Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Environ Sci Technol ; 56(3): 1568-1577, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35001617

ABSTRACT

Deposition of atmospheric mercury (Hg) is the most important Hg source on the high-altitude Himalayas and Tibetan Plateau. Herein, total gaseous Hg (TGM) at an urban and a forest site on the Tibetan Plateau was collected respectively from May 2017 to October 2018, and isotopic compositions were measured to clarify the influences of landforms and monsoons on the transboundary transport of atmospheric Hg to the Tibetan Plateau. The transboundary transported anthropogenic emissions mainly originated over Indo-Gangetic Plain and carried over the Himalayas by convective storms and mid-tropospheric circulation, contributing over 50% to the TGM at the Lhasa urban site, based on the binary mixing model of isotopes. In contrast, during the transport of TGM from South Asia with low altitude, the uptake by evergreen forest in Yarlung Zangbo Grand Canyon largely decreased the TGM level and shifted isotopic compositions in TGM at the Nyingchi forest site, which are located at the high-altitude end of the canyon. Our results provided direct evidence from Hg isotopes to reveal the distinct patterns of transboundary transport to the Tibetan Plateau shaped by landforms and climates, which is critical to fully understand the biogeochemical cycling of Hg in the high-altitude regions.


Subject(s)
Mercury , Environmental Monitoring/methods , Isotopes , Mercury/analysis , Mercury Isotopes/analysis , Tibet
2.
Environ Sci Technol ; 55(9): 6449-6458, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33856785

ABSTRACT

Clarifying the sources and fates of atmospheric mercury (Hg) in the Antarctic is crucial to understand the global Hg circulation and its impacts on the fragile ecosystem of the Antarctic. Herein, the annual variations in the isotopic compositions of total gaseous Hg (TGM), with 5-22 days of sampling duration for each sample, were presented for the first time to provide isotopic evidence of the sources and environmental processes of gaseous Hg around the Chinese Great Wall Station (GWS) in the western Antarctic. Different from the Arctic tundra and lower latitude areas in the northern hemisphere, positive δ202Hg (0.58 ± 0.21‰, mean ± 1SD) and negative Δ199Hg (-0.30 ± 0.10‰, mean ± 1SD) in TGM at the GWS indicated little impact from the vegetation-air exchange in the Antarctic. Correlations among TGM Δ199Hg, air temperature, and ozone concentrations suggested that enhanced katabatic wind that transported inland air masses to the continental margin elevated TGM Δ199Hg in the austral winter, while the surrounding marine surface emissions controlled by sea-ice dynamics lowered TGM Δ199Hg in the austral summer. The oxidation of Hg(0) might elevate Δ199Hg in TGM during atmospheric Hg depletion events but have little impact on the seasonal variations of atmospheric Hg isotopes. The presented atmospheric Hg isotopes were essential to identify the transport and transformation of atmospheric Hg and further understand Hg cycling in the Antarctic.


Subject(s)
Air Pollutants , Mercury , Air Pollutants/analysis , Antarctic Regions , Ecosystem , Environmental Monitoring , Mercury/analysis , Wind
3.
J Hazard Mater ; 477: 135321, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39068886

ABSTRACT

Rice consumption is a major pathway for human cadmium (Cd) exposure. Understanding Cd behavior in the soil-rice system, especially under field conditions, is pivotal for controlling Cd accumulation. This study analyzed Cd concentrations and isotope compositions (δ114/110Cd) in rice plants and surface soil sampled at different times, along with urinary Cd of residents from typical Cd-contaminated paddy fields in Youxian, Hunan, China. Soil water-soluble Cd concentrations varied across sampling times, with δ114/110Cdwater lighter under drained than flooded conditions, suggesting supplementation of water-soluble Cd by isotopically lighter Cd pools, increasing Cd phytoavailability. Both water-soluble Cd and atmospheric deposition contributed to rice Cd accumulation. Water-soluble Cd's contribution increased from 28-52% under flooded to 58-87% under drained conditions due to increased soil Cd phytoavailability. Atmospheric deposition's contribution (12-72%) increased with potential atmospheric deposition flux among sampling areas. The enrichment of heavy Cd isotopes occurred from root-stem-grain to prevent rice Cd accumulation. The different extent of enrichment of heavy isotopes in urine indicated different Cd exposure sources. These findings provide valuable insights into the speciation and phytoavailability changes of Cd in the soil-rice system and highlight the potential application of Cd isotopic fingerprinting in understanding the environmental fate of Cd.


Subject(s)
Cadmium , Oryza , Soil Pollutants , Oryza/metabolism , Oryza/chemistry , Cadmium/analysis , Cadmium/metabolism , Soil Pollutants/metabolism , Soil Pollutants/analysis , China , Soil/chemistry , Humans , Isotopes , Plant Roots/metabolism , Plant Roots/chemistry , Environmental Monitoring , Chemical Fractionation
4.
Sci Total Environ ; 912: 169557, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38141978

ABSTRACT

To elucidate the potential risks of the toxic pollutant mercury (Hg) in polar waters, the study of accumulated Hg in fish is compelling for understanding the cycling and fate of Hg on a regional scale in Antarctica. Herein, the Hg isotopic compositions of Antarctic cod Notothenia coriiceps were assessed in skeletal muscle, liver, and heart tissues to distinguish the differences in Hg accumulation in isolated coastal environments of the eastern (Chinese Zhongshan Station, ZSS) and the antipode western Antarctica (Chinese Great Wall Station, GWS), which are separated by over 4000 km. Differences in odd mass-independent isotope fractionation (odd-MIF) and mass-dependent fractionation (MDF) across fish tissues were reflection of the specific accumulation of methylmercury (MeHg) and inorganic Hg (iHg) with different isotopic fingerprints. Internal metabolism including hepatic detoxification and processes related to heart may also contribute to MDF. Regional heterogeneity in iHg end-members further provided evidence that bioaccumulated Hg origins can be largely influenced by polar water circumstances and foraging behavior. Sea ice was hypothesized to play critical roles in both the release of Hg with negative odd-MIF derived from photoreduction of Hg2+ on its surface and the impediment of photochemical transformation of Hg in water layers. Overall, the multitissue isotopic compositions in local fish species and prime drivers of the heterogeneous Hg cycling and bioaccumulation patterns presented here enable a comprehensive understanding of Hg biogeochemical cycling in polar coastal waters.


Subject(s)
Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Animals , Mercury/analysis , Antarctic Regions , Mercury Isotopes/analysis , Bioaccumulation , Ice Cover , Environmental Monitoring , Methylmercury Compounds/metabolism , Fishes/metabolism , Isotopes , Water/metabolism , Water Pollutants, Chemical/analysis
5.
ACS Environ Au ; 4(3): 162-172, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38765061

ABSTRACT

The highly excessive uptake of cadmium (Cd) by rice plants is well known, but the transfer pathway and mechanism of Cd in the paddy system remain poorly understood. Herein, pot experiments and field investigation were systematically carried out for the first time to assess the phytoavailability of Cd and fingerprint its transfer pathway in the paddy system under different treatments (slaked lime and biochar amendments), with the aid of a pioneering Cd isotopic technique. Results unveiled that no obvious differences were displayed in the δ114/110Cd of Ca(NO3)2-extractable and acid-soluble fractions among different treatments in pot experiments, while the δ114/110Cd of the water-soluble fraction varied considerably from -0.88 to -0.27%, similar to those observed in whole rice plant [Δ114/110Cdplant-water ≈ 0 (-0.06 to -0.03%)]. It indicates that the water-soluble fraction is likely the main source of phytoavailable Cd, which further contributes to its bioaccumulation in paddy systems. However, Δ114/110Cdplant-water found in field conditions (-0.39 ± 0.05%) was quite different from those observed in pot experiments, mostly owing to additional contribution derived from atmospheric deposition. All these findings demonstrate that the precise Cd isotopic compositions can provide robust and reliable evidence to reveal different transfer pathways of Cd and its phytoavailability in paddy systems.

6.
Chemosphere ; 275: 130011, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33667774

ABSTRACT

Although global mercury (Hg) emission from chlor-alkali industry is decreasing, the legacy Hg may still have potential risks due to its environmental persistence. The objective of this work is to study the biogeochemical cycling and potential risk of Hg in the Ya-Er Lake, which was heavily contaminated by historical chlor-alkali production. Higher concentrations of total Hg (THg) in Ya-Er Lake water (16.8 ± 8.4 ng L-1) and sediment (547 ± 489 ng g-1) than other lake systems were observed, reflecting serious Hg pollution in this system. Diffusion rates of Hg at sediment-water interface and budget of Hg showed that release of legacy Hg in sediment (accounting for ∼80%) dominated THg in water, and about 80% methylmercury (MeHg) of total was diffused from sediment. Significant correlations between total organic carbon (TOC) derived from aquaculture and THg diffusion and MeHg concentrations in sediment suggest that TOC plays important roles in controlling legacy Hg release and MeHg production. The actual weekly intakes of Hg via consumption of cultured catfish and wild topmouth culter were higher than the established provisional tolerable weekly intake (PTWI) of MeHg. These results indicated that although the nearby chlor-alkali plant has been shut down for three decades, the release of legacy Hg stored in the sediment still adversely affects this ecosystem. Moreover, aquaculture could enhance MeHg production and control MeHg distribution in the polluted aquatic ecosystem, potentially posing a health risk to surrounding inhabitants through consumption of fish.


Subject(s)
Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Animals , Aquaculture , China , Ecosystem , Environmental Monitoring , Geologic Sediments , Lakes , Mercury/analysis , Water Pollutants, Chemical/analysis
7.
Mar Pollut Bull ; 119(1): 381-389, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28336206

ABSTRACT

The Bohai Sea (BS) and Yellow Sea (YS), which are adjacent to the most urbanized and industrialized areas in China, are facing a variety of environmental problems. Two cruises were conducted to investigate the pollution status of toxic metals in BS and YS sediments. They generally presented a decreasing trend from near shore to offshore. In addition, two high concentration areas were observed in the central south YS and north of the Shandong Peninsula. The results of multiple regression analyses suggest that Hg is mainly controlled by anthropogenic loading, whereas for Cr, Cu, Ni, Pb and Zn, sediment properties, especially the Fe oxides content, play a more important role. For As and Cd, the contribution of anthropogenic loading and sediment properties are comparable. The risk assessment indicates that Hg, As, Cd and Ni should be listed as the primary contaminant metals in the BS and YS.


Subject(s)
Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , China , Environmental Monitoring , Geologic Sediments , Risk
SELECTION OF CITATIONS
SEARCH DETAIL