ABSTRACT
BACKGROUND: Secoeudesma sesquiterpenes lactone A (SESLA) is a sesquiterpene derived from Inula japonica Thunb. and is known to possess many pharmacological properties, e.g. anti-tumor and anti-inflammatory activities. However, the immunomodulatory role of SESLA in gram-positive (G+) bacterial infection is not clear. MATERIALS AND METHODS: To set up a G+ bacterial infection model in vitro, we carried out a bacterial mimic (PGN or Pam3CSK4) or Methicillin-resistant Staphylococcus aureus (MRSA) stimulated experiment using macrophages or dendritic cells (DCs). ELISA and qPCR were performed to measure the expression of inflammatory cytokines. Flow cytometry was used to detect the expression of MHC II and co-stimulatory molecules on the surface of DCs. The network pharmacology was used to identify the molecular mechanism and potential targets of SESLA that are predicted to be involved in the MRSA-elicited inflammation. Western blot and dual luciferase reporter assay were adopted to certify possible molecular mechanism of SESLA. RESULTS: This study demonstrated that SESLA treatment significantly reduced the levels of inflammatory cytokines stimulated by PGN, Pam3CSK4 or even MRSA in vitro, and it also reduced PGN-induced expression of MHC II and co-stimulatory molecules on the surface of DCs. Mechanistically, the inhibition of IκBα phosphorylation and the suppression of T cells activation could account for its anti-inflammatory activity. CONCLUSION: The present study validated the notable anti-inflammatory activity of SESLA and discovered its previously uncharacterized immunoregulatory role and the underlying mechanism in G+ bacterial infections. Overall, SESLA has a potential to be an antibiotic adjuvant for the treatment of G+ bacterial infections.
Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Methicillin-Resistant Staphylococcus aureus/metabolism , Macrophages/metabolism , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Dendritic Cells/metabolism , Staphylococcal Infections/drug therapy , Staphylococcal Infections/metabolism , Staphylococcal Infections/microbiologyABSTRACT
This study aimed to explore the protective effect of Reduning Injection(RDN) on mice infected by influenza virus A/PR/8(PR8) and its immune regulatory roles during viral infection. In in vivo experiments, female C57 BL/6 mice were randomly divided into phosphate buffered saline(PBS) group, PR8-infected group, oseltamivir treatment group(OSV) and RDN treatment group. After 2 h of PR8 infection, mice in the oseltamivir group were gavaged with oseltamivir 30 mg·kg~(-1), and those in the RDN treatment group were injected intraperitoneally with RDN 1.5 mL·kg~(-1)once per day for seven consecutive days. The body weight of mice in each group was recorded at the same time every morning for 16 consecutive days. The line chart of body weight change was created to analyze the protective effect of RDN on flu-infected mice. The relative mRNA expression of different cytokines(IL-6, TNF-α, MCP-1, IL-1ß, MIP-2, IP-10 and IL-10) in lung samples of flu-infected mice was detected by PCR. Flow cytometry was utilized to analyze the composition of immune cells of mouse BALF samples on day 5 after infection. Mouse macrophage cell line RAW264.7 was planted and treated by different concentrations of RDN(150, 300, 600 µg·mL~(-1)) for 24 h or 48 h, and cell proliferation was detected by CCK-8 assay. RAW264.7 cells and mouse primary peritoneal macrophages were stimulated with synthetic single stranded RNA(R837), which elicited the inflammatory response by mimicking the infection of single-stranded RNA viruses. The expression of cytokines and chemokines in the supernatants of above culture system was detected by ELISA and qPCR. On days 4, 5, 6, 7 and 15 after infection, the body weight loss of mice in the RDN treatment group was alleviated compared with that of PR8-infected mice(P<0.05). RDN treatment obviously reduced lung index and the production of IL-6, TNF-α, MCP-1 and MIP-2 in lung tissues of flu-infected mice(P<0.05). The proportions of macrophages, neutrophils and T cells in mouse BALF samples were analyzed by flow cytometry, and compared with PR8-infected mice, RDN decreased the proportion of macrophages in BALF of flu-infected mice(P<0.05), and the proportion of T cells was recovered dramatically(P<0.001). In CCK-8 assay, the concentrations of RDN(150, 300, 600 µg·mL~(-1)) failed to cause cytotoxicity to RAW264.7 cells. In addition, RDN lowered the expression of inflammatory cytokines such as IL-6, TNF-α,MCP-1, IL-1ß, RANTES, and IP-10 and even anti-inflammatory cytokine IL-10 in R837-induced macrophages. RDN reduced the infiltration of inflammatory macrophages and the production of excessive inflammatory cytokines, alleviated the body weight loss of flu-infected mice. What's more, RDN restored the depletion of T cells, which might prevent secondary infection and deteriorative progression of the disease. Taken together, RDN may inhibit cytokine production and therefore down-regulate cytokine storm during the infection of influenza virus.
Subject(s)
Interleukin-10 , Oseltamivir , Animals , Anti-Inflammatory Agents/pharmacology , Body Weight , Chemokine CCL5/pharmacology , Chemokine CXCL10/pharmacology , Cytokine Release Syndrome , Cytokines/genetics , Drugs, Chinese Herbal , Female , Imiquimod/pharmacology , Interleukin-6 , Lung , Mice , Mice, Inbred C57BL , Oseltamivir/pharmacology , Phosphates/pharmacology , RNA , RNA, Messenger , Tumor Necrosis Factor-alpha/genetics , Weight LossABSTRACT
Bacterial infection remains a big concern in the patients of ICU, which is the main cause of life-threatening organ dysfunction, or even sepsis. The poor control of bacterial infection caused by antibiotic resistance, etc. or the overwhelming immune response are the most important patho genic factors in intensive care unit (ICU) patients. As main pathogens, antibiotic-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), impose serious challenges during sepsis and require alternative therapeutic options. Irisflorentin (IFL) is one of the major bioactive compounds isolated from the roots of Belamcanda chinensis (Shegan). In this study, IFL could suppress inflammatory response induced by MRSA or a synthetic mimic of bacterial lipoprotein (Pam3CSK4). IFL treatment enhanced the ability of macrophages to phagocytose bacteria likely through up-regulating the expression of phagocytic receptors SR-A1 and FcγR2a. Furthermore, IFL inhibited Pam3CSK4-induced production of pro-inflammatory cytokines, including IL-6 and TNF-α in Raw 264.7 cells, mouse primary macrophages or dendritic cells. IFL treatment also inhibited heat-killed MRSA-induced secretion of IL-6 and TNF-α in mouse bone marrow-derived macrophages. Moreover, IFL attenuated M1 polarization of macrophages as indicated by the down-regulated expression of its polarization markers CD86 and iNOS. Mechanistically, IFL markedly decreased the Pam3CSK4-induced activation of ERK, JNK or p38 MAPK pathways in macrophages. Taken together, IFL may serve as a promising compound for the therapy of bacterial infection, particularly those caused by antibiotic-resistant bacteria, such as MRSA.
ABSTRACT
Host-directed therapy (HDT) is a new adjuvant strategy that interfere with host cell factors that are required by a pathogen for replication or persistence. In this study, we assessed the effect of dehydrozaluzanin C-derivative (DHZD), a modified compound from dehydrozaluzanin C (DHZC), as a potential HDT agent for severe infection. LPS-induced septic mouse model and Carbapenem resistant Klebsiella pneumoniae (CRKP) infection mouse model was used for testing in vivo. RAW264.7 cells, mouse primary macrophages, and DCs were used for in vitro experiments. Dexamethasone (DXM) was used as a positive control agent. DHZD ameliorated tissue damage (lung, kidney, and liver) and excessive inflammatory response induced by LPS or CRKP infection in mice. Also, DHZD improved the hypothermic symptoms of acute peritonitis induced by CRKP, inhibited heat-killed CRKP (HK-CRKP)-induced inflammatory response in macrophages, and upregulated the proportions of phagocytic cell types in lungs. In vitro data suggested that DHZD decreases LPS-stimulated expression of IL-6, TNF-α and MCP-1 via PI3K/Akt/p70S6K signaling pathway in macrophages. Interestingly, the combined treatment group of DXM and DHZD had a higher survival rate and lower level of IL-6 than those of the DXM-treated group; the combination of DHZD and DXM played a synergistic role in decreasing IL-6 secretion in sera. Moreover, the phagocytic receptor CD36 was increased by DHZD in macrophages, which was accompanied by increased bacterial phagocytosis in a clathrin- and actin-dependent manner. This data suggests that DHZD may be a potential drug candidate for treating bacterial infections.