Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
J Am Chem Soc ; 146(19): 13326-13335, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38693621

ABSTRACT

A key challenge in the search of new materials capable of singlet fission (SF) arises from the primary energy conservation criterion, i.e., the energy of the triplet exciton has to be half that of the singlet (E(S1) ≥ 2E(T1)), which excludes most photostable organic materials from consideration and confines the design strategy to materials with low energy triplet states. One potential way to overcome this energy requirement and improve the triplet energy is to enable a SF channel from higher energy ("hot") excitonic states (Sn) in a process called activated SF. Herein, we demonstrate that efficient activated SF is achieved in a rylene imide-based derivative acenaphth[l, 2-a]acenaphthylene diimide (AADI). This process is enabled by an increase in the energy gap to greater than 1.0 eV between the S3 and S1 states due to the incorporation of an antiaromatic pentalene unit, which leads to the emergence of anti-Kasha properties in the isolated molecule. Transient spectroscopy studies show that AADI undergoes ultrafast SF from higher singlet excited states in thin film, with excitation wavelength-dependent SF yields. The SF yield of ∼200% is observed upon higher energy excitation, and long-lived free triplets persist on the µs time scale suggesting that AADI can be used in SF-enhanced devices. Our results suggest that enlarging the Sn-S1 energy gap is an effective way to turn on the activated SF channel and shed light on the development of novel, stable SF materials with high triplet energies.

2.
Chemistry ; 30(37): e202401074, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38697944

ABSTRACT

The backwardness of n-type organic semiconductors still exists compared with the p-type counterparts. Thus, the development of high-performance n-type organic semiconductors is of great importance for organic electronic devices and their integrated circuits. In recent years, azabenzannulated perylene diimide (PDI), as one of immense bay-region-annulated PDI derivatives, has drawn considerable attentions. However, the electronic mobilities of azabenzannulated PDI derivatives are barely satisfactory. In this contribution, the peripheral benzene ring in azabenzannulated PDI 2 was fused to the ortho position by intramolecular C-H arylation cyclization. This endows the resultant azabenzannulated PDI 4 a planar configuration as well as electron deficient pentagonal ring. As a result, the electronic mobility of 4 is almost two orders of magnitude higher than that of the nonfused azabenzannulated PDI 2. This work shall pave a new avenue in elevating the performance of azabenzannulated PDI in organic electronics.

3.
Macromol Rapid Commun ; 45(1): e2300241, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37548255

ABSTRACT

Singlet fission (SF) is a spin-allowed process in which a higher-energy singlet exciton is converted into two lower-energy triplet excitons via a triplet pair intermediate state. Implementing SF in photovoltaic devices holds the potential to exceed the Shockley-Queisser limit of conventional single-junction solar cells. Although great progress has been made in exploiting the underlying mechanism of SF over the past decades, the scope of materials capable of SF, particularly polymeric materials, remains poor. SF-capable polymer is one of the most potential candidates in the implementation of SF into devices due to their distinct superiorities in flexibility, solution processability and self-assembly behavior. Notably, recent advancements have demonstrated high-performance SF in isolated donor-acceptor (D-A) copolymer chains. This review provides an overview of recent progress in the development of SF-capable polymeric materials, with a significant focus on elucidating the mechanisms of SF in polymers and optimizing the design strategies for SF-capable polymers. Additionally, the paper discusses the challenges encountered in this field and presents future perspectives. It is expected that this comprehensive review will offer valuable insights into the design of novel SF-capable polymeric materials, further advancing the potential for SF implementation in photovoltaic devices.


Subject(s)
Polymers
4.
J Chem Phys ; 160(16)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38666791

ABSTRACT

Photoinduced symmetry-breaking charge separation (SB-CS) has been extensively observed in various oligomers and aggregates, which holds great potential for robust artificial solar energy conversion systems. It attaches great importance to the precise manipulation of interchromophore electronic coupling in realizing efficient SB-CS. The emerging studies on SB-CS suggested that it could be realized in null-excitonic aggregates, and a long-lived SB-CS state was observed, which offers an advanced platform and has gathered immense attention in the SB-CS field. Here, we unveiled the null-exciton coupling induced ultrafast SB-CS in a rigid polycyclic aromatic hydrocarbon framework, triperyleno[3,3,3]propellane triimides (TPPTI), in which three chromophores were attached through a nonconjugated bridge. Through a combination of theoretical calculations and steady-state absorption results, we demonstrated that this nonconjugated TPPTI possesses negligible exciton coupling. Increased solvent polarity was found to significantly enhance state mixing between local excited and charge transfer states. Using transient absorption spectroscopy, ultrafast SB-CS was observed in highly polar dimethylformamide, facilitated by a selective hole-transfer coupling and a favorable charge separation free energy (ΔGCS). Additionally, the rate ratio between SB-CS and charge recombination was at least high to 1800 in dimethylformamide. This investigation provides profound insights into the role of null-exciton coupling in dominating ultrafast SB-CS in multichromophoric systems.

5.
Angew Chem Int Ed Engl ; 63(18): e202400941, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38458974

ABSTRACT

The development of innovative triplet materials plays a significant role in various applications. Although effective tuning of triplet formation by intersystem crossing (ISC) has been well established in solution, the modulation of ISC processes in the solid state remains a challenge due to the presence of other exciton decay channels through intermolecular interactions. The cyclic structure of cycloparaphenylenes (CPPs) offers a unique platform to tune the intermolecular packing, which leads to controllable exciton dynamics in the solid state. Herein, by integrating an electron deficient coronene diimide (CDI) unit into the CPP framework, a donor-acceptor type of conjugated macrocycle (CDI-CPP) featuring intramolecular charge-transfer (CT) interaction was designed and synthesized. Effective intermolecular CT interaction resulting from a slipped herringbone packing was confirmed by X-ray crystallography. Transient spectroscopy studies showed that CDI-CPP undergoes ISC in both solution and the film state, with triplet generation time constants of 4.5 ns and 238 ps, respectively. The rapid triplet formation through ISC in the film state can be ascribed to the cooperation between intra- and intermolecular charge-transfer interactions. Our results highlight that intermolecular CT interaction has a pronounced effect on the ISC process in the solid state, and shed light on the use of the characteristic structure of CPPs to manipulate intermolecular CT interactions.

6.
Nat Mater ; 21(2): 210-216, 2022 02.
Article in English | MEDLINE | ID: mdl-34764429

ABSTRACT

X-ray detection, which plays an important role in medical and industrial fields, usually relies on inorganic scintillators to convert X-rays to visible photons; although several high-quantum-yield fluorescent molecules have been tested as scintillators, they are generally less efficient. High-energy radiation can ionize molecules and create secondary electrons and ions. As a result, a high fraction of triplet states is generated, which act as scintillation loss channels. Here we found that X-ray-induced triplet excitons can be exploited for emission through very rapid, thermally activated up-conversion. We report scintillators based on three thermally activated delayed fluorescence molecules with different emission bands, which showed significantly higher efficiency than conventional anthracene-based scintillators. X-ray imaging with 16.6 line pairs mm-1 resolution was also demonstrated. These results highlight the importance of efficient and prompt harvesting of triplet excitons for efficient X-ray scintillation and radiation detection.


Subject(s)
Electrons , Photons , Fluorescence , X-Rays
7.
Chemistry ; 29(28): e202300480, 2023 May 16.
Article in English | MEDLINE | ID: mdl-36861387

ABSTRACT

Materials Synthesis and Processing Polycyclic aromatic hydrocarbon (PAH) diimides are indispensable candidates for n-type organic semiconductors in organic optoelectronic devices. Developing new PAH diimide building blocks are of remarkable significance for material diversity and further advance in organic semiconductors. In this contribution, 4,5,8,9-picene diimide (PiDI) was designed and synthesized. Controllable stepwise bromination of PiDI were accomplished to afford 13-monobromo-, 13,14-dibromo-, 2,13,14-tribromo- and 2,11,13,14-tetrabromo-PiDI. Moreover, cyanation of 2,11,13,14-tetrabromo-PiDI gave the corresponding tetracyanated PiDI, which can be utilized as n-type semiconductor with OFET electron mobility up 0.073 cm2 V-1 s-1 . This result demonstrates the potential of PiDI as a building block for constructing new high-performance electronic-transporting materials.

8.
Angew Chem Int Ed Engl ; 62(50): e202315911, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37905301

ABSTRACT

Accidentally, it was found that triphenylamine (TPA) from commercial sources shows ultralong yellow-green room temperature phosphorescence (RTP) like commercial carbazole, which however disappears for lab-synthesized TPA with high purity. Herein, we for the first time identify the impurity types that cause RTP of commercial TPA, which are two N, N-diphenyl-naphthylamine isomers. Due to similar molecular polarity and very trace amount (≈0.8 ‰, molar ratio), these naphthyl substituted impurities can be easily overlooked. We further show that even at an extremely low amount (1000000 : 1, mass ratio) of impurities, RTP emission is still generated, attributed to the triplet-to-triplet energy transfer mechanism. Notably, this doping strategy is also applicable to the triphenylphosphine and benzophenone host systems, of which strong RTP emission can be activated by simply doping the corresponding naphthyl substituted analogues into them. This work therefore provides a general and efficient host/guest strategy toward high performance and diverse organic RTP materials.

9.
J Org Chem ; 87(21): 14825-14832, 2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36261214

ABSTRACT

Preparation of regioisomerically pure 1,6-disubstituted perylene diimide (PDI) is not a trivial task owing to the lack of facile synthetic and separation methodologies for the precursors. Herein, we present a simple synthesis for 1,6-ditriflato-PDI (1,6-diOTf-PDI) using 1,6,9,10-tetrabromo-perylene monoimide 1 as the starting material. The selective methoxylation of 1 at the 1,6-position is the key step. Based on a four-step sequence of selective methoxylation, domino carbonylative amidation, demethylation, and triflation, 1,6-diOTf-PDI can be obtained in a satisfactory yield. Moreover, as a building block, 1,6-diOTf-PDIa can readily undergo Suzuki and Sonogashira cross-coupling reactions.

10.
J Chem Phys ; 153(24): 244902, 2020 Dec 28.
Article in English | MEDLINE | ID: mdl-33380093

ABSTRACT

Polymers are desirable optoelectronic materials, stemming from their solution processability, tunable electronic properties, and large absorption coefficients. An exciting development is the recent discovery that singlet fission (SF), the conversion of a singlet exciton to a pair of triplet states, can occur along the backbone of an individual conjugated polymer chain. Compared to other intramolecular SF compounds, the nature of the triplet pair state in SF polymers remains poorly understood, hampering the development of new materials with optimized excited state dynamics. Here, we investigate the effect of solvent polarity on the triplet pair dynamics in the SF polymer polybenzodithiophene-thiophene-1,1-dioxide. We use transient emission measurements to study isolated polymer chains in solution and use the change in the solvent polarity to investigate the role of charge transfer character in both the singlet exciton and the triplet pair multiexciton. We identify both singlet fluorescence and direct triplet pair emission, indicating significant symmetry breaking. Surprisingly, the singlet emission peak is relatively insensitive to solvent polarity despite its nominal "charge-transfer" nature. In contrast, the redshift of the triplet pair energy with increasing solvent polarity indicates significant charge transfer character. While the energy separation between singlet and triplet pair states increases with solvent polarity, the overall SF rate constant depends on both the energetic driving force and additional environmental factors. The triplet pair lifetime is directly determined by the solvent effect on its overall energy. The dominant recombination channel is a concerted, radiationless decay process that scales as predicted by a simple energy gap law.

11.
Nano Lett ; 19(4): 2555-2561, 2019 04 10.
Article in English | MEDLINE | ID: mdl-30821465

ABSTRACT

The promise of the field of single-molecule electronics is to reveal a new class of quantum devices that leverages the strong electronic interactions inherent to subnanometer scale systems. Here, we form Au-molecule-Au junctions using a custom scanning tunneling microscope and explore charge transport through current-voltage measurements. We focus on the resonant tunneling regime of two molecules, one that is primarily an electron conductor and one that conducts primarily holes. We find that in the high bias regime, junctions that do not rupture demonstrate reproducible and pronounced negative differential resistance (NDR)-like features followed by hysteresis with peak-to-valley ratios exceeding 100 in some cases. Furthermore, we show that both junction rupture and NDR are induced by charging of the molecular orbital dominating transport and find that the charging is reversible at lower bias and with time with kinetic time scales on the order of hundreds of milliseconds. We argue that these results cannot be explained by existing models of charge transport and likely require theoretical advances describing the transition from coherent to sequential tunneling. Our work also suggests new rules for operating single-molecule devices at high bias to obtain highly nonlinear behavior.

12.
Angew Chem Int Ed Engl ; 59(35): 15043-15049, 2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32385920

ABSTRACT

Triplet acceptors have been developed to construct high-performance organic solar cells (OSCs) as the long lifetime and diffusion range of triplet excitons may dissociate into free charges instead of net recombination when the energy levels of the lowest triplet state (T1 ) are close to those of charge-transfer states (3 CT). The current triplet acceptors were designed by introducing heavy atoms to enhance the intersystem crossing, limiting their applications. Herein, two twisted acceptors without heavy atoms, analogues of Y6, constructed with large π-conjugated core and D-A structure, were confirmed to be triplet materials, leading to high-performance OSCs. The mechanism of triplet excitons were investigated to show that the twisted and D-A structures result in large spin-orbit coupling (SOC) and small energy gap between the singlet and triplet states, and thus efficient intersystem crossing. Moreover, the energy level of T1 is close to 3 CT, facilitating the split of triplet exciton to free charges.

13.
Chemistry ; 25(52): 12137-12144, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31276238

ABSTRACT

Isomerism heavily influences the optoelectronic properties and self-assembly behavior of compounds and subsequently affects their device performance. Herein, two pairs of isomeric perylene diimide (PDI) dimers, PDI and PDI2, were designed and synthesized. The electron-deficient 9,10-anthraquinone group was employed as the bridge, and thus, the resultant dimers exhibited an acceptor-acceptor-acceptor (A-A-A) structure. To determine the isomeric effects on the optoelectronic properties and photovoltaic performance of these dimers, their absorptivity, luminescence, and redox behavior were studied. Bulk heterojunction organic solar cells based on these four dimers were fabricated and measured. The two PDI dimers exhibited clear differences in photovoltaic performance, whereas the two PDI2 analogues showed similar power conversion efficiencies (PCEs). The PCEs of the two PDI2 dimers are much higher than those of the PDI dimers. These results illustrate that the isomeric effect of PDI dimers is much larger than that of PDI2 dimers on the device performance, and proper expansion of conjugation could improve the device performance.


Subject(s)
Anthraquinones/chemistry , Imides/chemistry , Perylene/analogs & derivatives , Dimerization , Electronics , Isomerism , Oxidation-Reduction , Perylene/chemistry , Solar Energy
15.
Phys Chem Chem Phys ; 20(18): 12527-12534, 2018 May 09.
Article in English | MEDLINE | ID: mdl-29713708

ABSTRACT

Biomaterials are often engineered with nanostructured surfaces to control interactions with proteins and thus regulate their biofunctions. However, the mechanism of how nanostructured surfaces resist or attract proteins together with the underlying design rules remains poorly understood at a molecular level, greatly limiting attempts to develop high-performance biomaterials and devices through the rational design of nanostructures. Here, we study the dynamics of nonspecific protein adsorption on block copolymer nanostructures of varying adhesive domain areas in a resistant matrix. Using surface plasmon resonance and single molecule tracking techniques, we show that weakly adsorbed proteins with two-dimensional diffusivity are critical precursors to protein resistance on nanostructured surfaces. The adhesive domain areas must be more than tens or hundreds of times those of the protein footprints to slow down the 2D-mobility of the precursor proteins for their irreversible adsorption. This precursor model can be used to quantitatively analyze the kinetics of nonspecific protein adsorption on nanostructured surfaces. Our method is applicable to precisely manipulate protein adsorption and resistance on various nanostructured surfaces, e.g., amphiphilic, low-surface-energy, and charged nanostructures, for the design of protein-compatible materials.


Subject(s)
Biocompatible Materials/chemistry , Fibrinogen/chemistry , Myoglobin/chemistry , Nanostructures/chemistry , Serum Albumin, Bovine/chemistry , Adhesiveness , Adsorption , Animals , Cattle , Horses , Humans , Kinetics , Microscopy, Fluorescence , Polymers/chemistry , Surface Plasmon Resonance
16.
Nano Lett ; 17(7): 4436-4442, 2017 07 12.
Article in English | MEDLINE | ID: mdl-28650176

ABSTRACT

Quantum interference effects, whether constructive or destructive, are key to predicting and understanding the electrical conductance of single molecules. Here, through theory and experiment, we investigate a family of benzene-like molecules that exhibit both constructive and destructive interference effects arising due to more than one contact between the molecule and each electrode. In particular, we demonstrate that the π-system of meta-coupled benzene can exhibit constructive interference and its para-coupled analog can exhibit destructive interference, and vice versa, depending on the specific through-space interactions. As a peculiarity, this allows a meta-coupled benzene molecule to exhibit higher conductance than a para-coupled benzene. Our results provide design principles for molecular electronic components with high sensitivity to through-space interactions and demonstrate that increasing the number of contacts between the molecule and electrodes can both increase and decrease the conductance.

17.
Nano Lett ; 16(6): 3949-54, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27186894

ABSTRACT

Charge transport phenomena in single-molecule junctions are often dominated by tunneling, with a transmission function dictating the probability that electrons or holes tunnel through the junction. Here, we present a new and simple technique for measuring the transmission functions of molecular junctions in the coherent tunneling limit, over an energy range of 1.5 eV around the Fermi energy. We create molecular junctions in an ionic environment with electrodes having different exposed areas, which results in the formation of electric double layers of dissimilar density on the two electrodes. This allows us to electrostatically shift the molecular resonance relative to the junction Fermi levels in a manner that depends on the sign of the applied bias, enabling us to map out the junction's transmission function and determine the dominant orbital for charge transport in the molecular junction. We demonstrate this technique using two groups of molecules: one group having molecular resonance energies relatively far from EF and one group having molecular resonance energies within the accessible bias window. Our results compare well with previous electrochemical gating data and with transmission functions computed from first principles. Furthermore, with the second group of molecules, we are able to examine the behavior of a molecular junction as a resonance shifts into the bias window. This work provides a new, experimentally simple route for exploring the fundamentals of charge transport at the nanoscale.

18.
Nat Mater ; 14(4): 426-33, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25581625

ABSTRACT

The ability to advance our understanding of multiple exciton generation (MEG) in organic materials has been restricted by the limited number of materials capable of singlet fission. A particular challenge is the development of materials that undergo efficient intramolecular fission, such that local order and strong nearest-neighbour coupling is no longer a design constraint. Here we address these challenges by demonstrating that strong intrachain donor-acceptor interactions are a key design feature for organic materials capable of intramolecular singlet fission. By conjugating strong-acceptor and strong-donor building blocks, small molecules and polymers with charge-transfer states that mediate population transfer between singlet excitons and triplet excitons are synthesized. Using transient optical techniques, we show that triplet populations can be generated with yields up to 170%. These guidelines are widely applicable to similar families of polymers and small molecules, and can lead to the development of new fission-capable materials with tunable electronic structure, as well as a deeper fundamental understanding of MEG.

19.
J Am Chem Soc ; 137(28): 8965-72, 2015 Jul 22.
Article in English | MEDLINE | ID: mdl-26102432

ABSTRACT

Singlet fission (SF) has the potential to significantly enhance the photocurrent in single-junction solar cells and thus raise the power conversion efficiency from the Shockley-Queisser limit of 33% to 44%. Until now, quantitative SF yield at room temperature has been observed only in crystalline solids or aggregates of oligoacenes. Here, we employ transient absorption spectroscopy, ultrafast photoluminescence spectroscopy, and triplet photosensitization to demonstrate intramolecular singlet fission (iSF) with triplet yields approaching 200% per absorbed photon in a series of bipentacenes. Crucially, in dilute solution of these systems, SF does not depend on intermolecular interactions. Instead, SF is an intrinsic property of the molecules, with both the fission rate and resulting triplet lifetime determined by the degree of electronic coupling between covalently linked pentacene molecules. We found that the triplet pair lifetime can be as short as 0.5 ns but can be extended up to 270 ns.

20.
Nano Lett ; 14(5): 2941-5, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24745894

ABSTRACT

We have designed and synthesized five azulene derivatives containing gold-binding groups at different points of connectivity within the azulene core to probe the effects of quantum interference through single-molecule conductance measurements. We compare conducting paths through the 5-membered ring, 7-membered ring, and across the long axis of azulene. We find that changing the points of connectivity in the azulene impacts the optical properties (as determined from UV-vis absorption spectra) and the conductivity. Importantly, we show here that simple models cannot be used to predict quantum interference characteristics of nonalternant hydrocarbons. As an exemplary case, we show that azulene derivatives that are predicted to exhibit destructive interference based on widely accepted atom-counting models show a significant conductance at low biases. Although simple models to predict the low-bias conductance do not hold with all azulene derivatives, we demonstrate that the measured conductance trend for all molecules studied actually agrees with predictions based on the more complete GW calculations for model systems.


Subject(s)
Azulenes/chemistry , Hydrocarbons/chemistry , Azulenes/chemical synthesis , Gold/chemistry , Hydrocarbons/chemical synthesis , Molecular Structure , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL