Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Anal Chem ; 96(15): 6065-6071, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38569047

ABSTRACT

The conventional lateral flow immunoassay (LFIA) method using colloidal gold nanoparticles (Au NPs) as labeling agents faces two inherent limitations, including restricted sensitivity and poor quantitative capability, which impede early viral infection detection. Herein, we designed and synthesized CsPbBr3 perovskite quantum dot-based composite nanoparticles, CsPbBr3@SiO2@Fe3O4 (CSF), which integrated fluorescence detection and magnetic enrichment properties into LFIA technology and achieved rapid, sensitive, and convenient quantitative detection of the SARS-CoV-2 virus N protein. In this study, CsPbBr3 served as a high-quantum-yield fluorescent signaling probe, while SiO2 significantly enhanced the stability and biomodifiability of CsPbBr3. Importantly, the SiO2 shell shows relatively low absorption or scattering toward fluorescence, maintaining a quantum yield of up to 74.4% in CsPbBr3@SiO2. Assembly of Fe3O4 nanoparticles mediated by PEI further enhanced the method's sensitivity and reduced matrix interference through magnetic enrichment. Consequently, the method achieved a fluorescent detection range of 1 × 102 to 5 × 106 pg·mL-1 after magnetic enrichment, with a limit of detection (LOD) of 58.8 pg·mL-1, representing a 13.3-fold improvement compared to nonenriched samples (7.58 × 102 pg·mL-1) and a 2-orders-of-magnitude improvement over commercial colloidal gold kits. Furthermore, the method exhibited 80% positive and 100% negative detection rates in clinical samples. This approach holds promise for on-site diagnosis, home-based quantitative tests, and disease procession evaluation.


Subject(s)
Metal Nanoparticles , Silicon Dioxide , Gold , Fluorescent Dyes , Immunoassay/methods , Gold Colloid
2.
Mikrochim Acta ; 191(6): 303, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38709340

ABSTRACT

A platform was designed based on Fe3O4 and CsPbBr3@SiO2 for integrated magnetic enrichment-fluorescence detection of Salmonella typhimurium, which significantly simplifies the detection process and enhances the working efficiency. Fe3O4 served as a magnetic enrichment unit for the capture of S. typhimurium. CsPbBr3@SiO2 was employed as a fluorescence-sensing unit for quantitative signal output, where SiO2 was introduced to strengthen the stability of CsPbBr3, improve its biomodificability, and prevent lead leakage. More importantly, the SiO2 shell shows neglectable absorption or scattering towards fluorescence, making the CsPbBr3@SiO2 exhibit a high quantum yield of 74.4%. After magnetic enrichment, the decreasing rate of the fluorescence emission intensity of the CsPbBr3@SiO2 supernatant at 527 nm under excitation light at UV 365 nm showed a strong linear correlation with S. typhimurium concentration of 1 × 102~1 × 108 CFU∙mL-1, and the limit of detection (LOD) reached 12.72 CFU∙mL-1. This platform has demonstrated outstanding stability, reproducibility, and resistance to interference, which provides an alternative for convenient and quantitative detection of S. typhimurium.


Subject(s)
Fluorescent Dyes , Limit of Detection , Salmonella typhimurium , Silicon Dioxide , Salmonella typhimurium/isolation & purification , Silicon Dioxide/chemistry , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence/methods , Lead/chemistry , Point-of-Care Systems , Sulfides/chemistry , Magnetite Nanoparticles/chemistry , Humans
SELECTION OF CITATIONS
SEARCH DETAIL