Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 450
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 37: 599-624, 2019 04 26.
Article in English | MEDLINE | ID: mdl-31026411

ABSTRACT

The intestinal microbiota plays a crucial role in influencing the development of host immunity, and in turn the immune system also acts to regulate the microbiota through intestinal barrier maintenance and immune exclusion. Normally, these interactions are homeostatic, tightly controlled, and organized by both innate and adaptive immune responses. However, a combination of environmental exposures and genetic defects can result in a break in tolerance and intestinal homeostasis. The outcomes of these interactions at the mucosal interface have broad, systemic effects on host immunity and the development of chronic inflammatory or autoimmune disease. The underlying mechanisms and pathways the microbiota can utilize to regulate these diseases are just starting to emerge. Here, we discuss the recent evidence in this area describing the impact of microbiota-immune interactions during inflammation and autoimmunity, with a focus on barrier function and CD4+ T cell regulation.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Diabetes Mellitus, Type 1/microbiology , Gastrointestinal Microbiome/immunology , Inflammation/microbiology , Inflammatory Bowel Diseases/microbiology , Intestinal Mucosa/microbiology , Animals , Autoimmunity , Diabetes Mellitus, Type 1/immunology , Homeostasis , Humans , Immune Tolerance , Immunomodulation , Inflammation/immunology , Inflammatory Bowel Diseases/immunology , Intestinal Mucosa/immunology
2.
Cell ; 187(15): 3888-3903.e18, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38870946

ABSTRACT

Defective host defenses later in life are associated with changes in immune cell activities, suggesting that age-specific considerations are needed in immunotherapy approaches. In this study, we found that PD-1 and CTLA4-based cancer immunotherapies are unable to eradicate tumors in elderly mice. This defect in anti-tumor activity correlated with two known age-associated immune defects: diminished abundance of systemic naive CD8+ T cells and weak migratory activities of dendritic cells (DCs). We identified a vaccine adjuvant, referred to as a DC hyperactivator, which corrects DC migratory defects in the elderly. Vaccines containing tumor antigens and DC hyperactivators induced T helper type 1 (TH1) CD4+ T cells with cytolytic activity that drive anti-tumor immunity in elderly mice. When administered early in life, DC hyperactivators were the only adjuvant identified that elicited anti-tumor CD4+ T cells that persisted into old age. These results raise the possibility of correcting age-associated immune defects through DC manipulation.


Subject(s)
CD4-Positive T-Lymphocytes , Dendritic Cells , Mice, Inbred C57BL , Dendritic Cells/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , Mice , Aging/immunology , CD8-Positive T-Lymphocytes/immunology , Immunotherapy/methods , Cancer Vaccines/immunology , Female , Neoplasms/immunology , Neoplasms/therapy , Programmed Cell Death 1 Receptor/metabolism , CTLA-4 Antigen/metabolism , Cell Movement , Antigens, Neoplasm/immunology
3.
Cell ; 187(8): 1834-1852.e19, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38569543

ABSTRACT

Accumulating evidence suggests that cardiovascular disease (CVD) is associated with an altered gut microbiome. Our understanding of the underlying mechanisms has been hindered by lack of matched multi-omic data with diagnostic biomarkers. To comprehensively profile gut microbiome contributions to CVD, we generated stool metagenomics and metabolomics from 1,429 Framingham Heart Study participants. We identified blood lipids and cardiovascular health measurements associated with microbiome and metabolome composition. Integrated analysis revealed microbial pathways implicated in CVD, including flavonoid, γ-butyrobetaine, and cholesterol metabolism. Species from the Oscillibacter genus were associated with decreased fecal and plasma cholesterol levels. Using functional prediction and in vitro characterization of multiple representative human gut Oscillibacter isolates, we uncovered conserved cholesterol-metabolizing capabilities, including glycosylation and dehydrogenation. These findings suggest that cholesterol metabolism is a broad property of phylogenetically diverse Oscillibacter spp., with potential benefits for lipid homeostasis and cardiovascular health.


Subject(s)
Bacteria , Cardiovascular Diseases , Cholesterol , Gastrointestinal Microbiome , Humans , Bacteria/metabolism , Cardiovascular Diseases/metabolism , Cholesterol/analysis , Cholesterol/blood , Cholesterol/metabolism , Feces/chemistry , Longitudinal Studies , Metabolome , Metabolomics , RNA, Ribosomal, 16S/metabolism
4.
Annu Rev Immunol ; 34: 31-64, 2016 05 20.
Article in English | MEDLINE | ID: mdl-27168239

ABSTRACT

Inflammatory bowel disease (IBD), including Crohn disease and ulcerative colitis, is characterized by chronic intestinal inflammation due to a complex interaction of genetic determinants, disruption of mucosal barriers, aberrant inflammatory signals, loss of tolerance, and environmental triggers. Importantly, the incidence of pediatric IBD is rising, particularly in children younger than 10 years. In this review, we discuss the clinical presentation of these patients and highlight environmental exposures that may affect disease risk, particularly among people with a background genetic risk. With regard to both children and adults, we review advancements in understanding the intestinal epithelium, the mucosal immune system, and the resident microbiota, describing how dysfunction at any level can lead to diseases like IBD. We conclude with future directions for applying advances in IBD genetics to better understand pathogenesis and develop therapeutics targeting key pathogenic nodes.


Subject(s)
Dysbiosis/immunology , Gastrointestinal Microbiome/immunology , Immunity, Mucosal , Inflammation/immunology , Inflammatory Bowel Diseases/immunology , Intestinal Mucosa/immunology , Adult , Animals , Child , Child, Preschool , Environmental Exposure/adverse effects , Gene-Environment Interaction , Genetic Predisposition to Disease , Humans , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/therapy , Molecular Targeted Therapy
5.
Cell ; 186(11): 2456-2474.e24, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37137305

ABSTRACT

Systematic evaluation of the impact of genetic variants is critical for the study and treatment of human physiology and disease. While specific mutations can be introduced by genome engineering, we still lack scalable approaches that are applicable to the important setting of primary cells, such as blood and immune cells. Here, we describe the development of massively parallel base-editing screens in human hematopoietic stem and progenitor cells. Such approaches enable functional screens for variant effects across any hematopoietic differentiation state. Moreover, they allow for rich phenotyping through single-cell RNA sequencing readouts and separately for characterization of editing outcomes through pooled single-cell genotyping. We efficiently design improved leukemia immunotherapy approaches, comprehensively identify non-coding variants modulating fetal hemoglobin expression, define mechanisms regulating hematopoietic differentiation, and probe the pathogenicity of uncharacterized disease-associated variants. These strategies will advance effective and high-throughput variant-to-function mapping in human hematopoiesis to identify the causes of diverse diseases.


Subject(s)
Gene Editing , Hematopoietic Stem Cells , Humans , Cell Differentiation , CRISPR-Cas Systems , Genome , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Genetic Engineering , Single-Cell Analysis
6.
Cell ; 185(26): 4921-4936.e15, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36563663

ABSTRACT

The perinatal period represents a critical window for cognitive and immune system development, promoted by maternal and infant gut microbiomes and their metabolites. Here, we tracked the co-development of microbiomes and metabolomes from late pregnancy to 1 year of age using longitudinal multi-omics data from a cohort of 70 mother-infant dyads. We discovered large-scale mother-to-infant interspecies transfer of mobile genetic elements, frequently involving genes associated with diet-related adaptations. Infant gut metabolomes were less diverse than maternal but featured hundreds of unique metabolites and microbe-metabolite associations not detected in mothers. Metabolomes and serum cytokine signatures of infants who received regular-but not extensively hydrolyzed-formula were distinct from those of exclusively breastfed infants. Taken together, our integrative analysis expands the concept of vertical transmission of the gut microbiome and provides original insights into the development of maternal and infant microbiomes and metabolomes during late pregnancy and early life.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Female , Humans , Infant , Pregnancy , Gastrointestinal Microbiome/genetics , Microbiota/genetics , Mothers , Breast Feeding , Feces , Interspersed Repetitive Sequences
7.
Cell ; 185(23): 4280-4297.e12, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36323316

ABSTRACT

The gut microbiome has an important role in infant health and development. We characterized the fecal microbiome and metabolome of 222 young children in Dhaka, Bangladesh during the first two years of life. A distinct Bifidobacterium longum clade expanded with introduction of solid foods and harbored enzymes for utilizing both breast milk and solid food substrates. The clade was highly prevalent in Bangladesh, present globally (at lower prevalence), and correlated with many other gut taxa and metabolites, indicating an important role in gut ecology. We also found that the B. longum clades and associated metabolites were implicated in childhood diarrhea and early growth, including positive associations between growth measures and B. longum subsp. infantis, indolelactate and N-acetylglutamate. Our data demonstrate geographic, cultural, seasonal, and ecological heterogeneity that should be accounted for when identifying microbiome factors implicated in and potentially benefiting infant development.


Subject(s)
Bifidobacterium longum , Infant , Child , Female , Humans , Child, Preschool , Bifidobacterium longum/metabolism , Bifidobacterium/metabolism , Weaning , Oligosaccharides/metabolism , Bangladesh , Milk, Human , Feces/microbiology
8.
Cell ; 184(8): 2053-2067.e18, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33794144

ABSTRACT

Industrialization has impacted the human gut ecosystem, resulting in altered microbiome composition and diversity. Whether bacterial genomes may also adapt to the industrialization of their host populations remains largely unexplored. Here, we investigate the extent to which the rates and targets of horizontal gene transfer (HGT) vary across thousands of bacterial strains from 15 human populations spanning a range of industrialization. We show that HGTs have accumulated in the microbiome over recent host generations and that HGT occurs at high frequency within individuals. Comparison across human populations reveals that industrialized lifestyles are associated with higher HGT rates and that the functions of HGTs are related to the level of host industrialization. Our results suggest that gut bacteria continuously acquire new functionality based on host lifestyle and that high rates of HGT may be a recent development in human history linked to industrialization.


Subject(s)
Bacteria/genetics , Gastrointestinal Microbiome , Gene Transfer, Horizontal , Bacteria/classification , Bacteria/isolation & purification , DNA, Bacterial/chemistry , DNA, Bacterial/isolation & purification , DNA, Bacterial/metabolism , Feces/microbiology , Genome, Bacterial , Humans , Phylogeny , Rural Population , Sequence Analysis, DNA , Urban Population , Whole Genome Sequencing
9.
Cell ; 184(12): 3205-3221.e24, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34015271

ABSTRACT

Monoclonal antibodies (mAbs) are a focus in vaccine and therapeutic design to counteract severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants. Here, we combined B cell sorting with single-cell VDJ and RNA sequencing (RNA-seq) and mAb structures to characterize B cell responses against SARS-CoV-2. We show that the SARS-CoV-2-specific B cell repertoire consists of transcriptionally distinct B cell populations with cells producing potently neutralizing antibodies (nAbs) localized in two clusters that resemble memory and activated B cells. Cryo-electron microscopy structures of selected nAbs from these two clusters complexed with SARS-CoV-2 spike trimers show recognition of various receptor-binding domain (RBD) epitopes. One of these mAbs, BG10-19, locks the spike trimer in a closed conformation to potently neutralize SARS-CoV-2, the recently arising mutants B.1.1.7 and B.1.351, and SARS-CoV and cross-reacts with heterologous RBDs. Together, our results characterize transcriptional differences among SARS-CoV-2-specific B cells and uncover cross-neutralizing Ab targets that will inform immunogen and therapeutic design against coronaviruses.


Subject(s)
Antibodies, Neutralizing/immunology , B-Lymphocytes/metabolism , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/chemistry , Antibodies, Viral/blood , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antigen-Antibody Complex/chemistry , Antigen-Antibody Complex/metabolism , Antigen-Antibody Reactions , B-Lymphocytes/cytology , B-Lymphocytes/virology , COVID-19/pathology , COVID-19/virology , Cryoelectron Microscopy , Crystallography, X-Ray , Gene Expression Profiling , Humans , Immunoglobulin A/immunology , Immunoglobulin Variable Region/chemistry , Immunoglobulin Variable Region/genetics , Protein Domains/immunology , Protein Multimerization , Protein Structure, Quaternary , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Sequence Analysis, RNA , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
10.
Cell ; 182(6): 1606-1622.e23, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32888429

ABSTRACT

The enteric nervous system (ENS) coordinates diverse functions in the intestine but has eluded comprehensive molecular characterization because of the rarity and diversity of cells. Here we develop two methods to profile the ENS of adult mice and humans at single-cell resolution: RAISIN RNA-seq for profiling intact nuclei with ribosome-bound mRNA and MIRACL-seq for label-free enrichment of rare cell types by droplet-based profiling. The 1,187,535 nuclei in our mouse atlas include 5,068 neurons from the ileum and colon, revealing extraordinary neuron diversity. We highlight circadian expression changes in enteric neurons, show that disease-related genes are dysregulated with aging, and identify differences between the ileum and proximal/distal colon. In humans, we profile 436,202 nuclei, recovering 1,445 neurons, and identify conserved and species-specific transcriptional programs and putative neuro-epithelial, neuro-stromal, and neuro-immune interactions. The human ENS expresses risk genes for neuropathic, inflammatory, and extra-intestinal diseases, suggesting neuronal contributions to disease.


Subject(s)
Enteric Nervous System/cytology , Enteric Nervous System/metabolism , Gene Expression Regulation, Developmental/genetics , Neurons/metabolism , Nissl Bodies/metabolism , RNA, Messenger/metabolism , Single-Cell Analysis/methods , Aging/genetics , Aging/metabolism , Animals , Circadian Clocks/genetics , Colon/cytology , Colon/metabolism , Endoplasmic Reticulum, Rough/genetics , Endoplasmic Reticulum, Rough/metabolism , Endoplasmic Reticulum, Rough/ultrastructure , Epithelial Cells/metabolism , Female , Genetic Predisposition to Disease/genetics , Humans , Ileum/cytology , Ileum/metabolism , Inflammation/genetics , Inflammation/metabolism , Intestinal Diseases/genetics , Intestinal Diseases/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Electron, Transmission , Nervous System Diseases/genetics , Nervous System Diseases/metabolism , Neuroglia/cytology , Neuroglia/metabolism , Neurons/cytology , Nissl Bodies/genetics , Nissl Bodies/ultrastructure , RNA, Messenger/genetics , RNA-Seq , Ribosomes/metabolism , Ribosomes/ultrastructure , Stromal Cells/metabolism
11.
Nat Immunol ; 23(7): 1063-1075, 2022 07.
Article in English | MEDLINE | ID: mdl-35668320

ABSTRACT

Extracellular acidification occurs in inflamed tissue and the tumor microenvironment; however, a systematic study on how pH sensing contributes to tissue homeostasis is lacking. In the present study, we examine cell type-specific roles of the pH sensor G protein-coupled receptor 65 (GPR65) and its inflammatory disease-associated Ile231Leu-coding variant in inflammation control. GPR65 Ile231Leu knock-in mice are highly susceptible to both bacterial infection-induced and T cell-driven colitis. Mechanistically, GPR65 Ile231Leu elicits a cytokine imbalance through impaired helper type 17 T cell (TH17 cell) and TH22 cell differentiation and interleukin (IL)-22 production in association with altered cellular metabolism controlled through the cAMP-CREB-DGAT1 axis. In dendritic cells, GPR65 Ile231Leu elevates IL-12 and IL-23 release at acidic pH and alters endo-lysosomal fusion and degradation capacity, resulting in enhanced antigen presentation. The present study highlights GPR65 Ile231Leu as a multistep risk factor in intestinal inflammation and illuminates a mechanism by which pH sensing controls inflammatory circuits and tissue homeostasis.


Subject(s)
Colitis , Receptors, G-Protein-Coupled , Animals , Colitis/metabolism , Hydrogen-Ion Concentration , Inflammation/metabolism , Lysosomes/metabolism , Mice , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Th17 Cells/metabolism
12.
Annu Rev Immunol ; 30: 611-46, 2012.
Article in English | MEDLINE | ID: mdl-22449030

ABSTRACT

Stressors ranging from nutrient deprivation to immune signaling can induce the degradation of cytoplasmic material by a process known as autophagy. Increasingly, research on autophagy has begun to focus on its role in inflammation and the immune response. Autophagy acts as an immune effector that mediates pathogen clearance. The roles of autophagy bridge both the innate and adaptive immune systems and include functions in thymic selection, antigen presentation, promotion of lymphocyte homeostasis and survival, and regulation of cytokine production. In this review, we discuss the mechanisms by which autophagy is regulated, as well as the functions of autophagy and autophagy proteins in immunity and inflammation.


Subject(s)
Autophagy/immunology , Immune System/immunology , Adaptive Immunity , Animals , Humans , Immunity, Innate , Infections/immunology , Infections/microbiology , Infections/virology
13.
Cell ; 178(5): 1041-1056, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31442399

ABSTRACT

The current understanding of inflammatory bowel disease (IBD) pathogenesis implicates a complex interaction between host genetics, host immunity, microbiome, and environmental exposures. Mechanisms gleaned from genetics and molecular pathogenesis offer clues to the critical triggers of mucosal inflammation and guide the development of therapeutic interventions. A complex network of interactions between host genetic factors, microbes, and microbial metabolites governs intestinal homeostasis, making classification and mechanistic dissection of involved pathways challenging. In this Review, we discuss these challenges, areas of active translation, and opportunities for development of next-generation therapies.


Subject(s)
Inflammatory Bowel Diseases/pathology , Microbiota , Adaptive Immunity , Animals , Bacteria/genetics , Bacteria/metabolism , Biological Products/pharmacology , Cytokines/genetics , Cytokines/metabolism , Humans , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/microbiology , Intestines/immunology , Intestines/microbiology , Microbiota/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
14.
Cell ; 178(3): 714-730.e22, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31348891

ABSTRACT

Genome-wide association studies (GWAS) have revealed risk alleles for ulcerative colitis (UC). To understand their cell type specificities and pathways of action, we generate an atlas of 366,650 cells from the colon mucosa of 18 UC patients and 12 healthy individuals, revealing 51 epithelial, stromal, and immune cell subsets, including BEST4+ enterocytes, microfold-like cells, and IL13RA2+IL11+ inflammatory fibroblasts, which we associate with resistance to anti-TNF treatment. Inflammatory fibroblasts, inflammatory monocytes, microfold-like cells, and T cells that co-express CD8 and IL-17 expand with disease, forming intercellular interaction hubs. Many UC risk genes are cell type specific and co-regulated within relatively few gene modules, suggesting convergence onto limited sets of cell types and pathways. Using this observation, we nominate and infer functions for specific risk genes across GWAS loci. Our work provides a framework for interrogating complex human diseases and mapping risk variants to cell types and pathways.


Subject(s)
Colitis, Ulcerative/pathology , Colon/metabolism , Adult , Aged , Antibodies, Monoclonal/therapeutic use , Bestrophins/metabolism , CD8 Antigens/metabolism , Case-Control Studies , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colon/pathology , Enterocytes/cytology , Enterocytes/metabolism , Female , Genetic Loci , Genome-Wide Association Study , Humans , Interleukin-17/metabolism , Male , Middle Aged , Risk Factors , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Thrombospondins/metabolism , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism , Young Adult
15.
Cell ; 175(5): 1307-1320.e22, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30392957

ABSTRACT

In the small intestine, a niche of accessory cell types supports the generation of mature epithelial cell types from intestinal stem cells (ISCs). It is unclear, however, if and how immune cells in the niche affect ISC fate or the balance between self-renewal and differentiation. Here, we use single-cell RNA sequencing (scRNA-seq) to identify MHC class II (MHCII) machinery enrichment in two subsets of Lgr5+ ISCs. We show that MHCII+ Lgr5+ ISCs are non-conventional antigen-presenting cells in co-cultures with CD4+ T helper (Th) cells. Stimulation of intestinal organoids with key Th cytokines affects Lgr5+ ISC renewal and differentiation in opposing ways: pro-inflammatory signals promote differentiation, while regulatory cells and cytokines reduce it. In vivo genetic perturbation of Th cells or MHCII expression on Lgr5+ ISCs impacts epithelial cell differentiation and IEC fate during infection. These interactions between Th cells and Lgr5+ ISCs, thus, orchestrate tissue-wide responses to external signals.


Subject(s)
Cell Differentiation , Cell Self Renewal , Interleukin-10/metabolism , Stem Cells/cytology , T-Lymphocytes, Helper-Inducer/metabolism , Animals , Cell Differentiation/drug effects , Cell Self Renewal/drug effects , Cytokines/pharmacology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Female , Histocompatibility Antigens Class II/metabolism , Immune System/metabolism , Intestines/cytology , Intestines/microbiology , Male , Mice , Mice, Inbred C57BL , Organoids/cytology , Organoids/drug effects , Organoids/metabolism , Receptors, G-Protein-Coupled/metabolism , Salmonella enterica/pathogenicity , Stem Cells/metabolism , T-Lymphocytes, Helper-Inducer/cytology
16.
Immunity ; 56(12): 2679-2681, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38091949

ABSTRACT

Fungi are consistently enriched in inflamed intestines, with elusive effects on host immunity. In a recent issue of Nature Medicine, Martini et al. identify a subset of Th1 cells able to lyse the epithelium, enriched in Crohn's disease patient samples after fungal exposure.


Subject(s)
Agaricales , Crohn Disease , Humans , Th1 Cells , Intestines/microbiology
17.
Immunity ; 56(2): 444-458.e5, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36720220

ABSTRACT

Crohn's disease (CD) is a chronic gastrointestinal disease that is increasing in prevalence worldwide. CD is multifactorial, involving the complex interplay of genetic, immune, and environmental factors, necessitating a system-level understanding of its etiology. To characterize cell-type-specific transcriptional heterogeneity in active CD, we profiled 720,633 cells from the terminal ileum and colon of 71 donors with varying inflammation status. Our integrated datasets revealed organ- and compartment-specific responses to acute and chronic inflammation; most immune changes were in cell composition, whereas transcriptional changes dominated among epithelial and stromal cells. These changes correlated with endoscopic inflammation, but small and large intestines exhibited distinct responses, which were particularly apparent when focusing on IBD risk genes. Finally, we mapped markers of disease-associated myofibroblast activation and identified CHMP1A, TBX3, and RNF168 as regulators of fibrotic complications. Altogether, our results provide a roadmap for understanding cell-type- and organ-specific differences in CD and potential directions for therapeutic development.


Subject(s)
Crohn Disease , Humans , Transcriptome , Colon , Ileum , Inflammation/genetics , Ubiquitin-Protein Ligases/genetics
18.
Immunity ; 56(7): 1681-1698.e13, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37301199

ABSTRACT

CD4+ T cell responses are exquisitely antigen specific and directed toward peptide epitopes displayed by human leukocyte antigen class II (HLA-II) on antigen-presenting cells. Underrepresentation of diverse alleles in ligand databases and an incomplete understanding of factors affecting antigen presentation in vivo have limited progress in defining principles of peptide immunogenicity. Here, we employed monoallelic immunopeptidomics to identify 358,024 HLA-II binders, with a particular focus on HLA-DQ and HLA-DP. We uncovered peptide-binding patterns across a spectrum of binding affinities and enrichment of structural antigen features. These aspects underpinned the development of context-aware predictor of T cell antigens (CAPTAn), a deep learning model that predicts peptide antigens based on their affinity to HLA-II and full sequence of their source proteins. CAPTAn was instrumental in discovering prevalent T cell epitopes from bacteria in the human microbiome and a pan-variant epitope from SARS-CoV-2. Together CAPTAn and associated datasets present a resource for antigen discovery and the unraveling genetic associations of HLA alleles with immunopathologies.


Subject(s)
COVID-19 , Deep Learning , Humans , Captan , SARS-CoV-2 , HLA Antigens , Epitopes, T-Lymphocyte , Peptides
19.
Immunity ; 55(10): 1909-1923.e6, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36115338

ABSTRACT

Reciprocal interactions between host T helper cells and gut microbiota enforce local immunological tolerance and modulate extra-intestinal immunity. However, our understanding of antigen-specific tolerance to the microbiome is limited. Here, we developed a systematic approach to predict HLA class-II-specific epitopes using the humanized bacteria-originated T cell antigen (hBOTA) algorithm. We identified a diverse set of microbiome epitopes spanning all major taxa that are compatible with presentation by multiple HLA-II alleles. In particular, we uncovered an immunodominant epitope from the TonB-dependent receptor SusC that was universally recognized and ubiquitous among Bacteroidales. In healthy human subjects, SusC-reactive T cell responses were characterized by IL-10-dominant cytokine profiles, whereas in patients with active Crohn's disease, responses were associated with elevated IL-17A. Our results highlight the potential of targeted antigen discovery within the microbiome to reveal principles of tolerance and functional transitions during inflammation.


Subject(s)
Crohn Disease , Immunodominant Epitopes , CD4-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , Humans , Interleukin-10 , Interleukin-17
20.
Immunity ; 55(9): 1663-1679.e6, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36070768

ABSTRACT

Interleukin-23 receptor plays a critical role in inducing inflammation and autoimmunity. Here, we report that Th1-like cells differentiated in vitro with IL-12 + IL-21 showed similar IL-23R expression to that of pathogenic Th17 cells using eGFP reporter mice. Fate mapping established that these cells did not transition through a Th17 cell state prior to becoming Th1-like cells, and we observed their emergence in vivo in the T cell adoptive transfer colitis model. Using IL-23R-deficient Th1-like cells, we demonstrated that IL-23R was required for the development of a highly colitogenic phenotype. Single-cell RNA sequencing analysis of intestinal T cells identified IL-23R-dependent genes in Th1-like cells that differed from those expressed in Th17 cells. The perturbation of one of these regulators (CD160) in Th1-like cells inhibited the induction of colitis. We thus uncouple IL-23R as a purely Th17 cell-specific factor and implicate IL-23R signaling as a pathogenic driver in Th1-like cells inducing tissue inflammation.


Subject(s)
Colitis , Receptors, Interleukin , Animals , Inflammation/metabolism , Interleukin-23/metabolism , Mice , Mice, Inbred C57BL , Phenotype , Receptors, Interleukin/genetics , Receptors, Interleukin/metabolism , Th1 Cells , Th17 Cells
SELECTION OF CITATIONS
SEARCH DETAIL