ABSTRACT
The quest to identify precious metal free hydrogen evolution reaction catalysts has received unprecedented attention in the past decade. In this Review, we focus our attention to recent developments in precious metal free hydrogen evolution reactions in acidic and alkaline electrolyte owing to their relevance to commercial and near-commercial low-temperature electrolyzers. We provide a detailed review and critical analysis of catalyst activity and stability performance measurements and metrics commonly deployed in the literature, as well as review best practices for experimental measurements (both in half-cell three-electrode configurations and in two-electrode device testing). In particular, we discuss the transition from laboratory-scale hydrogen evolution reaction (HER) catalyst measurements to those in single cells, which is a critical aspect crucial for scaling up from laboratory to industrial settings but often overlooked. Furthermore, we review the numerous catalyst design strategies deployed across the precious metal free HER literature. Subsequently, we showcase some of the most commonly investigated families of precious metal free HER catalysts; molybdenum disulfide-based, transition metal phosphides, and transition metal carbides for acidic electrolyte; nickel molybdenum and transition metal phosphides for alkaline. This includes a comprehensive analysis comparing the HER activity between several families of materials highlighting the recent stagnation with regards to enhancing the intrinsic activity of precious metal free hydrogen evolution reaction catalysts. Finally, we summarize future directions and provide recommendations for the field in this area of electrocatalysis.
ABSTRACT
Flash Joule heating of highly porous graphene oxide (GO) aerogel monoliths to ultrahigh temperatures is exploited as a low carbon footprint technology to engineer functional aerogel materials. Aerogel Joule heating to up to 3000 K is demonstrated for the first time, with fast heating kinetics (â¼300 K·min-1), enabling rapid and energy-efficient flash heating treatments. The wide applicability of ultrahigh-temperature flash Joule heating is exploited in a range of material fabrication challenges. Ultrahigh-temperature Joule heating is used for rapid graphitic annealing of hydrothermal GO aerogels at fast time scales (30-300 s) and substantially reduced energy costs. Flash aerogel heating to ultrahigh temperatures is exploited for the in situ synthesis of ultrafine nanoparticles (Pt, Cu, and MoO2) embedded within the hybrid aerogel structure. The shockwave heating approach enables high through-volume uniformity of the formed nanoparticles, while nanoparticle size can be readily tuned through controlling Joule-heating durations between 1 and 10 s. As such, the ultrahigh-temperature Joule-heating approach introduced here has important implications for a wide variety of applications for graphene-based aerogels, including 3D thermoelectric materials, extreme temperature sensors, and aerogel catalysts in flow (electro)chemistry.
ABSTRACT
Ultrahigh-temperature Joule-heating of carbon nanostructures opens up unique opportunities for property enhancements and expanded applications. This study employs rapid electrical Joule-heating at ultrahigh temperatures (up to 3000 K within 60 s) to induce a transformation in nanocarbon aerogels, resulting in highly graphitic structures. These aerogels function as versatile platforms for synthesizing customizable metal oxide nanoparticles while significantly reducing carbon emissions compared to conventional furnace heating methods. The thermal conductivity of the aerogel, characterized by Umklapp scattering, can be precisely adjusted by tuning the heating temperature. Utilizing the aerogel's superhydrophobic properties enables its practical application in filtration systems for efficiently separating toxic halogenated solvents from water. The hierarchically porous aerogel, featuring a high surface area of 607 m2 g-1, ensures the uniform distribution and spacing of embedded metal oxide nanoparticles, offering considerable advantages for catalytic applications. These findings demonstrate exceptional catalytic performance in oxidative desulfurization, achieving a 98.9% conversion of dibenzothiophene in the model fuel. These results are corroborated by theoretical calculations, surpassing many high-performance catalysts. This work highlights the pragmatic and highly efficient use of nanocarbon structures in nanoparticle synthesis under ultrahigh temperatures, with short heating durations. Its broad implications extend to the fields of electrochemistry, energy storage, and high-temperature sensing.
ABSTRACT
MOTIVATION: Tuberculosis (TB) is caused by members of the Mycobacterium tuberculosis complex (MTBC), which has a strain- or lineage-based clonal population structure. The evolution of drug-resistance in the MTBC poses a threat to successful treatment and eradication of TB. Machine learning approaches are being increasingly adopted to predict drug-resistance and characterize underlying mutations from whole genome sequences. However, such approaches may not generalize well in clinical practice due to confounding from the population structure of the MTBC. RESULTS: To investigate how population structure affects machine learning prediction, we compared three different approaches to reduce lineage dependency in random forest (RF) models, including stratification, feature selection, and feature weighted models. All RF models achieved moderate-high performance (area under the ROC curve range: 0.60-0.98). First-line drugs had higher performance than second-line drugs, but it varied depending on the lineages in the training dataset. Lineage-specific models generally had higher sensitivity than global models which may be underpinned by strain-specific drug-resistance mutations or sampling effects. The application of feature weights and feature selection approaches reduced lineage dependency in the model and had comparable performance to unweighted RF models. AVAILABILITY AND IMPLEMENTATION: https://github.com/NinaMercedes/RF_lineages.
Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis/drug therapy , Mutation , Whole Genome Sequencing , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic useABSTRACT
Water vapor inevitably exists in the environment, which causes adverse impacts on many crucial chemical reactions. However, high water vapor of up to 10 vol %ârelevant to a broad spectrum of industrial practices-for catalytic implications has been less investigated or neglected. As such, we explored an industry-relevant, humidity-highly sensitive benzene oxidation only in the presence of 10 vol % water vapor using the well-established Pt/Co3O4 catalysts, to bring such an important yet ignored topic to the forefront. Results revealed that Pt/Co3O4 catalysts possessing higher contents of Pt nanoparticles exhibited marked tolerance to water vapor interference. Under an incomplete benzene conversion condition, the input of 10 vol % water vapor indeed impaired the catalytic performance of Pt/Co3O4 catalyst significantly, which, in fact, was caused by the unfavorable formation of carboxylate species covering the catalyst's surface engendering irrecoverable activity loss, instead of the well-accepted water competitive adsorption. While such activity loss can be restored by elevating the reaction to a higher temperature. This study helps us to understand the compromised catalytic activity caused by high humidity, urging the systematic evaluation of well-established catalyst systems in high water vapor-contained conditions and pressing the development of water-tolerant catalysts for real-life application consideration.
ABSTRACT
Designing transition-metal oxides for catalytically removing the highly toxic benzene holds significance in addressing indoor/outdoor environmental pollution issues. Herein, we successfully synthesized ultrathin LayCoOx nanosheets (thickness of â¼1.8 nm) with high porosity, using a straightforward coprecipitation method. Comprehensive characterization techniques were employed to analyze the synthesized LayCoOx catalysts, revealing their low crystallinity, high surface area, and abundant porosity. Catalytic benzene oxidation tests demonstrated that the La0.029CoOx-300 nanosheet exhibited the most optimal performance. This catalyst enabled complete benzene degradation at a relatively low temperature of 220 °C, even under a high space velocity (SV) of 20,000 h-1, and displayed remarkable durability throughout various catalytic assessments, including SV variations, exposure to water vapor, recycling, and long time-on-stream tests. Characterization analyses confirmed the enhanced interactions between Co and doped La, the presence of abundant adsorbed oxygen, and the extensive exposure of Co3+ species in La0.029CoOx-300 nanosheets. Theoretical calculations further revealed that La doping was beneficial for the formation of oxygen vacancies and the adsorption of more hydroxyl groups. These features strongly promoted the adsorption and activation of oxygen, thereby accelerating the benzene oxidation processes. This work underscores the advantages of doping rare-earth elements into transition-metal oxides as a cost-effective yet efficient strategy for purifying industrial exhausts.
ABSTRACT
Due to the high conversion properties, azide compounds are widely utilized in organic synthesis. For instance, azide compounds readily release nitrogen to form a new N-C bond when they function as radical acceptors for the active intermediates in the reaction. Over the past decade, strategies employing azides as radical acceptors to construct nitrogen heterocycles have been extensively developed. This approach has emerged as a crucial method for synthesizing nitrogen heterocycles. Therefore, this paper provides a review of the research advancements in tandem cyclization reactions using azides as radical acceptors, summarizing the process of reaction design, exploration, reasoning of the mechanism, and prospects for further research of these reactions.
ABSTRACT
Objective To demonstrate the feasibility of oblique lumbar interbody fusion (OLIF) combined with 4-screw fixation for treating two-level lumbar degenerative diseases.Methods An intact finite element model of L3-S1 (M0) was constructed and validated.Then,we constructed the M1 model by simulating OLIF surgery at L3/4 and L4/5 segments on the M0 model.By attachment of posterior 4-screw or 6-screw fixation to the M1 model,three 4-screw fixation models (M2-M4) and one 6-screw fixation model (M5) were established.The segmental and overall range of motion (ROM) and the peak von Mises stresses of superior endplate,cage,and posterior screw-rod were investigated under each implanted condition.Results Under the motion modes of forward flexion,backward extension,bilateral (left and right) flexion,and left and right rotation,the L3/4 ROM of M2 model and L4/5 ROM of M3 model increased,while the L3/4 and L4/5 ROM of M4 and M5 models significantly decreased compared with those of M1 model.Under all motion modes,the L4 superior endplate in M2 model and the L5 superior endplate in M3 model showed the maximum peak von Mises stress,and the peak von Mises stresses of L4 and L5 superior endplates in M4 and M5 models were close.The L3/4 cage in M2 model and the L4/5 cage in M3 model showcased the largest peak von Mises stress,and the peak von Mises stresses of cages in M4 and M5 models were close.The peak stresses of internal fixation in M2-M5 models were close.Conclusion Four-screw fixation can replace 6-screw fixation in the OLIF surgery for treating two-level degenerative lumbar diseases.
Subject(s)
Bone Screws , Finite Element Analysis , Lumbar Vertebrae , Spinal Fusion , Spinal Fusion/methods , Spinal Fusion/instrumentation , Humans , Lumbar Vertebrae/surgeryABSTRACT
Reactions of achiral di(2-pyridyl)methyl substituted aminophenols L1-6H (2-{N-R3-N-[di(2-pyridyl)methyl]aminomethyl}-4-R1-6-R2-C6H2OH: R1 = R2 = tBu, R3 = nBu (L1H), R3 = nhexyl (L2H), R3 = cyclohexyl (L3H); R1 = R2 = cumyl, R3 = nBu (L4H), R3 = nhexyl (L5H), R3 = cyclohexyl (L6H)) with {Mg[N(SiMe3)2]2}2 ([L1-6H]:[Mg] = 1:1) afforded a series of magnesium silylamido complexes 1-6. In the solid state, the magnesium center of 3, 4, and 6 is penta-coordinated by the tetradentate aminophenloate ligand and one silylamido ligand to form a seriously distorted square-pyramidal geometry as confirmed by X-ray crystallography diffraction analysis. VT 1H NMR and ROESY experiments further indicate that these magnesium complexes are also five-coordinated in solutions where the coordination of either of the two pyridyl pendants to the magnesium center is maintained. Complexes 1-6 are highly active toward the ring-opening polymerization of rac-lactide (rac-LA) at r.t. both in toluene and in tetrahydrofuran, capable of polymerizing 500 equiv of monomer to high conversions just within minutes. Among them, complex 3 exhibited the highest iso-stereoselectivity, affording moderately isotactic polylactide in toluene (Pm = 0.75). It is found that the isoselectivities and activities of these magnesium complexes toward the polymerization of rac-LA are closely associated with the substituents at the ortho-position of the phenoxide unit and on the skeleton nitrogen atom of the ligand. On the basis of NMR spectroscopic studies, the formation of isotactic PLAs with dominant stereoblock sequences was witnessed by using these magnesium complexes as initiators, and the inequivalent coordination of two pyridyl pendant arms in these magnesium complexes might be the source of exerting isoselective control.
ABSTRACT
In catalytic oxidation reactions, the presence of environmental water poses challenges to the performance of Pt catalysts. This study aims to overcome this challenge by introducing hydroxyl groups onto the surface of Pt catalysts using the pyrolysis reduction method. Two silica supports were employed to investigate the impact of hydroxyl groups: SiO2-OH with hydroxyl groups and SiO2-C without hydroxyl groups. Structural characterization confirmed the presence of Pt-Ox, Pt-OHx, and Pt0 species in the Pt/SiO2-OH catalysts, while only Pt-Ox and Pt0 species were observed in the Pt/SiO2-C catalysts. Catalytic performance tests demonstrated the remarkable capacity of the 0.5 wt % Pt/SiO2-OH catalyst, achieving complete conversion of benzene at 160 °C under a high space velocity of 60,000 h-1. Notably, the catalytic oxidation capacity of the Pt/SiO2-OH catalyst remained largely unaffected even in the presence of 10 vol % water vapor. Moreover, the catalyst exhibited exceptional recyclability and stability, maintaining its performance over 16 repeated cycles and a continuous operation time of 70 h. Theoretical calculations revealed that the construction of Pt-OHx sites on the catalyst surface was beneficial for modulating the d-band structure, which in turn enhanced the adsorption and activation of reactants. This finding highlights the efficacy of decorating the Pt surface with hydroxyl groups as an effective strategy for improving the water resistance, catalytic activity, and long-term stability of Pt catalysts.
ABSTRACT
BACKGROUND: To investigate the impact of the coronavirus disease 2019 (COVID-19) outbreak on the prevalence of respiratory viruses among pediatric patients with acute respiratory infections in Xuzhou from 2015-2021. METHODS: Severe acute respiratory infection (SARI) cases in hospitalized children were collected from 2015-2021 in Xuzhou, China. Influenza virus(IFV), respiratory syncytial virus (RSV), human parainfluenza virus type 3(hPIV-3), human rhinovirus (hRV), human adenovirus(hAdV), human coronavirus(hCoV) were detected by real-time fluorescence polymerase chain reaction(RT-qPCR), and the results were statistically analyzed by SPSS 23.0 software. RESULTS: A total of 1663 samples with SARI were collected from 2015-2021, with a male-to-female ratio of 1.67:1 and a total virus detection rate of 38.5% (641/1663). The total detection rate of respiratory viruses decreased from 46.2% (2015-2019) to 36% (2020-2021) under the control measures for COVID-19 (P < 0.01). The three viruses with the highest detection rates changed from hRV, RSV, and hPIV-3 to hRV, RSV, and hCoV. The epidemic trend of hPIV-3 and hAdV was upside down before and after control measures(P < 0.01); however, the epidemic trend of RV and RSV had not changed from 2015 to 2021(P > 0.05). After the control measures, the detection rate of hPIV-3 decreased in all age groups, and the detection rate of hCoV increased in all except the 1 ~ 3 years old group. CONCLUSIONS: Implementing control measures for COVID-19 outbreak curbed the spread of respiratory viruses among children as a whole. However, the epidemic of RV and RSV was not affected by the COVID-19 control policy.
Subject(s)
COVID-19 , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Viruses , Child , Humans , Male , Female , Infant , Child, Preschool , Pandemics , Watchful Waiting , COVID-19/epidemiology , Respiratory Tract Infections/epidemiology , China/epidemiology , Parainfluenza Virus 1, HumanABSTRACT
BACKGROUND: COVID-19 and malaria share some similar symptoms such as fever, difficulty in breathing, fatigue, and headaches of acute onset. With overlapping symptoms and travel history significant for COVID-19 and malaria, healthcare systems and professionals will face a great challenge in the case of COVID-19 and malaria co-infection. METHODS: Here we presented a patient with COVID-19 infection and refractory anemia of unknown reason. A diagnostic test for malaria was later performed. RESULTS: The patient was ultimately diagnosed with COVID-19 and plasmodium falciparum malaria co-infection. He recovered gradually after receiving anti-malaria treatment. CONCLUSIONS: The present case highlights the danger of focusing only on a diagnosis of COVID-19, reminding clinicians to be vigilant about the possibility of co-infections.
Subject(s)
Anemia , COVID-19 , Coinfection , Malaria, Falciparum , Malaria , Humans , Male , Anemia/diagnosis , Coinfection/diagnosis , COVID-19/complications , East Asian People , Malaria, Falciparum/complications , Malaria, Falciparum/diagnosis , Plasmodium falciparum , ChinaABSTRACT
Predicting the spatial distribution of species and suitable areas under global climate change could provide a reference for species conservation and long-term management strategies. Macaca thibetana and Macaca arctoides are two endangered species of Chinese macaques. However, limited information is available on their distribution, and their habitat needs lack proper assessment due to complicated taxonomy and less research attention. In recent years, scholars widely used the maximum entropy (MaxEnt) model to predict the impact of global climate and certain environmental factors on species distribution. Therefore, we used the MaxEnt model to predict the spatiotemporal distribution of both macaque species under six climate change scenarios using occurrence and high-resolution ecological data. We identified climatic factors, elevation, and land cover that shape their distribution range and determined shifts in their habitat range. The results demonstrated that temperature range, annual precipitation, forest land cover, and temperature seasonality, including the precipitation of the driest month are the main factors affecting their distribution. Currently, M. thibetana is mainly concentrated in central, eastern, southern, and southwestern China, and M. arctoides is mainly concentrated in three provinces (Yunnan, Guangxi, and Guangdong) in southern China. The MaxEnt model predicted that the suitable habitat for both species will increase with increased greenhouse emission scenarios. We also found that with the further increase in greenhouse emissions M. thibetana is expected to migrate to western China, and M. arctoides is expected to migrate to western or eastern China. This reinterpretation of the distribution of M. thibetana and M. arctoides in China, and predicted potential suitable habitat and possible migration direction, may provide new insights into the future conservation and management of these two species.
Subject(s)
Climate Change , Macaca arctoides , Macaca , Animals , China , Ecosystem , Animal DistributionABSTRACT
The deregulation of Brain-Derived Neurotrophic Factor (BDNF) was reported to be responsible for the development of post-stroke depression (PSD), while the stimulation of the fastigial nucleus (FN) can be used to treat PDS by down-regulating the expression of miR-182 and miR-382. Therefore, we aim to test the hypothesis that the therapeutic effect of FN stimulation obtained in the treatment of PSD is mediated by the miR-382&miR-182/BDNF mRNA signaling pathways. Rat models of PSD were established and divided into sham, stroke, PSD and PSD + FNS groups to receive different treatments. Post-stroke depression-like behaviors were observed after the initiation of the treatments. TUNEL assay, Western Blot, IHC assay, real-time PCR, bioinformatics tools and luciferase assays were performed to examine the effect of FN stimulation on the expression of miR-182, miR-382 and BDNF mRNA/protein, as well as to further clarify the role of miR-382&miR-182/BDNF mRNA signaling pathways in FN stimulation. Post-stroke depression-like behaviors were significantly reduced in PSD rats. In contrary, the treatment by FN stimulation alleviated the symptoms of PSD and reduced the apoptosis index in the PSD group. Furthermore, in the PSD group, BDNF mRNA/protein levels were suppressed while the miR-382/miR-182 levels were both significantly up-regulated. After the treatment of FN stimulation, BDNF mRNA/protein levels were partly recovered, while miR-382/miR-182 levels was decreased. Furthermore, BDNF was identified as a virtual target of miR-382 and miR-182. In conclusion, FN stimulation increases the expression of BDNF via down-regulating the expression of miR-382/miR-182, thus exhibiting a positive effect in the management of PSD.
Subject(s)
MicroRNAs , Stroke , Animals , Brain-Derived Neurotrophic Factor/metabolism , Cerebellar Nuclei/metabolism , Depression/genetics , Depression/therapy , MicroRNAs/metabolism , RNA, Messenger/metabolism , Rats , Signal Transduction , Stroke/drug therapy , Stroke/therapyABSTRACT
Reversible multielectron-transfer materials are of considerable interest because of the potential impact to advance present electrochemical energy storage technology by boosting energy density. To date, a few oxide-based materials can reach an electron-transfer number per metal-cation (eM ) larger than 2 upon a (de)intercalation mechanism. However, these materials suffer from degradation due to irreversible rearrangements of the cation-oxygen bonds, and are based on precious metals, for example, Ir and Ru. Hence, a design of the non-oxide-based reversible multielectron-transfer materials with abundant elements can provide a promising alternative. Herein, it is demonstrated that the bis(diimino)copper framework can show eM = 3.5 with cation/anion co-redox mechanism together with a dual-ion mechanism. In this study, the role of the cation-anion interactions is unveiled by using an experiment/theory collaboration applied to a series of the model non-oxide abundant electrode systems based on different metal-nitrogen bonds. These models provide designer multielectron-transfer due to the tunable π-d conjugated electronic structures. It is found that the Cu-nitrogen bonds show a unique reversible rearrangement upon Li-intercalation, and this process responds to acquire a significant reversible multielectron-transfer. This work provides new insights into the affordable multielectron-transfer electrodes and uncovers an alternative strategy to advance the electrochemical energy storage reactions.
Subject(s)
Lithium , Metals , Copper/chemistry , Electrodes , NitrogenABSTRACT
As an alternative mechanism for cap-dependent (m7GpppN) translation, internal ribosome entry site (IRES)-dependent translation has been observed in the 5' untranslated regions (5' UTR) and coding regions of a number of viral and eukaryotic mRNAs. In this study, a series of 5' terminal truncated structural protein genes that were fused with GFP was used to screen for potential IRESs, and IRESs were identified using a bicistronic luciferase vector or GFP expression vector possessing a hairpin structure. Our results revealed that a putative IRES was located between nt 1982 and 2281 in the VP3 coding region of the human rhinovirus 16 (HRV16) genomes. We also demonstrated that effective IRES-initiated protein expression in vitro did not occur through splicing sites or cryptic promoters. We confirmed that thapsigargin (TG), an inducer of endoplasmic reticulum stress (ERS), facilitated increased IRES activity in a dose-dependent manner. Additionally, the secondary structure of the IRES was predicted online using the RNAfold web server.
Subject(s)
Internal Ribosome Entry Sites , Rhinovirus , 5' Untranslated Regions , Humans , Internal Ribosome Entry Sites/genetics , Protein Biosynthesis , Rhinovirus/genetics , Ribosomes/genetics , Ribosomes/metabolismABSTRACT
Dysfunctional mitochondria characterise Parkinson's Disease (PD). Uncovering etiological molecules, which harm the homeostasis of mitochondria in response to pathological cues, is therefore pivotal to inform early diagnosis and therapy in the condition, especially in its idiopathic forms. This study proposes the 18 kDa Translocator Protein (TSPO) to be one of those. Both in vitro and in vivo data show that neurotoxins, which phenotypically mimic PD, increase TSPO to enhance cellular redox-stress, susceptibility to dopamine-induced cell death, and repression of ubiquitin-dependent mitophagy. TSPO amplifies the extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) signalling, forming positive feedback, which represses the transcription factor EB (TFEB) and the controlled production of lysosomes. Finally, genetic variances in the transcriptome confirm that TSPO is required to alter the autophagy-lysosomal pathway during neurotoxicity.
Subject(s)
Mitophagy , Neurotoxicity Syndromes , Receptors, GABA , Autophagy , Humans , Lysosomes/metabolism , Mitochondria , Neurotoxicity Syndromes/metabolism , Receptors, GABA/genetics , Receptors, GABA/metabolismABSTRACT
Black-odorous urban water bodies and sediments pose a serious environmental problem. In this study, we conducted microcosm batch experiments to investigate the effect of remediation reagents (magnesium hydroxide and calcium nitrate) on native bacterial communities and their ecological functions in the black-odorous sediment of urban water. The dominant phyla (Proteobacteria, Actinobacteria, Chloroflexi, and Planctomycetes) and classes (Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria, Actinobacteria, Anaerolineae, and Planctomycetia) were determined under calcium nitrate and magnesium hydroxide treatments. Functional groups related to aerobic metabolism, including aerobic chemoheterotrophy, dark sulfide oxidation, and correlated dominant genera (Thiobacillus, Lysobacter, Gp16, and Gaiella) became more abundant under calcium nitrate treatment, whereas functional genes potentially involved in dissimilatory sulfate reduction became less abundant. The relative abundance of chloroplasts, fermentation, and correlated genera (Desulfomonile and unclassified Cyanobacteria) decreased under magnesium hydroxide treatment. Overall, these results indicated that calcium nitrate addition improved hypoxia-related reducing conditions in the sediment and promoted aerobic chemoheterotrophy.
Subject(s)
Magnesium Hydroxide , Water , Bacteria/genetics , Geologic Sediments/microbiology , Indicators and ReagentsABSTRACT
OBJECTIVES: To investigate the feasibility of automatic machine learning (autoML) based on native T1 mapping to predict late gadolinium enhancement (LGE) status in hypertrophic cardiomyopathy (HCM). METHODS: Ninety-one HCM patients and 44 healthy controls who underwent cardiovascular MRI were enrolled. The native T1 maps of HCM patients were classified as LGE ( +) or LGE (-) based on location-matched LGE images. An autoML pipeline was implemented using the tree-based pipeline optimization tool (TPOT) for 3 binary classifications: LGE ( +) and LGE (-), LGE (-) and control, and HCM and control. TPOT modeling was repeated 10 times to obtain the optimal model for each classification. The diagnostic performance of the best models by slice and by case was evaluated using sensitivity, specificity, accuracy, and microaveraged area under the curve (AUC). RESULTS: Ten prediction models were generated by TPOT for each of the 3 binary classifications. The diagnostic accuracy obtained with the best pipeline in detecting LGE status in the testing cohort of HCM patients was 0.80 by slice and 0.79 by case. In addition, the TPOT model also showed discriminability between LGE (-) patients and control (accuracy: 0.77 by slice; 0.78 by case) and for all HCM patients and controls (accuracy: 0.88 for both). CONCLUSIONS: Native T1 map analysis based on autoML correlates with LGE ( +) or (-) status. The TPOT machine learning algorithm could be a promising method for predicting myocardial fibrosis, as reflected by the presence of LGE in HCM patients without the need for late contrast-enhanced MRI sequences. KEY POINTS: ⢠The tree-based pipeline optimization tool (TPOT) is a machine learning algorithm that could help predict late gadolinium enhancement (LGE) status in patients with hypertrophic cardiomyopathy. ⢠The TPOT could serve as an adjuvant method to detect LGE by using information from native T1 maps, thus avoiding the need for contrast agent. ⢠The TPOT also detects native T1 map alterations in LGE-negative patients with hypertrophic cardiomyopathy.
Subject(s)
Cardiomyopathy, Hypertrophic , Contrast Media , Cardiomyopathy, Hypertrophic/complications , Cardiomyopathy, Hypertrophic/diagnostic imaging , Fibrosis , Gadolinium , Humans , Machine Learning , Magnetic Resonance Imaging, Cine , Myocardium/pathologyABSTRACT
The present study assessed the role of dietary chromium (Cr) supplementation in relieving heat stress (HS) of juvenile blunt snout bream Megalobrama amblycephala. The supplemented Cr contents by chromium picolinate (Cr-Pic) was 0 mg/kg (control group), 0.4 mg/kg, 1.6 mg/kg and 12.0 mg/kg, respectively. The fish continued to be fed four diets at suitable temperatures (26 °C) for 2 weeks, and then the temperature was then heated up to 33 °C through thermo-regulated system. The results showed that Cr supplementation had no significant effect on the immune indices and antioxidant indices before HS (P > 0.05). However, Cr supplementation played an important role in relieving HS. After HS, compared with the control group, 1.6 mg/kg and 12.0 mg/kg Cr supplementation groups significantly lowered the plasma glucose level and aspartate transaminase (AST) activity (P < 0.05), and 0.4 mg/kg and 1.6 mg/kg Cr supplementation groups significantly lowered alanine aminotransferase (ALT) activity (P < 0.05). 0.4 mg/kg and 1.6 mg/kg supplementation groups significantly improved hepatic total superoxide dismutase (T-SOD) activity (P < 0.05). Furthermore, 0.4mg/kg-12.0 mg/kg Cr supplementation groups significantly improved the activities of hepatic glutathione peroxidase (GPx) and catalase (CAT) and lowered hepatic malondialdehyde (MDA) level in liver (P < 0.05). The mRNA levels of hepatic copper zinc superoxide dismutase (Cu/Zn-SOD), CAT and GPx were significantly improved in 0.4mg/kg-12.0 mg/kg supplementation Cr groups (P < 0.05), however, there was no significant variation of hepatic manganese superoxide dismutase (Mn-SOD) mRNA levels under different levels of supplementation (P > 0.05). Significantly lower mRNA levels of hepatic pro-inflammatory cytokines observed in 0.4mg/kg-12.0 mg/kg Cr supplementation groups including tumour necrosis factor-α (TNF-α), interleukin 1ß (IL-1ß) and interleukin 8 (IL-8) (P < 0.05), and 0.4mg/kg-12.0 mg/kg Cr supplementation significantly improved the relative expressions of hepatic heat shock protein 70 (HSP70) and heat shock protein 90 (HSP90) (P < 0.05). The present study indicated that dietary Cr supplementation might have no significant effect on immune capacity and antioxidant capacity under normal physiological conditions, whereas it played an important role in relieving HS.