucose-responsive transcription factor that plays an essential role in converting excess carbohydrate to fat storage in the liver. In response to glucose levels, ChREBP is regulated by nuclear/cytosol trafficking via interaction with 14-3-3 proteins, CRM-1 (exportin-1 or XPO-1), or importins. Nuclear localization of ChREBP was rapidly inhibited when incubated in branched-chain α-ketoacids, saturated and unsaturated fatty acids, or 5-aminoimidazole-4-carboxamide ribonucleotide. Here, we discovered that protein-free extracts of high fat-fed livers contained, in addition to ketone bodies, a new metabolite, identified as AMP, which specifically activates the interaction between ChREBP and 14-3-3. The crystal structure showed that AMP binds directly to the N terminus of ChREBP-α2 helix. Our results suggest that AMP inhibits the nuclear localization of ChREBP through an allosteric activation of ChREBP/14-3-3 interactions and not by activation of AMPK. AMP and ketone bodies together can therefore inhibit lipogenesis by restricting localization of ChREBP to the cytoplasm during periods of ketosis.


Subject(s)
Adenosine Monophosphate/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , 14-3-3 Proteins/metabolism , AMP-Activated Protein Kinases/metabolism , Allosteric Regulation , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/chemistry , Cell Nucleus/metabolism , Cells, Cultured , Crystallography, X-Ray , Diet, High-Fat , Dietary Sucrose/administration & dosage , Hepatocytes/metabolism , Karyopherins/metabolism , Ketone Bodies/metabolism , Male , Models, Biological , Rats , Rats, Sprague-Dawley , Receptors, Cytoplasmic and Nuclear/metabolism , Exportin 1 Protein
6.
Circulation ; 133(21): 2038-49, 2016 May 24.
Article in English | MEDLINE | ID: mdl-27059949

ABSTRACT

BACKGROUND: Although metabolic reprogramming is critical in the pathogenesis of heart failure, studies to date have focused principally on fatty acid and glucose metabolism. Contribution of amino acid metabolic regulation in the disease remains understudied. METHODS AND RESULTS: Transcriptomic and metabolomic analyses were performed in mouse failing heart induced by pressure overload. Suppression of branched-chain amino acid (BCAA) catabolic gene expression along with concomitant tissue accumulation of branched-chain α-keto acids was identified as a significant signature of metabolic reprogramming in mouse failing hearts and validated to be shared in human cardiomyopathy hearts. Molecular and genetic evidence identified the transcription factor Krüppel-like factor 15 as a key upstream regulator of the BCAA catabolic regulation in the heart. Studies using a genetic mouse model revealed that BCAA catabolic defect promoted heart failure associated with induced oxidative stress and metabolic disturbance in response to mechanical overload. Mechanistically, elevated branched-chain α-keto acids directly suppressed respiration and induced superoxide production in isolated mitochondria. Finally, pharmacological enhancement of branched-chain α-keto acid dehydrogenase activity significantly blunted cardiac dysfunction after pressure overload. CONCLUSIONS: BCAA catabolic defect is a metabolic hallmark of failing heart resulting from Krüppel-like factor 15-mediated transcriptional reprogramming. BCAA catabolic defect imposes a previously unappreciated significant contribution to heart failure.


Subject(s)
Amino Acids, Branched-Chain/genetics , Amino Acids, Branched-Chain/metabolism , Heart Failure/genetics , Heart Failure/metabolism , Animals , Heart Failure/pathology , Humans , Male , Metabolism/physiology , Metabolomics , Mice , Mice, Knockout , Transcriptome
7.
Photosynth Res ; 134(3): 317-328, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28975508

ABSTRACT

Based on in silico docking methods, five amino acids in glutamate synthase (Gln-467, His-1144, Asn-1147, Arg-1162, and Trp-676) likely constitute key binding residues in the interface of a glutamate synthase:ferredoxin complex. Although all interfacial mutants studied showed the ability to form a complex under low ionic strength, these docking mutations showed significantly less ferredoxin-dependent activities, while still retaining enzymatic activity. Furthermore, isothermal titration calorimetry showed a possible 1:2 molar ratio between the wild-type glutamate synthase and ferredoxin. However, each of our interfacial mutants showed only a 1:1 complex with ferredoxin, suggesting that the mutations directly affect the glutamate synthase:ferredoxin heterodimer interface.


Subject(s)
Amino Acid Oxidoreductases/metabolism , Ferredoxins/metabolism , Synechocystis/metabolism , Calorimetry , Circular Dichroism , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Static Electricity , Thermodynamics
8.
Proc Natl Acad Sci U S A ; 110(24): 9728-33, 2013 Jun 11.
Article in English | MEDLINE | ID: mdl-23716694

ABSTRACT

The branched-chain amino acids (BCAAs) leucine, isoleucine, and valine are elevated in maple syrup urine disease, heart failure, obesity, and type 2 diabetes. BCAA homeostasis is controlled by the mitochondrial branched-chain α-ketoacid dehydrogenase complex (BCKDC), which is negatively regulated by the specific BCKD kinase (BDK). Here, we used structure-based design to develop a BDK inhibitor, (S)-α-chloro-phenylpropionic acid [(S)-CPP]. Crystal structures of the BDK-(S)-CPP complex show that (S)-CPP binds to a unique allosteric site in the N-terminal domain, triggering helix movements in BDK. These conformational changes are communicated to the lipoyl-binding pocket, which nullifies BDK activity by blocking its binding to the BCKDC core. Administration of (S)-CPP to mice leads to the full activation and dephosphorylation of BCKDC with significant reduction in plasma BCAA concentrations. The results buttress the concept of targeting mitochondrial BDK as a pharmacological approach to mitigate BCAA accumulation in metabolic diseases and heart failure.


Subject(s)
Mitochondrial Proteins/chemistry , Protein Kinase Inhibitors/chemistry , Protein Kinases/chemistry , Protein Structure, Tertiary , Allosteric Regulation , Animals , Binding Sites/genetics , Chromatography, Liquid , Crystallography, X-Ray , Isoleucine/blood , Isoleucine/metabolism , Kinetics , Leucine/blood , Leucine/metabolism , Male , Mice , Mice, Inbred ICR , Mitochondrial Proteins/antagonists & inhibitors , Mitochondrial Proteins/metabolism , Models, Molecular , Molecular Structure , Mutation , Phenylpropionates/chemistry , Phenylpropionates/metabolism , Phenylpropionates/pharmacology , Phosphorylation , Protein Binding , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Tandem Mass Spectrometry , Valine/blood , Valine/metabolism
9.
J Biol Chem ; 289(7): 4432-43, 2014 Feb 14.
Article in English | MEDLINE | ID: mdl-24356970

ABSTRACT

Pyruvate dehydrogenase kinase isoforms (PDKs 1-4) negatively regulate activity of the mitochondrial pyruvate dehydrogenase complex by reversible phosphorylation. PDK isoforms are up-regulated in obesity, diabetes, heart failure, and cancer and are potential therapeutic targets for these important human diseases. Here, we employed a structure-guided design to convert a known Hsp90 inhibitor to a series of highly specific PDK inhibitors, based on structural conservation in the ATP-binding pocket. The key step involved the substitution of a carbonyl group in the parent compound with a sulfonyl in the PDK inhibitors. The final compound of this series, 2-[(2,4-dihydroxyphenyl)sulfonyl]isoindoline-4,6-diol, designated PS10, inhibits all four PDK isoforms with IC50 = 0.8 µM for PDK2. The administration of PS10 (70 mg/kg) to diet-induced obese mice significantly augments pyruvate dehydrogenase complex activity with reduced phosphorylation in different tissues. Prolonged PS10 treatments result in improved glucose tolerance and notably lessened hepatic steatosis in the mouse model. The results support the pharmacological approach of targeting PDK to control both glucose and fat levels in obesity and type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Enzyme Inhibitors , Fatty Liver/drug therapy , Isoindoles/chemistry , Isoindoles/pharmacology , Obesity/drug therapy , Protein Serine-Threonine Kinases/antagonists & inhibitors , Sulfones/chemistry , Sulfones/pharmacology , Animals , Diabetes Mellitus, Type 2/enzymology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Drug Delivery Systems , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Fatty Liver/enzymology , Fatty Liver/genetics , Fatty Liver/pathology , HSP90 Heat-Shock Proteins , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Male , Mice , Mice, Obese , Obesity/enzymology , Obesity/genetics , Obesity/pathology , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase
10.
J Biol Chem ; 289(30): 20583-93, 2014 Jul 25.
Article in English | MEDLINE | ID: mdl-24895126

ABSTRACT

The mitochondrial branched-chain α-ketoacid dehydrogenase complex (BCKDC) is negatively regulated by reversible phosphorylation.BCKDC kinase (BDK) inhibitors that augment BCKDC flux have been shown to reduce branched-chain amino acid (BCAA) concentrations in vivo. In the present study, we employed high-throughput screens to identify compound 3,6- dichlorobenzo[b]thiophene-2-carboxylic acid (BT2) as a novel BDK inhibitor (IC(50) = 3.19 µM). BT2 binds to the same site in BDK as other known allosteric BDK inhibitors, including (S)-α-cholorophenylproprionate ((S)-CPP). BT2 binding to BDK triggers helix movements in the N-terminal domain, resulting in the dissociation of BDK from the BCKDC accompanied by accelerated degradation of the released kinase in vivo. BT2 shows excellent pharmacokinetics (terminal T(1/2) = 730 min) and metabolic stability (no degradation in 240 min), which are significantly better than those of (S)-CPP. BT2, its analog 3-chloro-6-fluorobenzo[ b]thiophene-2-carboxylic acid (BT2F), and a prodrug of BT2 (i.e. N-(4-acetamido-1,2,5-oxadiazol-3-yl)-3,6-dichlorobenzo[ b]thiophene-2-carboxamide (BT3)) significantly increase residual BCKDC activity in cultured cells and primary hepatocytes from patients and a mouse model of maple syrup urine disease. Administration of BT2 at 20 mg/kg/day to wild-type mice for 1 week leads to nearly complete dephosphorylation and maximal activation of BCKDC in heart, muscle, kidneys, and liver with reduction in plasma BCAA concentrations. The availability of benzothiophene carboxylate derivatives as stable BDK inhibitors may prove useful for the treatment of metabolic disease caused by elevated BCAA concentrations.


Subject(s)
Enzyme Inhibitors/pharmacology , Hepatocytes/enzymology , Ketoglutarate Dehydrogenase Complex/antagonists & inhibitors , Ketoglutarate Dehydrogenase Complex/metabolism , Proteolysis/drug effects , Thiophenes/pharmacology , Allosteric Regulation/drug effects , Animals , Cell Line , Dose-Response Relationship, Drug , Enzyme Stability/drug effects , Enzyme Stability/genetics , Hepatocytes/pathology , Humans , Ketoglutarate Dehydrogenase Complex/genetics , Mice , Mice, Knockout , Thiophenes/pharmacokinetics
11.
J Biol Chem ; 288(39): 28358-67, 2013 Sep 27.
Article in English | MEDLINE | ID: mdl-23918932

ABSTRACT

The carbohydrate response element-binding protein (ChREBP) is a glucose-responsive transcription factor that plays a critical role in converting excess carbohydrate to storage fat in liver. In response to changing glucose levels, ChREBP activity is regulated by nucleo-cytoplasmic shuttling of ChREBP via interactions with 14-3-3 proteins and importins. The nuclear/cytosol trafficking is regulated partly by phosphorylation/dephosphorylation of serine 196 mediated by cAMP-dependent protein kinase and protein phosphatase. We show here that protein-free extracts of starved and high fat-fed livers contain metabolites that activate interaction of ChREBP·14-3-3 and inhibit the ChREBP/importin α interaction, resulting in cytosolic localization. These metabolites were identified as ß-hydroxybutyrate and acetoacetate. Nuclear localization of GFP-ChREBP is rapidly inhibited in hepatocytes incubated in ß-hydroxybutyrate or fatty acids, and the observed inhibition is closely correlated with the production of ketone bodies. These observations show that ketone bodies play an important role in the regulation of ChREBP activity by restricting ChREBP localization to the cytoplasm, thus inhibiting fat synthesis during periods of ketosis.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/physiology , Gene Expression Regulation , Ketone Bodies/metabolism , 14-3-3 Proteins/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Biological Transport , Carbohydrate Metabolism , Cell Nucleus/metabolism , Cytosol/metabolism , Hepatocytes/cytology , Humans , Lipogenesis , Liver/enzymology , Liver/metabolism , Male , Rats , Signal Transduction
12.
Science ; 384(6701): eadj4301, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38870309

ABSTRACT

Mitochondria are critical for proper organ function and mechanisms to promote mitochondrial health during regeneration would benefit tissue homeostasis. We report that during liver regeneration, proliferation is suppressed in electron transport chain (ETC)-dysfunctional hepatocytes due to an inability to generate acetyl-CoA from peripheral fatty acids through mitochondrial ß-oxidation. Alternative modes for acetyl-CoA production from pyruvate or acetate are suppressed in the setting of ETC dysfunction. This metabolic inflexibility forces a dependence on ETC-functional mitochondria and restoring acetyl-CoA production from pyruvate is sufficient to allow ETC-dysfunctional hepatocytes to proliferate. We propose that metabolic inflexibility within hepatocytes can be advantageous by limiting the expansion of ETC-dysfunctional cells.


Subject(s)
Acetyl Coenzyme A , Hepatocytes , Liver Regeneration , Mitochondria, Liver , Pyruvic Acid , Animals , Hepatocytes/metabolism , Acetyl Coenzyme A/metabolism , Mice , Pyruvic Acid/metabolism , Mitochondria, Liver/metabolism , Oxidation-Reduction , Cell Proliferation , Fatty Acids/metabolism , Liver/metabolism , Electron Transport , Mice, Inbred C57BL , Mitochondria/metabolism , Male
13.
bioRxiv ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39211078

ABSTRACT

Adipogenin (Adig) is an evolutionarily conserved microprotein and is highly expressed in adipose tissues and testis. Here, we identify Adig as a critical regulator for lipid droplet formation in adipocytes. We determine that Adig interacts directly with seipin, leading to the formation of a rigid complex. We solve the structure of the seipin/Adig complex by Cryo-EM at 2.98Å overall resolution. Surprisingly, seipin can form two unique oligomers, undecamers and dodecamers. Adig selectively binds to the dodecameric seipin complex. We further find that Adig promotes seipin assembly by stabilizing and bridging adjacent seipin subunits. Functionally, Adig plays a key role in generating lipid droplets in adipocytes. In mice, inducible overexpression of Adig in adipocytes substantially increases fat mass, with enlarged lipid droplets. It also elevates thermogenesis during cold exposure. In contrast, inducible adipocyte-specific Adig knockout mice manifest aberrant lipid droplet formation in brown adipose tissues and impaired cold tolerance.

14.
J Biol Chem ; 287(12): 9178-92, 2012 Mar 16.
Article in English | MEDLINE | ID: mdl-22291014

ABSTRACT

The branched-chain α-ketoacid dehydrogenase phosphatase (BDP) component of the human branched-chain α-ketoacid dehydrogenase complex (BCKDC) has been expressed in Escherichia coli and purified in the soluble form. The monomeric BDP shows a strict dependence on Mn(2+) ions for phosphatase activity, whereas Mg(2+) and Ca(2+) ions do not support catalysis. Metal binding constants for BDP, determined by competition isothermal titration calorimetry, are 2.4 nm and 10 µm for Mn(2+) and Mg(2+) ions, respectively. Using the phosphorylated decarboxylase component (p-E1b) of BCKDC as a substrate, BDP shows a specific activity of 68 nmol/min/mg. The Ca(2+)-independent binding of BDP to the 24-meric transacylase (dihydrolipoyl transacylase; E2b) core of BCKDC results in a 3-fold increase in the dephosphorylation rate of p-E1b. However, the lipoyl prosthetic group on E2b is not essential for BDP binding or E2b-stimulated phosphatase activity. Acidic residues in the C-terminal linker of the E2b lipoyl domain are essential for the interaction between BDP and E2b. The BDP structure was determined by x-ray crystallography to 2.4 Å resolution. The BDP structure is dominated by a central ß-sandwich. There are two protrusions forming a narrow cleft ∼10 Å wide, which constitutes the active site. The carboxylate moieties of acidic residues Asp-109, Asp-207, Asp-298, and Asp-337 in the active-site cleft participate in binding two metal ions. Substitutions of these residues with alanine nullify BDP phosphatase activity. Alteration of the nearby Arg-104 increases the K(m) for p-E1b peptide by 60-fold, suggesting that this residue is critical for the recognition of the native p-E1b protein.


Subject(s)
Mitochondria/enzymology , Phosphoprotein Phosphatases/chemistry , Phosphoprotein Phosphatases/metabolism , Amino Acid Sequence , Catalytic Domain , Crystallography, X-Ray , Humans , Kinetics , Magnesium/metabolism , Mitochondria/chemistry , Mitochondria/genetics , Models, Molecular , Molecular Sequence Data , Phosphoprotein Phosphatases/genetics , Protein Phosphatase 2C
15.
J Biol Chem ; 287(50): 41914-21, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23086940

ABSTRACT

Carbohydrate response element-binding protein (ChREBP) is an insulin-independent, glucose-responsive transcription factor that is expressed at high levels in liver hepatocytes where it plays a critical role in converting excess carbohydrates to fat for storage. In response to fluctuating glucose levels, hepatic ChREBP activity is regulated in large part by nucleocytoplasmic shuttling of ChREBP protein via interactions with 14-3-3 proteins. The N-terminal ChREBP regulatory region is necessary and sufficient for glucose-responsive ChREBP nuclear import and export. Here, we report the crystal structure of a complex of 14-3-3ß bound to the N-terminal regulatory region of ChREBP at 2.4 Å resolution. The crystal structure revealed that the α2 helix of ChREBP (residues 117-137) adopts a well defined α-helical conformation and binds 14-3-3 in a phosphorylation-independent manner that is different from all previously characterized 14-3-3 and target protein-binding modes. ChREBP α2 interacts with 14-3-3 through both electrostatic and van der Waals interactions, and the binding is partially mediated by a free sulfate or phosphate. Structure-based mutagenesis and binding assays indicated that disrupting the observed 14-3-3 and ChREBP α2 interface resulted in a loss of complex formation, thus validating the novel protein interaction mode in the 14-3-3ß·ChREBP α2 complex.


Subject(s)
14-3-3 Proteins/chemistry , Multiprotein Complexes/chemistry , Nuclear Proteins/chemistry , Transcription Factors/chemistry , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Crystallography, X-Ray , Mice , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Nuclear Export Signals , Nuclear Localization Signals/chemistry , Nuclear Localization Signals/genetics , Nuclear Localization Signals/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Peptide Mapping , Protein Binding , Protein Structure, Quaternary , Protein Structure, Secondary , Transcription Factors/genetics , Transcription Factors/metabolism
16.
Hum Mol Genet ; 20(4): 631-40, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21098507

ABSTRACT

Therapy with sodium phenylacetate/benzoate or sodium phenylbutyrate in urea cycle disorder patients has been associated with a selective reduction in branched-chain amino acids (BCAA) in spite of adequate dietary protein intake. Based on this clinical observation, we investigated the potential of phenylbutyrate treatment to lower BCAA and their corresponding α-keto acids (BCKA) in patients with classic and variant late-onset forms of maple syrup urine disease (MSUD). We also performed in vitro and in vivo experiments to elucidate the mechanism for this effect. We found that BCAA and BCKA are both significantly reduced following phenylbutyrate therapy in control subjects and in patients with late-onset, intermediate MSUD. In vitro treatment with phenylbutyrate of control fibroblasts and lymphoblasts resulted in an increase in the residual enzyme activity, while treatment of MSUD cells resulted in the variable response which did not simply predict the biochemical response in the patients. In vivo phenylbutyrate increases the proportion of active hepatic enzyme and unphosphorylated form over the inactive phosphorylated form of the E1α subunit of the branched-chain α-keto acid dehydrogenase complex (BCKDC). Using recombinant enzymes, we show that phenylbutyrate prevents phosphorylation of E1α by inhibition of the BCKDC kinase to activate BCKDC overall activity, providing a molecular explanation for the effect of phenylbutyrate in a subset of MSUD patients. Phenylbutyrate treatment may be a valuable treatment for reducing the plasma levels of neurotoxic BCAA and their corresponding BCKA in a subset of MSUD patients and studies of its long-term efficacy are indicated.


Subject(s)
Maple Syrup Urine Disease/drug therapy , Phenylbutyrates/therapeutic use , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/blood , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Adolescent , Adult , Amino Acids, Branched-Chain/blood , Amino Acids, Branched-Chain/metabolism , Animals , Cells, Cultured , Child , Child, Preschool , Female , Fibroblasts/drug effects , Fibroblasts/enzymology , Humans , Inhibitory Concentration 50 , Keto Acids/blood , Keto Acids/metabolism , Male , Maple Syrup Urine Disease/blood , Maple Syrup Urine Disease/enzymology , Mice , Mice, Inbred C57BL , Phenylbutyrates/metabolism , Phenylbutyrates/pharmacology , Phosphorylation/drug effects , Young Adult
17.
J Biol Chem ; 286(32): 28119-27, 2011 Aug 12.
Article in English | MEDLINE | ID: mdl-21665952

ABSTRACT

Carbohydrate response element-binding protein (ChREBP) is a glucose-responsive transcription factor that plays a critical role in the glucose-mediated induction of genes involved in hepatic glycolysis and lipogenesis. Circulating blood glucose levels affect ChREBP activity in hepatocytes largely by post-translational mechanisms that include phosphorylation-dependent subcellular localization. Previously, we showed that ChREBP is retained in the cytosol by phosphorylation-dependent binding to 14-3-3 protein dimers and identified the α2 helix (residues 125-135) phospho-Ser(140) domain as the primary 14-3-3 binding site (Sakiyama, H., Wynn, R. M., Lee, W. R., Fukasawa, M., Mizuguchi, H., Gardner, K. H., Repa, J. J., and Uyeda, K. (2008) J. Biol. Chem. 283, 24899-24908). To enter the nucleus in response to high glucose, ChREBP must bind importin-α; this heterodimer then forms a complex with importin-ß to interact with the nuclear pore complex. In this work, we recharacterized the importin-α binding nuclear localization signal (NLS) of rat ChREBP, identifying it as an extended classical bipartite NLS encompassing minimally residues 158-190. Replacing Lys(159)/Lys(190) residues of ChREBP with alanine resulted in loss of importin-α binding, glucose-stimulated transcriptional activity and nuclear localization. A secondary 14-3-3 protein binding site also was identified, the α3 helix (residues 170-190) phospho-Ser(196) domain. Importin-α and 14-3-3 were found to bind competitively to this secondary site. These results suggest an important mechanism by which importin-α and 14-3-3 control movement of ChREBP in and out of the nucleus in response to changes in glucose levels in liver and thus further suggest that the extended NLS of ChREBP is a critical glucose-sensing, glucose-responsive site.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Nucleus/metabolism , Hepatocytes/metabolism , Liver/metabolism , Nuclear Localization Signals/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , alpha Karyopherins/metabolism , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Binding Sites , Blood Glucose/metabolism , Cell Nucleus/genetics , Cells, Cultured , Hepatocytes/cytology , Liver/cytology , Male , Mice , Nuclear Localization Signals/genetics , Nuclear Proteins/genetics , Phosphorylation/physiology , Protein Binding/physiology , Protein Structure, Quaternary , Protein Structure, Secondary , Rats , Rats, Sprague-Dawley , Transcription Factors/genetics , alpha Karyopherins/genetics
18.
J Biol Chem ; 286(26): 23476-88, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21543315

ABSTRACT

The purified mammalian branched-chain α-ketoacid dehydrogenase complex (BCKDC), which catalyzes the oxidative decarboxylation of branched-chain α-keto acids, is essentially devoid of the constituent dihydrolipoamide dehydrogenase component (E3). The absence of E3 is associated with the low affinity of the subunit-binding domain of human BCKDC (hSBDb) for hE3. In this work, sequence alignments of hSBDb with the E3-binding domain (E3BD) of the mammalian pyruvate dehydrogenase complex show that hSBDb has an arginine at position 118, where E3BD features an asparagine. Substitution of Arg-118 with an asparagine increases the binding affinity of the R118N hSBDb variant (designated hSBDb*) for hE3 by nearly 2 orders of magnitude. The enthalpy of the binding reaction changes from endothermic with the wild-type hSBDb to exothermic with the hSBDb* variant. This higher affinity interaction allowed the determination of the crystal structure of the hE3/hSBDb* complex to 2.4-Å resolution. The structure showed that the presence of Arg-118 poses a unique, possibly steric and/or electrostatic incompatibility that could impede E3 interactions with the wild-type hSBDb. Compared with the E3/E3BD structure, the hE3/hSBDb* structure has a smaller interfacial area. Solution NMR data corroborated the interactions of hE3 with Arg-118 and Asn-118 in wild-type hSBDb and mutant hSBDb*, respectively. The NMR results also showed that the interface between hSBDb and hE3 does not change significantly from hSBDb to hSBDb*. Taken together, our results represent a starting point for explaining the long standing enigma that the E2b core of the BCKDC binds E3 far more weakly relative to other α-ketoacid dehydrogenase complexes.


Subject(s)
Dihydrolipoamide Dehydrogenase/chemistry , Amino Acid Substitution , Crystallography, X-Ray , Dihydrolipoamide Dehydrogenase/genetics , Dihydrolipoamide Dehydrogenase/metabolism , Humans , Mutation, Missense , Protein Structure, Quaternary , Structure-Activity Relationship
19.
Nat Metab ; 4(12): 1775-1791, 2022 12.
Article in English | MEDLINE | ID: mdl-36443523

ABSTRACT

The branched-chain aminotransferase isozymes BCAT1 and BCAT2, segregated into distinct subcellular compartments and tissues, initiate the catabolism of branched-chain amino acids (BCAAs). However, whether and how BCAT isozymes cooperate with downstream enzymes to control BCAA homeostasis in an intact organism remains largely unknown. Here, we analyse system-wide metabolomic changes in BCAT1- and BCAT2-deficient mouse models. Loss of BCAT2 but not BCAT1 leads to accumulation of BCAAs and branched-chain α-keto acids (BCKAs), causing morbidity and mortality that can be ameliorated by dietary BCAA restriction. Through proximity labelling, isotope tracing and enzymatic assays, we provide evidence for the formation of a mitochondrial BCAA metabolon involving BCAT2 and branched-chain α-keto acid dehydrogenase. Disabling the metabolon contributes to BCAT2 deficiency-induced phenotypes, which can be reversed by BCAT1-mediated BCKA reamination. These findings establish a role for metabolon formation in BCAA metabolism in vivo and suggest a new strategy to modulate this pathway in diseases involving dysfunctional BCAA metabolism.


Subject(s)
Amino Acids, Branched-Chain , Isoenzymes , Mice , Animals , Isoenzymes/metabolism , Amino Acids, Branched-Chain/metabolism , Oxidation-Reduction , Phenotype , Transaminases/metabolism , Homeostasis
20.
J Biol Chem ; 285(1): 265-76, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19858196

ABSTRACT

The catabolic pathway for branched-chain amino acids includes deamination followed by oxidative decarboxylation of the deaminated product branched-chain alpha-keto acids, catalyzed by the mitochondrial branched-chain aminotransferase (BCATm) and branched-chain alpha-keto acid dehydrogenase enzyme complex (BCKDC). We found that BCATm binds to the E1 decarboxylase of BCKDC, forming a metabolon that allows channeling of branched-chain alpha-keto acids from BCATm to E1. The protein complex also contains glutamate dehydrogenase (GDH1), 4-nitrophenylphosphatase domain and non-neuronal SNAP25-like protein homolog 1, pyruvate carboxylase, and BCKDC kinase. GDH1 binds to the pyridoxamine 5'-phosphate (PMP) form of BCATm (PMP-BCATm) but not to the pyridoxal 5'-phosphate-BCATm and other metabolon proteins. Leucine activates GDH1, and oxidative deamination of glutamate is increased further by addition of PMP-BCATm. Isoleucine and valine are not allosteric activators of GDH1, but in the presence of 5'-phosphate-BCATm, they convert BCATm to PMP-BCATm, stimulating GDH1 activity. Sensitivity to ADP activation of GDH1 was unaffected by PMP-BCATm; however, addition of a 3 or higher molar ratio of PMP-BCATm to GDH1 protected GDH1 from GTP inhibition by 50%. Kinetic results suggest that GDH1 facilitates regeneration of the form of BCATm that binds to E1 decarboxylase of the BCKDC, promotes metabolon formation, branched-chain amino acid oxidation, and cycling of nitrogen through glutamate.


Subject(s)
Amino Acids, Branched-Chain/metabolism , Glutamate Dehydrogenase/metabolism , Metabolome , Mitochondria/enzymology , Transaminases/metabolism , Allosteric Regulation/drug effects , Animals , Biocatalysis/drug effects , Chromatography, Affinity , Cross-Linking Reagents/pharmacology , Deamination/drug effects , Decarboxylation/drug effects , Male , Metabolome/drug effects , Mitochondria/drug effects , Oxidation-Reduction/drug effects , Phosphorylation/drug effects , Protein Binding/drug effects , Pyridoxamine/analogs & derivatives , Pyridoxamine/metabolism , Rats , Rats, Sprague-Dawley , Tissue Distribution/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL