Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 572
Filter
Add more filters

Publication year range
1.
PLoS Pathog ; 19(2): e1011166, 2023 02.
Article in English | MEDLINE | ID: mdl-36753521

ABSTRACT

Congenital human cytomegalovirus (HCMV) infection causes severe damage to the fetal brain, and the underlying mechanisms remain elusive. Cytokine signaling is delicately controlled in the fetal central nervous system to ensure proper development. Here we show that suppressor of cytokine signaling 3 (SOCS3), a negative feedback regulator of the IL-6 cytokine family signaling, was upregulated during HCMV infection in primary neural progenitor cells (NPCs) with a biphasic expression pattern. From viral protein screening, pUL97 emerged as the viral factor responsible for prolonged SOCS3 upregulation. Further, by proteomic analysis of the pUL97-interacting host proteins, regulatory factor X 7 (RFX7) was identified as the transcription factor responsible for the regulation. Depletion of either pUL97 or RFX7 prevented the HCMV-induced SOCS3 upregulation in NPCs. With a promoter-luciferase activity assay, we demonstrated that the pUL97 kinase activity and RFX7 were required for SOCS3 upregulation. Moreover, the RFX7 phosphorylation level was increased by either UL97-expressing or HCMV-infection in NPCs, suggesting that pUL97 induces RFX7 phosphorylation to drive SOCS3 transcription. We further revealed that elevated SOCS3 expression impaired NPC proliferation and migration in vitro and caused NPCs migration defects in vivo. Taken together, these findings uncover a novel regulatory mechanism of sustained SOCS3 expression in HCMV-infected NPCs, which perturbs IL-6 cytokine family signaling, leads to NPCs proliferation and migration defects, and consequently affects fetal brain development.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Humans , Cytomegalovirus/physiology , Interleukin-6/metabolism , Proteomics , Transcription Factors/metabolism , Stem Cells , Suppressor of Cytokine Signaling 3 Protein/metabolism
2.
PLoS Pathog ; 19(4): e1011316, 2023 04.
Article in English | MEDLINE | ID: mdl-37058447

ABSTRACT

The presence of human cytomegalovirus (HCMV) in glioblastoma (GBM) and improved outcomes of GBM patients receiving therapies targeting the virus have implicated HCMV in GBM progression. However, a unifying mechanism that accounts for the contribution of HCMV to the malignant phenotype of GBM remains incompletely defined. Here we have identified SOX2, a marker of glioma stem cells (GSCs), as a key determinant of HCMV gene expression in gliomas. Our studies demonstrated that SOX2 downregulated promyelocytic leukemia (PML) and Sp100 and consequently facilitated viral gene expression by decreasing the amount of PML nuclear bodies in HCMV-infected glioma cells. Conversely, the expression of PML antagonized the effects of SOX2 on HCMV gene expression. Furthermore, this regulation of SOX2 on HCMV infection was demonstrated in a neurosphere assay of GSCs and in a murine xenograft model utilizing xenografts from patient-derived glioma tissue. In both cases, SOX2 overexpression facilitated the growth of neurospheres and xenografts implanted in immunodeficient mice. Lastly, the expression of SOX2 and HCMV immediate early 1 (IE1) protein could be correlated in tissues from glioma patients, and interestingly, elevated levels of SOX2 and IE1 were predictive of a worse clinical outcome. These studies argue that HCMV gene expression in gliomas is regulated by SOX2 through its regulation of PML expression and that targeting molecules in this SOX2-PML pathway could identify therapies for glioma treatment.


Subject(s)
Glioma , Immediate-Early Proteins , Animals , Humans , Mice , Cytomegalovirus/physiology , Down-Regulation , Gene Expression , Glioma/genetics , Glioma/pathology , Immediate-Early Proteins/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
3.
J Virol ; 97(5): e0031323, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37097169

ABSTRACT

Human cytomegalovirus (HCMV) is a leading cause of congenital birth defects. Though the underlying mechanisms remain poorly characterized, mouse models of congenital CMV infection have demonstrated that the neuronal migration process is damaged. In this study, we evaluated the effects of HCMV infection on connexin 43 (Cx43), a crucial adhesion molecule mediating neuronal migration. We show in multiple cellular models that HCMV infection downregulated Cx43 posttranslationally. Further analysis identified the immediate early protein IE1 as the viral protein responsible for the reduction of Cx43. IE1 was found to bind the Cx43 C terminus and promote Cx43 degradation through the ubiquitin-proteasome pathway. Deletion of the Cx43-binding site in IE1 rendered it incapable of inducing Cx43 degradation. We validated the IE1-induced loss of Cx43 in vivo by introducing IE1 into the fetal mouse brain. Noteworthily, ectopic IE1 expression induced cortical atrophy and neuronal migration defects. Several lines of evidence suggest that these damages result from decreased Cx43, and restoration of Cx43 levels partially rescued IE1-induced interruption of neuronal migration. Taken together, the results of our investigation reveal a novel mechanism of HCMV-induced neural maldevelopment and identify a potential intervention target. IMPORTANCE Congenital CMV (cCMV) infection causes neurological sequelae in newborns. Recent studies of cCMV pathogenesis in animal models reveal ventriculomegaly and cortical atrophy associated with impaired neural progenitor cell (NPC) proliferation and migration. In this study, we investigated the mechanisms underlying these NPC abnormalities. We show that Cx43, a critical adhesion molecule mediating NPC migration, is downregulated by HCMV infection in vitro and HCMV-IE1 in vivo. We provide evidence that IE1 interacts with the C terminus of Cx43 to promote its ubiquitination and consequent degradation through the proteasome. Moreover, we demonstrate that introducing IE1 into mouse fetal brains led to neuronal migration defects, which was associated with Cx43 reduction. Deletion of the Cx43-binding region in IE1 or ectopic expression of Cx43 rescued the IE1-induced migration defects in vivo. Our study provides insight into how cCMV infection impairs neuronal migration and reveals a target for therapeutic interventions.


Subject(s)
Connexin 43 , Cytomegalovirus Infections , Cytomegalovirus , Immediate-Early Proteins , Animals , Humans , Infant, Newborn , Mice , Connexin 43/genetics , Connexin 43/metabolism , Cytomegalovirus/physiology , Cytomegalovirus Infections/metabolism , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism
4.
Toxicol Appl Pharmacol ; 483: 116839, 2024 02.
Article in English | MEDLINE | ID: mdl-38290667

ABSTRACT

Actin filaments form unique structures with robust actin bundles and cytoskeletal networks affixed to the extracellular matrix and interact with neighboring cells, which are crucial structures for cancer cells to acquire a motile phenotype. This study aims to investigate a novel antitumor mechanism by which Tanshinone IIA (Tan IIA) modulates the morphology and migration of liver cancer cells via actin cytoskeleton regulation. 97H and Huh7 exhibited numerous tentacle-like protrusions that interacted with neighboring cells. Following treatment with Tan IIA, 97H and Huh7 showed a complete absence of cytoplasmic protrusion and adherens junctions, thereby effectively impeding their migration capability. The fluorescence staining of F-actin and microtubules indicated that these tentacle-like protrusions and cell-cell networks were actin-based structures that led to morphological changes after Tan IIA treatment by retracting and reorganizing beneath the membrane. Tan IIA can reverse the actin depolymerization and cell morphology alterations induced by latrunculin A. Tan IIA down-regulated actin and Rho GTPases expression significantly, as opposed to inducing Rho signaling activation. Preventing the activity of proteasomes and lysosomes had no discernible impact on the modifications in cellular structure and protein expression induced by Tan IIA. However, as demonstrated by the puromycin labeling technique, the newly synthesized proteins were significantly inhibited by Tan IIA. In conclusion, Tan IIA can induce dramatic actin cytoskeleton remodeling by inhibiting the protein synthesis of actin and Rho GTPases, resulting in the suppression of tumor growth and migration. Targeting the actin cytoskeleton of Tan IIA is a promising strategy for HCC treatment.


Subject(s)
Abietanes , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Actins , rho GTP-Binding Proteins/pharmacology , Cell Proliferation , Carcinoma, Hepatocellular/drug therapy , Cytoskeleton , Actin Cytoskeleton , Cell Line, Tumor , Apoptosis
5.
Zhongguo Zhong Yao Za Zhi ; 49(16): 4407-4419, 2024 Aug.
Article in Zh | MEDLINE | ID: mdl-39307777

ABSTRACT

The MYB(v-myb avian myeloblastosis viral oncogene homolog) family of transcription factors is the largest class of genes among higher plant transcription factors, which can be divided into four subfamilies, with the R2R3-MYB being the most common subfamily type. R2R3-MYB transcription factors are widely involved in the regulation of organ development and secondary metabolite biosynthesis in plants. To investigate the role of R2R3-MYB family transcription factors in the synthesis of flavonoids and glandular trichome development in Artemisia argyi, this study screened and identified 92 R2R3-MYB transcription factors based on the whole genome data of A. argyi, and predicted their potential functions based on bioinformatics. The results showed that the amino acid lengths of the 92 transcription factors ranged from 168 to 547 aa, with relative molecular weights ranging from 19. 6 to 60. 5 kDa, all of which were hydrophilic proteins. Subcellular localization analysis showed that 89 AaMYB proteins were located in the nucleus, while three proteins were simultaneously located in the nucleus and cytoplasm. According to the classification of Arabidopsis R2R3-MYB family, the 92 A. argyi R2R3-MYB proteins were divided into 26 subfamilies, with similar gene structures within the same subfamily.Cis-acting element prediction results showed that light-responsive elements, methyl jasmonate elements, and abscisic acid elements were widely distributed in the promoter regions of R2R3-MYB genes. Transcriptome expression analysis results showed that the expression of AaMYB60, AaMYB63, and AaMYB86 in leaves was higher than that in stems and roots, indicating that these three transcription factors mainly function in leaves. Additionally, five candidate R2R3-MYB transcription factors involved in A. argyi flavonoid biosynthesis or glandular trichome development were selected through phylogenetic analysis. This study provides important genetic resources for the breeding of superior varieties and germplasm innovation of A. argyi in the future.


Subject(s)
Artemisia , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Transcription Factors , Artemisia/genetics , Artemisia/metabolism , Artemisia/growth & development , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling , Amino Acid Sequence
6.
J Virol ; 96(2): e0147621, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34730396

ABSTRACT

Human cytomegalovirus (HCMV) establishes a persistent/latent infection after primary infection, and the host factor(s) plays a key role in regulating HCMV infection status. The spread of reactivated HCMV via the hematogenous or neural route usually results in severe diseases in newborns and immunocompromised individuals. As the primary reservoirs in vivo, cells of myeloid lineage have been utilized extensively to study HCMV infection. However, the molecular mechanism of HCMV latency/reactivation in neural cells is still poorly understood. We previously showed that HCMV-infected T98G cells maintain a large number of viral genomes and support HCMV reactivation from latency upon cAMP/IBMX treatment. Here, we employed an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomics to characterize cellular protein changes during HCMV latency and reactivation in T98G cells. A total of 168 differentially expressed proteins (DEPs) were identified, including 89 proteins in latency and 85 proteins in reactivation. Bioinformatics analysis showed that a few biological pathways were associated with HCMV latency or reactivation. Moreover, we validated 16 DEPs by both mRNA and protein expression profiles and further evaluated the effects of ApoE and the phosphatidylinositol 3-kinase (PI3K) pathway on HCMV infection. ApoE knockdown reduced HCMV loads and virus release, whereas overexpressing ApoE hampered HCMV latent infection, indicating a role in HCMV latency establishment/maintenance. Blocking the PI3K pathway by LY294002, a PI3K inhibitor, induced HCMV reactivation from latency in T98G cells. Overall, this comparative proteomics analysis delineates the cellular protein changes during HCMV latency and reactivation and provides a road map to advance our understanding of the mechanism(s) in the context of neural cells. IMPORTANCE Human cytomegalovirus (HCMV) is a highly transmissible betaherpesvirus that has a prevalence of 60% to 90% worldwide. This opportunist pathogen poses a significant threat to newborns and immunosuppressed individuals. One major obstacle for developing effective therapeutics is a poor understanding of HCMV latency/reactivation mechanisms. This study presents, for the first time, a systemic analysis of host cell protein expression changes during HCMV latency establishment and reactivation processes in neural cells. We showed that ApoE was downregulated by HCMV to facilitate latent infection. Also, the proteomics analysis has associated a few PI3K pathway-related proteins with HCMV reactivation. Altogether, this study highlights multiple host proteins and signaling pathways that can be further investigated as potential druggable targets for HCMV-related diseases, especially brain disorders.


Subject(s)
Cytomegalovirus/physiology , Proteomics , Virus Activation , Virus Latency , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Cell Line, Tumor , Gene Ontology , Humans , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Protein Interaction Maps , Proteome/genetics , Proteome/metabolism , Signal Transduction
7.
J Virol ; 96(5): e0182721, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35020472

ABSTRACT

Human cytomegalovirus (HCMV) has a large (∼235 kb) genome with more than 200 predicted open reading frames that exploits numerous cellular factors to facilitate its replication. A key feature of HCMV-infected cells is the emergence of a distinctive membranous cytoplasmic compartment termed the virion assembly compartment (vAC). Here, we report that host protein WD repeat domain 11 (WDR11) plays a key role in vAC formation and virion morphogenesis. We found that WDR11 was upregulated at both mRNA and protein levels during HCMV infection. At the late stage of HCMV replication, WDR11 relocated to the vAC and colocalized with markers of the trans-Golgi network (TGN) and vAC. Depletion of WDR11 hindered HCMV-induced membrane reorganization of the Golgi and TGN, altered vAC formation, and impaired HCMV secondary envelopment and virion morphogenesis. Further, motifs critical for the localization of WDR11 in TGN were identified by alanine-scanning mutagenesis. Mutation of these motifs led to WDR11 mislocation outside the TGN and loss of vAC formation. Taken together, these data indicate that host protein WDR11 is required for efficient viral replication at the stage of virion assembly, possibly by facilitating the remodeling of the endomembrane system for vAC formation and virion morphogenesis. IMPORTANCE During the late phase of human cytomegalovirus (HCMV) infection, the endomembrane system is dramatically reorganized, resulting in the formation of a unique structure termed the virion assembly compartment (vAC), which is critical for the assembly of infectious virions. The mechanism of HCMV-induced vAC formation is still not fully understood. In this report, we identified a host factor, WDR11, that plays an important role in vAC formation. Our findings argue that WDR11 contributes to the relocation of the Golgi and trans-Golgi network to the vAC, a membrane reorganization process that appears to be required for efficient virion maturation. The present work provides new insights into the vAC formation and HCMV virion morphogenesis and a potential novel target for antiviral treatment.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Host Microbial Interactions , WD40 Repeats , Cytomegalovirus/genetics , Cytomegalovirus/metabolism , Cytomegalovirus Infections/physiopathology , Cytomegalovirus Infections/virology , Humans , Morphogenesis , Virion/metabolism , Virus Assembly/genetics , Virus Replication/genetics , WD40 Repeats/genetics , trans-Golgi Network/metabolism
8.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3693-3700, 2023 Jul.
Article in Zh | MEDLINE | ID: mdl-37475060

ABSTRACT

The quality of moxa is an important factor affecting moxibustion therapy, and traditionally, 3-year moxa is considered optimal, although scientific data are lacking. This study focused on 1-year and 3-year moxa from Artemisia stolonifera and A. argyi(leaf-to-moxa ratio of 10∶1) as research objects. Scanning electron microscopy(SEM), Van Soest method, and simultaneous thermal analysis were used to investigate the differences in the combustion heat quality of 1-year and 3-year moxa and their influencing factors. The results showed that the combustion of A. stolonifera moxa exhibited a balanced heat release pattern. The 3-year moxa released a concentrated heat of 9 998.84 mJ·mg~(-1)(accounting for 54% of the total heat release) in the temperature range of 140-302 ℃, with a heat production efficiency of 122 mW·mg~(-1). It further released 7 512.51 mJ·mg~(-1)(accounting for 41% of the total heat release) in the temperature range of 302-519 ℃. The combustion of A. argyi moxa showed a rapid heat release pattern. The 3-year moxa released a heat of 16 695.28 mJ·mg~(-1)(accounting for 70% of the total heat release) in the temperature range of 140-311 ℃, with an instantaneous power output of 218 mW·mg~(-1). It further released 5 996.95 mJ·mg~(-1)(accounting for 25% of the total heat release) in the temperature range of 311-483 ℃. Combustion parameters such as-R_p,-R_v, D_i, C, and D_b indicated that the combustion heat quality of 3-year moxa was superior to that of 1-year moxa. It exhibited greater combustion heat, heat production efficiency, flammability, mild and sustained burning, and higher instantaneous combustion efficiency. This study utilized scientific data to demonstrate that A. stolonifera could be used as excellent moxa, and the quality of 3-year moxa surpassed that of 1-year moxa. The research results provide a scientific basis for the in-depth development of A. stolonifera moxa and the improvement of moxa quality standards.


Subject(s)
Artemisia , Moxibustion , Hot Temperature , Plant Leaves
9.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3715-3721, 2023 Jul.
Article in Zh | MEDLINE | ID: mdl-37475062

ABSTRACT

The purpose of this study was to analyze the effects of shading intensity on the growth, yield, and quality of Artemisia stolonifera so as to provide references for the artificial cultivation of A. stolonifera. The seedlings of A. stolonifera with consistent growth underwent shading treatment at four shading intensity levels(0, 55%, 85%, and 95%) with different layers of black shading nets. The agronomic indexes, yield, moxa yield, total ash, quality characteristics of moxa during combustion and pyrolysis, main volatile components, flavonoids, and phenolic acids were measured. The results showed that under shading conditions, the stem diameter, leaf width, 5-leaf spacing, branch number, and yield of A. stolonifera decreased significantly, while the plant height, leaf length, leaf number, chlorophyll content, and moxa yield increased first and then decreased with the increase in shading intensity. The burning performance of moxa under natural light was better than that under moderate and severe shading conditions. The content of eucalyptol first increased and then decreased with the increase in shading intensity. The humulene content was negatively correlated with shading intensity. Other major volatile components showed no significant difference under various shading conditions. The content of neochlorogenic acid, cryptochlorogenic acid, isoschaftoside, and isochlorogenic acid B was positively correlated with shading intensity, while the content of chlorogenic acid, isochlorogenic acid A, and isochlorogenic acid C decreased first and then increased with the increase in shading intensity. To sum up, A. stolonifera is a light-loving plant, and shading can greatly reduce the yield, the content of internal components, and the burning performance of moxa. It is the main reason why A. stolonifera is mainly distributed in the forest edge, open forest, roadside, and wasteland grass in the middle and high mountains in the wild. For artificial domestication and cultivation of A. stolonifera, it is better to select plots with sufficient light.


Subject(s)
Artemisia , Chlorophyll , Seedlings , Flavonoids , Plant Leaves
10.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3722-3729, 2023 Jul.
Article in Zh | MEDLINE | ID: mdl-37475063

ABSTRACT

This paper aims to compare the difference of growth and quality between wild and cultivated Artemisia stolonifera, thereby providing references for further development and utilization of A. stolonifera. The wild and cultivated A. stolonifera from different altitudes were collected, and the agronomic characters, moxa yield, volatile components, flavonoids, and phenolic acids were determined. The results showed that the cultivated species were taller and stronger, with more leaves and branches, than the wild species. The moxa yield and combustion quality of wild products were higher than those of cultivated products. The content of main volatile components in cultivated products was higher than that in wild products. The content of flavonoids and phenolic acids in wild products was higher than that in cultivated products. At high altitude, the ignition performance, combustion persistence, comprehensive combustion performance, and heat release during combustion of the wild and cultivated A. stolonifera. were optimal. At middle altitude, the content of main characteristic volatile components and flavone phenolic acids in the leaves of the cultivated and wild A. stolonifera were the highest. At low altitude, the combustion quality and the content of the above components of the cultivated A. stolonifera decrease significantly. Considering the combustion quality and the content of the internal components of the leaf lint, the middle and high altitude areas are suitable for the artificial cultivation of A. stolonifera.


Subject(s)
Artemisia , Drugs, Chinese Herbal , Agriculture , Flavonoids , Plant Leaves
11.
Zhongguo Zhong Yao Za Zhi ; 48(18): 4950-4958, 2023 Sep.
Article in Zh | MEDLINE | ID: mdl-37802836

ABSTRACT

The quality of moxa is a key factor affecting the efficacy of moxibustion. Traditional moxa grades are evaluated by the leaf-to-moxa ratio, but there is a lack of support from scientific data. Scanning electron microscopy(SEM), Image Pro Plus, Van Soest method, and stimultaneous thermal analysis(TGA/DSC) were used to characterize the scientific implication of the combustion differences between moxa with different leaf-to-moxa ratios(processed by crusher). The results showed that the median lengths from non-secretory trichomes(NSTs) of natural NSTs and moxa with leaf-to-moxa ratios of 3∶1, 5∶1, 10∶1, and 15∶1 were 542.46, 303.24, 291.18, 220.69, and 170.61 µm, respectively. The cellulose content of moxa increased significantly(P<0.05) with the increase in leaf-to-moxa ratio and the combustion parameters(T_i, t_i, D_i, C,-R_p,-R_v, S, D_b, and J_(total)) all showed an increasing trend. The correlation results showed that the burning properties of moxa(T_i,-R_v, t_i, and J_2) were significantly and positively correlated with cellulose content. NSTs with a length of 1-200 µm were significantly and positively correlated with J_2. NSTs with a length of 200-600 µm were significantly and positively correlated with J_1, T_(peak2), T_(peak1), and-R_v, and negatively correlated with J_(total), T_b, and t_b. As the leaf-to-moxa ratio increases, the NSTs in the moxa become shorter and the cellulose content increases, which is more conducive to ignition performance, heat release, and a milder, longer-lasting burn. The "NSTs-cellulose-TGA/DSC" quantitative evaluation method scientifically reveals the scientific connotation of the combustion of moxa with different leaf-to-moxa ratios and provides a scientific basis for the establishment of quality evaluation methods for moxa with different leaf-to-moxa ratios.


Subject(s)
Moxibustion , Trichomes , Hot Temperature , Plant Leaves
12.
J Virol ; 95(8)2021 03 25.
Article in English | MEDLINE | ID: mdl-33504601

ABSTRACT

We previously reported that human cytomegalovirus (HCMV) utilizes the cellular protein WD repeat-containing protein 5 (WDR5) to facilitate capsid nuclear egress. Here, we further show that HCMV infection results in WDR5 localization in a juxtanuclear region, and that its localization to this cellular site is associated with viral replication and late viral gene expression. Furthermore, WDR5 accumulated in the virion assembly compartment (vAC) and co-localized with vAC markers of gamma-tubulin (γ-tubulin), early endosomes, and viral vAC marker proteins pp65, pp28, and glycoprotein B (gB). WDR5 co-immunoprecipitated with multiple virion proteins, including MCP, pp150, pp65, pIRS1, and pTRS1, which may explain WDR5 accumulation in the vAC during infection. WDR5 fractionated with virions either in the presence or absence of Triton X-100 and was present in purified viral particles, suggesting that WDR5 was incorporated into HCMV virions. Thus, WDR5 localized to the vAC and was incorporated into virions, raising the possibility that in addition to capsid nuclear egress, WDR5 could also participate in cytoplasmic HCMV virion morphogenesis.Importance Human cytomegalovirus (HCMV) has a large (∼235-kb) genome that contains over 170 ORFs and exploits numerous cellular factors to facilitate its replication. In the late phase of HCMV infection cytoplasmic membranes are reorganized to establish the virion assembly compartment (vAC), which has been shown to necessary for efficient assembly of progeny virions. We previously reported that WDR5 facilitates HCMV nuclear egress. Here, we show that WDR5 is localized to the vAC and incorporated into virions, perhaps contributing to efficient virion maturation. Thus, findings in this study identified a potential role for WDR5 in HCMV assembly in the cytoplasmic phase of virion morphogenesis.

13.
J Med Virol ; 94(11): 5492-5506, 2022 11.
Article in English | MEDLINE | ID: mdl-35879101

ABSTRACT

During the long coevolution of human cytomegalovirus (HCMV) and humans, the host has formed a defense system of multiple layers to eradicate the invader, and the virus has developed various strategies to evade host surveillance programs. The intrinsic immunity primarily orchestrated by promyelocytic leukemia (PML) nuclear bodies (PML-NBs) represents the first line of defense against HCMV infection. Here, we demonstrate that microrchidia family CW-type zinc finger 3 (MORC3), a PML-NBs component, is a restriction factor targeting HCMV infection. We show that depletion of MORC3 through knockdown by RNA interference or knockout by CRISPR-Cas9 augmented immediate-early protein 1 (IE1) gene expression and subsequent viral replication, and overexpressing MORC3 inhibited HCMV replication by suppressing IE1 gene expression. To relief the restriction, HCMV induces transient reduction of MORC3 protein level via the ubiquitin-proteasome pathway during the immediate-early to early stage. However, MORC3 transcription is upregulated, and the protein level recovers in the late stages. Further analyses with temporal-controlled MORC3 expression and the major immediate-early promoter (MIEP)-based reporters show that MORC3 suppresses MIEP activity and consequent IE1 expression with the assistance of PML. Taken together, our data reveal that HCMV enforces temporary loss of MORC3 to evade its repression against the initiation of immediate-early gene expression.


Subject(s)
Cytomegalovirus Infections , Immediate-Early Proteins , Adenosine Triphosphatases/metabolism , Cytomegalovirus/genetics , DNA-Binding Proteins/metabolism , Humans , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Promyelocytic Leukemia Protein/genetics , Promyelocytic Leukemia Protein/metabolism , Virus Replication
14.
Mol Psychiatry ; 26(11): 6952-6962, 2021 11.
Article in English | MEDLINE | ID: mdl-33963282

ABSTRACT

It is of great clinical importance to explore more efficacious treatments for OCD. Recently, cognitive-coping therapy (CCT), mainly focusing on recognizing and coping with a fear of negative events, has been reported as an efficacious psychotherapy. However, the underlying neurophysiological mechanism remains unknown. This study of 79 OCD patients collected Yale-Brown Obsessive Compulsive Scale (Y-BOCS) and resting-state functional magnetic resonance imaging (rs-fMRI) scans before and after four weeks of CCT, pharmacotherapy plus CCT (pCCT), or pharmacotherapy. Amygdala seed-based functional connectivity (FC) analysis was performed. Compared post- to pretreatment, pCCT-treated patients showed decreased left amygdala (LA) FC with the right anterior cingulate gyrus (cluster 1) and with the left paracentral lobule/the parietal lobe (cluster 2), while CCT-treated patients showed decreased LA-FC with the left middle occipital gyrus/the left superior parietal/left inferior parietal (cluster 3). The z-values of LA-FC with the three clusters were significantly lower after pCCT or CCT than pretreatment in comparisons of covert vs. overt and of non-remission vs. remission patients, except the z-value of cluster 2 in covert OCD. CCT and pCCT significantly reduced the Y-BOCS score. The reduction in the Y-BOCS score was positively correlated with the z-value of cluster 1. Our findings demonstrate that both pCCT and CCT with large effect sizes lowered LA-FC, indicating that FCs were involved in OCD. Additionally, decreased LA-FC with the anterior cingulate cortex (ACC) or paracentral/parietal cortex may be a marker for pCCT response or a marker for distinguishing OCD subtypes. Decreased LA-FC with the parietal region may be a common pathway of pCCT and CCT. Trial registration: ChiCTR-IPC-15005969.


Subject(s)
Cognitive Behavioral Therapy , Obsessive-Compulsive Disorder , Adaptation, Psychological , Amygdala/metabolism , Cognition , Cognitive Behavioral Therapy/methods , Humans , Magnetic Resonance Imaging/methods , Obsessive-Compulsive Disorder/therapy
15.
J Org Chem ; 87(5): 3741-3750, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35089015

ABSTRACT

An effective strategy for the synthesis of vinylidenequinazolines has been efficaciously developed, which involves Rh(III)-assisted C-H amidation followed by ring-opening and intramolecular annulation. This protocol shows a straightforward way to construct diverse quinazoline units with a wide functional group compatibility from readily available isoxazoles and dioxazolones.


Subject(s)
Isoxazoles
16.
J Clin Lab Anal ; 36(2): e24206, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34957600

ABSTRACT

BACKGROUND: Serum creatinine (SCr) is a useful diagnostic marker for the assessment of renal function. Accurate quantitation of SCr is clinically important in calculation of glomerular filtration rate (GFR). METHOD: To confirm whether there are differences in SCr between enzymatic kits of different manufacturers, the analytical performance of the matched and open test system in the measurement of SCr was evaluated. The analytical performance evaluation was conducted according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. Precision, accuracy, linearity, dilution, lower limit of measurement and analytical interference were studied between the two test systems. RESULTS: The performance of SCr from the open test system was in compliance with the matched test system with good precision, accuracy, and linearity. In presence of most common interferents, both test systems could lead to accurate creatinine results except for the existence of specified drugs. For dobutamine, the open test system showed better anti-interference performance than the matched system. CONCLUSION: This study provides referable opinions for clinical laboratory selection on the test system and a framework for future analogous studies based on different test systems.


Subject(s)
Creatinine/blood , Kidney Function Tests/methods , Humans , Materials Testing
17.
Biochem Biophys Res Commun ; 575: 1-7, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34454174

ABSTRACT

The pathogenesis of atherosclerosis is closely related to endothelial cell injury caused by lipid peroxidation-induced ferroptosis. Tanshinone IIA (TSA) protects endothelial tissues from damage. In this study, we investigated whether TSA exerts its protective effect on endothelial cells by inhibiting ferroptosis. Ferroptosis was induced in human coronary artery endothelial cells (HCAECs), and cells were treated with TSA. Morphological examination indicated that TSA exerted a significant protective effect on the HCAECs. This was further confirmed by LDH release and cell death detection assays. Flow cytometry revealed that TSA significantly reduced the excessive accumulation of total cellular ROS and lipid ROS caused by ferroptosis inducers. TSA also restored the reduction of glutathione (GSH), a potent and abundant reductant in cells. In addition, we found that TSA promoted the expression of NRF2, an essential player in response to oxidative stress, and its downstream genes. Immunofluorescent staining revealed that TSA promoted the nuclear translocation of NRF2. Increased nuclear translocation of NRF2 was validated by Western blot evaluation of cytoplasmic and nuclear protein extracts. Furthermore, NRF2 inhibition abolished the protective effects of TSA on HCAECs. These data demonstrate that TSA represses ferroptosis via activation of NRF2 in HCAECs.


Subject(s)
Abietanes/pharmacology , Atherosclerosis/drug therapy , Coronary Vessels/drug effects , Endothelial Cells/drug effects , Ferroptosis , Lipid Peroxidation , NF-E2-Related Factor 2/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Atherosclerosis/metabolism , Atherosclerosis/pathology , Cells, Cultured , Coronary Vessels/metabolism , Coronary Vessels/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Humans , Signal Transduction
18.
Toxicol Appl Pharmacol ; 431: 115733, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34599948

ABSTRACT

The formation of fat-laden foam cells plays an important role in the initiation and progression of atherosclerosis (AS). Amentoflavone (AF) is found in various traditional Chinese medicines, such as ginkgo biloba, which are used to treat cardiovascular diseases (CVDs). We aimed to explore the potential effects and mechanisms of AF on lipid accumulation, and its possible application in atherosclerotic cardiovascular disease (ASCVD). Cellular models of lipid accumulation were established by treatment of HUASMCs and THP-1 cells with oxidized low-density lipoprotein (ox-LDL). Cell viability, lipid accumulation, and ox-LDL uptake were assessed. Small interfering RNAs (siRNAs) and overexpression plasmids were used to reveal the hierarchical correlations of regulatory pathways. AF reduced the lipid accumulation and ox-LDL uptake induced by ox-LDL, and reduced the expression levels of cluster of differentiation 36 (CD36) and peroxisome proliferator-activated receptor gamma (PPARγ) proteins, while the expression level of ATP binding cassette subfamily A member 1 (ABCA1) increased. Knockdown of PPARγ or CD36 with siRNAs prevented ox-LDL-induced lipid accumulation. Overexpression of CD36 or PPARγ promoted the lipid accumulation induced by ox-LDL and eliminated the effect of AF on ox-LDL-induced lipid accumulation. Overall, AF prevents ox-LDL-induced lipid accumulation by suppressing the PPARγ/CD36 signaling pathway.


Subject(s)
Atherosclerosis/prevention & control , Biflavonoids/pharmacology , CD36 Antigens/metabolism , Foam Cells/drug effects , Hypolipidemic Agents/pharmacology , Lipid Metabolism/drug effects , Lipoproteins, LDL/toxicity , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , PPAR gamma/metabolism , ATP Binding Cassette Transporter 1/metabolism , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , CD36 Antigens/genetics , Foam Cells/metabolism , Foam Cells/pathology , Humans , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , PPAR gamma/genetics , Plaque, Atherosclerotic , Signal Transduction , THP-1 Cells
19.
Org Biomol Chem ; 19(3): 561-567, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33399606

ABSTRACT

Developing powerful methods to introduce versatile functional groups at the N-substituents of isoquinolone scaffolds is still a great challenge. Herein, we report a novel three-component cascade annulation reaction to efficiently construct the N-oxopropyl chain of isoquinolone derivatives via rhodium(iii)-catalyzed C-H activation/cyclization/nucleophilic attack, with oxazoles used both as the directing group and potential functionalized reagents.

20.
Clin Lab ; 67(4)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33865256

ABSTRACT

BACKGROUND: The diagnosis of antiphospholipid syndrome (APS) relies predominantly on the laboratory measurement of antiphospholipid antibodies (aPLs). We attempt to verify the analytical performance of anticardiolipin antibodies (aCL) IgA/IgG/IgM and anti-ß2-glycoprotein I antibodies (aß2GPI) IgA/IgG/IgM on a high-throughput automated immunoassay platform. METHODS: Limit of blank (LOB), limit of detection (LOD), imprecision, and linearity were calculated according to the corresponding Clinical and Laboratory Standards Institute (CLSI) guidelines protocols. The biological reference intervals (RIs) were verified in healthy individuals. RESULTS: The LoB of aCL IgA/IgG/IgM and aß2GPI IgA/IgG/IgM were 0.000, 1.200, 0.200, and 0.400, 1.250, 0.100, respectively. The LoD were 0.093, 1.715, 0.337 and 0.547, 2.174, 0.185 CU, respectively. All the within-run CVs and total CVs were less than the criterion at 10%. The linear analysis showed a good correlation between the predictive values and observed values with correlation coefficients greater than 0.99. CONCLUSIONS: The BIO-FLASH automated chemiluminescent analyzer performed well in measuring aPLs.


Subject(s)
Antibodies, Antiphospholipid , Antiphospholipid Syndrome , Antibodies, Anticardiolipin , Antiphospholipid Syndrome/diagnosis , Autoantibodies , Humans , beta 2-Glycoprotein I
SELECTION OF CITATIONS
SEARCH DETAIL