Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Am Chem Soc ; 146(10): 6744-6752, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38422617

ABSTRACT

Zinc-iodine batteries are one of the most intriguing types of batteries that offer high energy density and low toxicity. However, the low intrinsic conductivity of iodine, together with high polyiodide solubility in aqueous electrolytes limits the development of high-areal-capacity zinc-iodine batteries with high stability, especially at low current densities. Herein, we proposed a hydrophobic polyiodide ionic liquid as a zinc-ion battery cathode, which successfully activates the iodine redox process by offering 4 orders of magnitude higher intrinsic electrical conductivity and remarkably lower solubility that suppressed the polyiodide shuttle in a dual-plating zinc-iodine cell. By the molecular engineering of the chemical structure of the polyiodide ionic liquid, the electronic conductivity can reach 3.4 × 10-3 S cm-1 with a high Coulombic efficiency of 98.2%. The areal capacity of the zinc-iodine battery can achieve 5.04 mAh cm-2 and stably operate at 3.12 mAh cm-2 for over 990 h. Besides, a laser-scribing designed flexible dual-plating-type microbattery based on a polyiodide ionic liquid cathode also exhibits stable cycling in both a single cell and 4 × 4 integrated cell, which can operate with the polarity-switching model with high stability.

2.
Small ; 20(27): e2310530, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38317526

ABSTRACT

Rechargeable aprotic Li-CO2 batteries have aroused worldwide interest owing to their environmentally friendly CO2 fixation ability and ultra-high specific energy density. However, its practical applications are impeded by the sluggish reaction kinetics and discharge product accumulation during cycling. Herein, a flexible composite electrode comprising CoSe2 nanoparticles embedded in 3D carbonized melamine foam (CoSe2/CMF) for Li-CO2 batteries is reported. The abundant CoSe2 clusters can not only facilitate CO2 reduction/evolution kinetics but also serve as Li2CO3 nucleation sites for homogeneous discharge product growth. The CoSe2/CMF-based Li-CO2 battery exhibits a large initial discharge capacity as high as 5.62 mAh cm-2 at 0.05 mA cm-2, a remarkably small voltage gap of 0.72 V, and an ultrahigh energy efficiency of 85.9% at 0.01 mA cm-2, surpassing most of the noble metal-based catalysts. Meanwhile, the battery demonstrates excellent cycling stability of 1620 h (162 cycles) at 0.02 mA cm-2 with an average overpotential of 0.98 V and energy efficiency of 85.4%. Theoretical investigations suggest that this outstanding performance is attributed to the suitable CO2/Li adsorption and low Li2CO3 decomposition energy. Moreover, flexible Li-CO2 pouch cell with CoSe2/CMF cathode displays stable power output under different bending deformations, showing promising potential in wearable electronic devices.

3.
Angew Chem Int Ed Engl ; : e202411591, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136330

ABSTRACT

Deeply electrolytic reduction of carbon dioxide (CO2) to high-value ethylene (C2H4) is very attractive. However, the sluggish kinetics of C-C coupling seriously results in the low selectivity of CO2 electroreduction to C2H4. Herein, we report a copper-based polyhedron (Cu2) that features uniformly distributed and atomically precise bi-Cu units, which can stabilize *OCCO dipole to facilitate the C-C coupling for high selective C2H4 production. The C2H4 faradaic efficiency (FE) reaches 51% with a current density of 469.4 mA cm-2, much superior to the Cu single site catalyst (Cu SAC) (~0%). Moreover, the Cu2 catalyst has a higher turnover frequency (TOF, ~520 h-1) compared to Cu nanoparticles (~9.42 h-1) and Cu SAC (~0.87 h-1). In situ characterizations and theoretical calculations revealed that the unique Cu2 structural configuration could optimize the dipole moments and stabilize the *OCCO adsorbate to promote the generation of C2H4.

4.
Small ; : e2308530, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38059871

ABSTRACT

Metal single-atom catalysts (M-SACs) attract extraordinary attention for promoting oxygen reduction reaction (ORR) with 100% atomic utilization. However, low metal loading (usually less than 2 wt%) limits their overall catalytic performance. Herein, a hierarchical-structure-stabilization strategy for fabricating high-loading (18.3%) M-SACs with efficient ORR activity is reported. Hierarchical pores structure generated with high N content by SiO2 can provide more coordination sites and facilitate the adsorption of Fe3+ through mesoporous and confinement effect of it stabilizes Fe atoms in micropores on it during pyrolysis. High N content on hierarchical pores structure could provide more anchor sites of Fe atoms during the subsequent secondary pyrolysis and synthesize the dense and accessible Fe-N4 sites after subsequent pyrolysis. In addition, Se power is introduced to modulate the electronic structure of Fe-N4 sites and further decrease the energy barrier of the ORR rate-determining step. As a result, the Fe single atom catalyst delivers unprecedentedly high ORR activity with a half-wave potential of 0.895 V in 0.1 M KOH aqueous solution and 0.791 V in 0.1 M HClO4 aqueous solution. Therefore, a hierarchical-pore-stabilization strategy for boosting the density and accessibility of Fe-N4 species paves a new avenue toward high-loading M-SACs for various applications such as thermocatalysis and photocatalysis.

5.
BMC Pregnancy Childbirth ; 23(1): 247, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37055769

ABSTRACT

BACKGROUND: Clinical value of tumor necrosis factor (TNF) inhibitors in in vitro fertilization-embryo transfer (IVF-ET) in infertile women with polycystic ovary syndrome (PCOS) was investigated in this study. METHODS: A retrospective analysis was performed on the clinical data of 100 PCOS patients who received IVF-ET for the first time at Hebei Institute of reproductive health science and technology from January 2010 to June 2020. The patients were divided into Inhibitor group and Control group according to whether they were treated with or without TNF inhibitors. Next, the two groups were subject to comparison in terms of the days of gonadotropin (Gn) use, total dosage of Gn, trigger time, hormone level and endometrial condition on the day of human chorionic gonadotropin (HCG) injection, the effects of two different regimens on controlled ovarian hyperstimulation (COH) and pregnancy outcomes. RESULTS: There were no significant differences in baseline characteristics between the two groups, including age, duration of infertility, body mass index (BMI), ovarian volume, antral follicle count, and basal hormone levels. Compared with the Control group, the days of Gn use and trigger time of patients in the Inhibitor group were significantly shortened, and the total Gn dosage was notably reduced. In terms of sex hormone levels on the HCG injection, the Inhibitor group displayed much lower serum estradiol levels while higher serum luteinizing hormone and progesterone (P) levels than the Control group. Notably, the high-quality embryo rate was also significantly increased with the use of TNF inhibitors. However, significant differences were not observed in endometrial thickness (on the day of HCG injection), proportion of endometrial A, B and C morphology (on the day of HCG injection), cycle cancellation rate, number of oocytes retrieved, fertilization rate, and cleavage rate between the two groups. Importantly, the clinical pregnancy rate in the Inhibitor group was significantly higher than that in the Control group, but there was no significant difference in the biochemical pregnancy rate, early abortion rate, multiple birth rate, ectopic pregnancy rate and number of live births between the two groups. CONCLUSION: Collectively, after application of TNF-α inhibitor regimen, superior overall treatment effect can be observed in infertile PCOS patients receiving IVF-ET. Therefore, TNF inhibitors have certain application value in IVF-ET in infertile women with PCOS.


Subject(s)
Infertility, Female , Polycystic Ovary Syndrome , Pregnancy , Female , Humans , Polycystic Ovary Syndrome/complications , Polycystic Ovary Syndrome/drug therapy , Infertility, Female/drug therapy , Infertility, Female/etiology , Tumor Necrosis Factor Inhibitors , Fertilization in Vitro , Retrospective Studies , Embryo Transfer , Pregnancy Rate , Chorionic Gonadotropin/therapeutic use
6.
Angew Chem Int Ed Engl ; 62(41): e202309622, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37606605

ABSTRACT

Controlling lithium (Li) electrocrystallization with preferred orientation is a promising strategy to realize highly reversible Li metal batteries (LMBs) but lack of facile regulation methods. Herein, we report a high-flux solid electrolyte interphase (SEI) strategy to direct (110) preferred Li deposition even on (200)-orientated Li substrate. Bravais rule and Curie-Wulff principle are expanded in Li electrocrystallization process to decouple the relationship between SEI engineering and preferred crystal orientation. Multi-spectroscopic techniques combined with dynamics analysis reveal that the high-flux CF3 Si(CH3 )3 (F3 ) induced SEI (F3 -SEI) with high LiF and -Si(CH3 )3 contents can ingeniously accelerate Li+ transport dynamics and ensure the sufficient Li+ concentration below SEI to direct Li (110) orientation. The induced Li (110) can in turn further promote the surface migration of Li atoms to avoid tip aggregation, resulting in a planar, dendrite-free morphology of Li. As a result, our F3 -SEI enables ultra-long stability of Li||Li symmetrical cells for more than 336 days. Furthermore, F3 -SEI modified Li can significantly enhance the cycle life of Li||LiFePO4 and Li||NCM811 coin and pouch full cells in practical conditions. Our crystallographic strategy for Li dendrite suppression paves a path to achieve reliable LMBs and may provide guidance for the preferred orientation of other metal crystals.

7.
Opt Express ; 29(10): 14326-14335, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33985155

ABSTRACT

Laser-induced periodic surface structure (LIPSS) is an important, high-throughput surface nano-structuring method, which has been used to fabricate various functional surfaces. In this paper, we fabricate double time-delayed orthogonally polarized femtosecond laser beams with a fixed beam power ratio of 1.5:1 that are employed to irradiate the silicon surface and curved periodic ripples with a sub-wavelength period. It is found that the local orientation of the ripples on the silicon surface can be modulated in a range of 0-80° by adjusting the fabrication parameters, such as the laser fluence, the target scanning speed, and the time delay between double laser beams. The transition from the curved ripples to the straight ripples can be achieved by increasing the target scanning speed. Different from previous studies that the curved periodic ripples are fabricated by modulating the laser polarization, the method demonstrated here utilizes the interaction between the linearly polarized subsequent laser beam and the preceding laser beam excited silicon to form curved ripples.

8.
Heart Surg Forum ; 23(6): E725-E730, 2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33234221

ABSTRACT

BACKGROUND: To verify the validity and feasibility of using a mechanical compression method to locate the atrioventricular node in open-heart surgery. METHODS: Ten healthy miniature pigs were used to establish an animal model of the beating heart under cardiopulmonary bypass. During the operation, the atrioventricular node and its surrounding areas were stimulated by mechanical compression (mechanical compression method), and the occurrence of complete atrioventricular block was judged by real-time electrocardiograph monitoring and direct observation of the heart rhythm to identify the position of the atrioventricular node. The final localization of the atrioventricular node was determined using the iodine staining method, and the results were used as the "gold standard" to test the effectiveness and feasibility of the mechanical compression method for locating the atrioventricular node. RESULTS: With the beating heart model, complete atrioventricular block occurred after mechanical compression of the "atrioventricular node" area in 10 pigs. Nine pigs regained normal conduction immediately after the compression was released, and one pig failed to recover. No atrioventricular block or other arrhythmias occurred after mechanical compression of the "non-atrioventricular node" area. The sensitivity of the method was 86.6%, specificity was 100.0%, misdiagnosis rate was 0.0%, missed diagnosis rate was 13.4%, positive predictive value was 100.0%, negative predictive value was 97.9%, positive likelihood ratios were +∞, negative likelihood ratios were 13.4%, accuracy was 98.1%, and diagnostic odds ratio was +∞. CONCLUSION: This study innovatively proposes the application of the mechanical compression method to locate the atrioventricular node during operation and preliminarily proves that this method is effective and feasible through animal experiments.


Subject(s)
Atrioventricular Block/diagnosis , Atrioventricular Node/physiopathology , Cardiac Surgical Procedures , Postoperative Complications , Animals , Atrioventricular Block/etiology , Atrioventricular Block/physiopathology , Disease Models, Animal , Electrocardiography/methods , Swine , Swine, Miniature
9.
Nanotechnology ; 28(22): 225401, 2017 Jun 02.
Article in English | MEDLINE | ID: mdl-28497772

ABSTRACT

Fe-N/C composites are considered one of the most promising non-precious-metal electrocatalysts for oxygen reduction reaction (ORR). In this paper, we fabricate a novel and efficient carbon nanotube (CNT)-supported Fe-N/C composite catalyst, via the surface-self-polymerization of polydopamine and then the incorporation with Fe species on CNTs, followed by the pyrolysis process. The obtained catalyst demonstrates excellent electrocatalytic performance towards ORR in alkaline media. The modification of Fe-incorporated nitrogen-rich-carbons (Fe-CNx) on CNTs lowers the ORR half-wave-potential by ∼190 mV, giving this catalyst with an onset ORR potential of 0.95 V (versus reversible hydrogen electrode (RHE)), a half-wave potential of 0.82 V (versus RHE), and the limiting current density of 5.39 mA cm-2 in 0.1 M KOH. The performance of the as-prepared catalyst is comparatively better than the commercially available Pt/C in terms of positive half-wave potential and larger limiting current, superior durability, and higher tolerance to the methanol.

10.
Nanotechnology ; 28(5): 055401, 2017 Feb 03.
Article in English | MEDLINE | ID: mdl-28008892

ABSTRACT

Ultrathin cobalt ferrite nanosheets have been successfully assembled on the surface of reduced graphene oxide (rGO) via only adjusting the volume ratio of ethanol and deionized (DI) water and a post calcination treatment. The perpendicular ultrathin cobalt ferrite nanosheets supported by rGO sheets (CoFe2O4 NSs@rGO) can be obtained when the volume ratio of ethanol and DI water is 10:30. Correspondingly, the hierarchical porous films covering the total rGO sheets will be formed nanosheets. When evaluated as the electrodes for lithium ion batteries (LIBs) and supercapacitors (SCs), the resultant CoFe2O4 NSs@rGO hybrids exhibit highly enhanced electrochemical performance. Even after 200 charge-discharge cycles at 400 mA g-1, the electrodes as the anode material for LIBs still exhibit a reversible discharge capacity of 835.6 mAh g-1. In addition, this electrode for SCs also exhibits specific capacitance of ca 1120 F g-1 after 3000 cycles. These superior results imply that CoFe2O4 NSs with novel hybrid structure of rGO could potentially lead to an excellent electrochemical performance for energy storage.

11.
Nanotechnology ; 28(48): 485701, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29039353

ABSTRACT

Investigating low-cost and highly active electrocatalysts for oxygen reduction reactions (ORR) is of crucial importance for energy conversion and storage devices. Herein, we design and prepare mesoporous carbon supported nitrogen-doped carbon by pyrolysis of polyaniline coated on CMK-3. This electrocatalyst exhibits excellent performance towards ORR in alkaline media. The optimized nitrogen-doped mesoporous electrocatalyst show an onset potential (E onset) of 0.95 V (versus reversible hydrogen electrode (RHE)) and half-wave potential (E 1/2) of 0.83 V (versus RHE) in 0.1 M KOH. Furthermore, the as-prepared catalyst presents superior durability and methanol tolerance compared to commercial Pt/C indicating its potential applications in fuel cells and metal-air batteries.

12.
Nanotechnology ; 27(21): 215403, 2016 May 27.
Article in English | MEDLINE | ID: mdl-27095053

ABSTRACT

Nitrogen doping has been demonstrated to play a crucial role in controlling the electronic properties of carbon-based composites. In this paper, nitrogen-doped carbon coated γ-Fe2O3 (NC@γ-Fe2O3) composite was successfully fabricated through a facile and high-yield strategy, including a hydrothermal reaction process for porous γ-Fe2O3 and a subsequent coating of nitrogen-doped carbon by using dopamine as precursor. The resulting composite combines the superior properties of porous Fe2O3 and heteroatom-doped conductive carbon layer derived from polydopamine. When used as the anode material of the lithium-ion battery, the as-prepared NC@γ-Fe2O3 composite exhibits excellent lithium storage properties in terms of high capacity, stable cycling performance (869.6 mAh g(-1) at the current density of 0.5 A g(-1) after 150 cycles) and excellent rate capability.

13.
Nanotechnology ; 27(44): 445402, 2016 Nov 04.
Article in English | MEDLINE | ID: mdl-27668508

ABSTRACT

Exploring efficient metal-free electrocatalysts for oxygen reduction reactions (ORR) will have a great impact on the field of fuel cells and metal-air batteries. In this paper, we report a simple and efficient routine to coat ordered mesoporous carbon (CMK-3) with nitrogen-doped carbon via pyrolysis of the surface-self-polymerized polydopamine. The optimized CMK-3 catalyst with a coating of nitrogen-doped carbon demonstrates excellent electrocatalytic activity towards ORR in alkaline media. The coating procedure under optimized conditions lowers the ORR half-wave-potential by 80 mV, giving a genuine metal-free catalyst with an onset ORR potential of 0.96 V (vs reversible hydrogen electrode (RHE)) and half-wave potential of 0.83 V (vs RHE) in 0.1 M KOH, which is much better than other carbon material-based catalysts (such as carbon nanotubes and their composites). The performance of this surface-nitrogen-rich CMK-3 catalyst is also superior to that of N-doped ordered mesoporous carbon synthesized by means of the 'nanocasting' technique. Furthermore, the as-prepared catalyst performs comparably in terms of activity, superior durability, and higher tolerance to methanol compared with commercially available Pt/C.

14.
Small Methods ; : e2301542, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602282

ABSTRACT

Developing Two-dimensional (2D) Mo-based heterogeneous nanomaterials is of great significance for energy conversion, especially in alkaline hydrogen evolution reaction (HER), however, it remains a challenge to identify the active sites at the interface due to the structure complexity. Herein, the real active sites are systematically explored during the HER process in varied Mo-based 2D materials by theoretical computational and magnetron sputtering approaches first to filtrate the candidates, then successfully combined the MoSi2 and MoO3 together through Oxygen doping to construct heterojunctions. Benefiting from the synergistic effects between the MoSi2 and MoO3, the obtained MoSi2@MoO3 exhibits an unprecedented overpotential of 72 mV at a current density of 10 mA cm-2. Density functional theory calculations uncover the different Gibbs free energy of hydrogen adsorption (ΔGH*) values achieved at the interfaces with different sites as adsorption sites. The results can facilitate the optimization of heterojunction electrocatalyst design principles for the Mo-based 2D materials.

15.
Nat Commun ; 15(1): 1455, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365855

ABSTRACT

Photoexcitation of the electron-donor-acceptor complexes have been an effective approach to achieve radicals by triggering electron transfer. However, the catalytic version of electron-donor-acceptor complex photoactivation is quite underdeveloped comparing to the well-established utilization of electronically biased partners. In this work, we utilize 4-nitrophthalonitrile as an electron acceptor to facilitate the efficient π-stacking with electron-rich aromatics to form electron-donor-acceptor complex. The characterization and energy profiles on the cocrystal of 4-nitrophthalonitrile and 1,3,5-trimethoxybenzene disclose that the electron transfer is highly favorable under the light irradiation. This electron acceptor catalyst can be efficiently applied in the benzylic C-H bond photoactivation by developing the Giese reaction of alkylanisoles and the oxidation of the benzyl alcohols. A broad scope of electron-rich aromatics can be tolerated and a mechanism is also proposed. Moreover, the corresponding π-anion interaction of 4-nitrophthalonitrile with potassium formate can further facilitate the hydrocarboxylation of alkenes efficiently.

16.
J Colloid Interface Sci ; 662: 893-902, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38382373

ABSTRACT

Copper-based catalysts have been extensively investigated in electrochemical carbon dioxide (CO2) reduction to promote carbon products generated by requiring multiple electron transfer. However, hydrophilic electrodes are unfavourable for CO2 mass transfer and preferentially hydrogen (H2) evolution in electrochemical CO2 reduction. In this paper, a hydrophilic cupric oxide (CuO) electrode with a grassy morphology was prepared. CuO-derived Cu was confirmed as the active site for electrochemical CO2 reduction through wettability modulation. To enhance the intrinsic catalytic activity, a metal-oxide heterogeneous interface was created by engineering modulation at the interface, involving the loading of palladium (Pd) on CuO (CuO/Pd). Both the electrochemically active area and the electron transfer rate were enhanced by Pd loading, and significantly the reduced work function further facilitated the electron transfer between the electrode surface and the electrolyte. Consequently, the CuO/Pd electrode exhibited excellent excellent performance in electrochemical CO2 reduction, achieving a 54 % Faraday efficiency at -0.65 V for methanol (CH3OH). The metal-oxide interfacial effect potentially improves the intrinsic catalytic activity of hydrophilic CuO electrodes in electrochemical CO2 reduction, providing a conducive pathway for optimizing hydrophilic oxide electrodes in this process.

17.
Medicine (Baltimore) ; 103(21): e38260, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38788026

ABSTRACT

Preeclampsia (PE) is a pregnancy complication characterized by placental dysfunction. However, the relationship between maternal blood markers and PE is unclear. It is helpful to improve the diagnosis and treatment of PE using new biomarkers related to PE in the blood. Three PE-related microarray datasets were obtained from the Gene Expression Synthesis database. The limma software package was used to identify differentially expressed genes (DEGs) between PE and control groups. Least absolute shrinkage and selection operator regression, support vector machine, random forest, and multivariate logistic regression analyses were used to determine key diagnostic biomarkers, which were verified using clinical samples. Subsequently, functional enrichment analysis was performed. In addition, the datasets were combined for immune cell infiltration analysis and to determine their relationships with core diagnostic biomarkers. The diagnostic performance of key genes was evaluated using the receiver operating characteristic (ROC) curve, C-index, and GiViTi calibration band. Genes with potential clinical applications were evaluated using decision curve analysis (DCA). Seventeen DEGs were identified, and 6 key genes (FN1, MYADM, CA6, PADI4, SLC4A10, and PPP4R1L) were obtained using 3 types of machine learning methods and logistic regression. High diagnostic performance was found for PE through evaluation of the ROC, C-index, GiViti calibration band, and DCA. The 2 types of immune cells (M0 macrophages and activated mast cells) were significantly different between patients with PE and controls. All of these genes except SLC4A10 showed significant differences in expression levels between the 2 groups using quantitative reverse transcription-polymerase chain reaction. This model used 6 maternal blood markers to predict the occurrence of PE. The findings may stimulate ideas for the treatment and prevention of PE.


Subject(s)
Biomarkers , Computational Biology , Pre-Eclampsia , Humans , Female , Pre-Eclampsia/blood , Pre-Eclampsia/immunology , Pre-Eclampsia/diagnosis , Pre-Eclampsia/genetics , Pregnancy , Computational Biology/methods , Biomarkers/blood , ROC Curve , Adult , Gene Expression Profiling/methods
18.
Adv Mater ; 36(26): e2403229, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38598727

ABSTRACT

Li-CO2 batteries are regarded as promising high-energy-density energy conversion and storage devices, but their practicability is severely hindered by the sluggish CO2 reduction/evolution reaction (CORR/COER) kinetics. Due to the various crystal structures and unique electronic configuration, Mn-based cathode catalysts have shown considerable competition to facilitate CORR/COER. However, the specific active sites and regulation principle of Mn-based catalysts remain ambiguous and limited. Herein, this work designs novel Mn dual-active sites (MOC) supported on N-doped carbon nanofibers and conduct a comprehensive investigation into the underlying relationship between different Mn active sites and their electrochemical performance in Li-CO2 batteries. Impressively, this work finds that owing to the in situ generation and stable existence of Mn(III), MOC undergoes obvious electrochemical reconstruction during battery cycling. Moreover, a series of characterizations and theoretical calculations demonstrate that the different electronic configurations and coordination environments of Mn(II) and Mn(III) are conducive to promoting CORR and COER, respectively. Benefiting from such a modulating behavior, the Li-CO2 batteries deliver a high full discharge capacity of 10.31 mAh cm-2, and ultra-long cycle life (327 cycles/1308 h). This fundamental understanding of MOC reconstruction and the electrocatalytic mechanisms provides a new perspective for designing high-performance multivalent Mn-integrated hybrid catalysts for Li-CO2 batteries.

19.
J Med Biochem ; 42(2): 265-273, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36987419

ABSTRACT

Background: To figure out the clinical meaning of serum trimethylamine oxide (TMAO), N-terminal-pro-brain natriuretic peptide (NT-proBNP) and hypoxia-inducible factor-1a (HIF-1a) with left ventricular function and pregnancy outcome in patients with pregnancy-induced hypertension. Methods: From January 2018 to October 2020, 117 patients with gestational hypertension were taken as the research objects and grouped into the gestational hypertension (pregnancy-induced hypertension, 55 cases), mild preeclampsia (mild PE, 43 cases) and severe preeclampsia (severe PE, 19 cases) in the light of the severity of the disease. Analysis of the relation of serum TMAO, NT-proBNP and HIF-1a with the severity of disease and cardiac function indexes in patients with gestational hypertension was conducted. All patients were followed up to the end of pregnancy, and the predictive value of serum TMAO, NT-proBNP and HIF-1a on pregnancy outcome in patients was analyzed. Results: Serum TMAO and NT-proBNP of patients were elevated, while HIF-1a was reduced with the severity of the disease (P < 0.05). Serum TMAO and NT-proBNP in patients with gestational hypertension were positively correlated but HIF-1a was negatively correlated with the severity of the disease (P < 0.05). Left ventricular end-diastolic volume (LVEDV) and left ventricular end-systolic volume (LVESV) were elevated in gestational hypertension patients, while ejection fraction (LVEF) was reduced with the severity of disease (P < 0.05). Serum TMAO, NT-proBNP and HIF1a were associated with LVEDV, LVESV and LVEF values in patients with gestational hypertension (P < 0.05). Serum TMAO and NT-proBNP were elevated but HIF-1a was reduced in patients with a poor pregnancy outcome (P < 0.05). The AUC of the combined detection of serum TMAO, NT-proBNP and HIF-1a on pregnancy outcome was greater (P < 0.05). Conclusions: Serum TMAO, NT-proBNP and HIF-1a in patients with gestational hypertension are associated with disease severity and cardiac function, and have predictive and evaluative values for disease severity and pregnancy outcome.

20.
Adv Sci (Weinh) ; 10(7): e2205959, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36646507

ABSTRACT

Rechargeable Li-CO2 battery represents a sustainable technology by virtue of CO2 recyclability and energy storage capability. Unfortunately, the sluggish mass transport and electron transfer in bulky high-crystalline discharge product of Li2 CO3 , severely hinder its practical capacity and rechargeability. Herein, a heterostructure of isolated metalloid Te atomic cluster anchored on N-doped carbon nanosheets is designed (TeAC @NCNS) as a metal-free cathode for Li-CO2 battery. X-ray absorption spectroscopy analysis demonstrates that the abundant and dispersed Te active centers can be stabilized by C atoms in form of the covalent bond. The fabricated battery shows an unprecedented full-discharge capacity of 28.35 mAh cm-2 at 0.05 mA cm-2 and long-term cycle life of up to 1000 h even at a high cut-off capacity of 1 mAh cm-2 . A series of ex situ characterizations combined with theoretical calculations demonstrate that the abundant Te atomic clusters acting as active centers can drive the electron redistribution of carbonate via forming TeO bonds, giving rise to poor-crystalline Li2 CO3 film during the discharge process. Moreover, the efficient electron transfer between the Te centers and intermediate species is energetically beneficial for nucleation and accelerates the decomposition of Li2 CO3 on the TeAC @NCNS during the discharge/charge process.

SELECTION OF CITATIONS
SEARCH DETAIL