ABSTRACT
Human inborn errors of IFN-γ immunity underlie mycobacterial diseases. We describe patients with Mycobacterium bovis (BCG) disease who are homozygous for loss-of-function mutations of SPPL2A. This gene encodes a transmembrane protease that degrades the N-terminal fragment (NTF) of CD74 (HLA invariant chain) in antigen-presenting cells. The CD74 NTF therefore accumulates in the HLA class II+ myeloid and lymphoid cells of SPPL2a-deficient patients. This toxic fragment selectively depletes IL-12- and IL-23-producing CD1c+ conventional dendritic cells (cDC2s) and their circulating progenitors. Moreover, SPPL2a-deficient memory TH1* cells selectively fail to produce IFN-γ when stimulated with mycobacterial antigens in vitro. Finally, Sppl2a-/- mice lack cDC2s, have CD4+ T cells that produce small amounts of IFN-γ after BCG infection, and are highly susceptible to infection with BCG or Mycobacterium tuberculosis. These findings suggest that inherited SPPL2a deficiency in humans underlies mycobacterial disease by decreasing the numbers of cDC2s and impairing IFN-γ production by mycobacterium-specific memory TH1* cells.
Subject(s)
Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Dendritic Cells/immunology , Membrane Proteins/metabolism , Mycobacterium Infections/immunology , Mycobacterium bovis/physiology , Mycobacterium tuberculosis/physiology , Th1 Cells/immunology , Tuberculosis/immunology , Animals , Antigens, Differentiation, B-Lymphocyte/metabolism , Cells, Cultured , HLA Antigens/metabolism , Histocompatibility Antigens Class II/metabolism , Humans , Immunity , Immunologic Memory , Infant , Interferon-gamma/metabolism , Lymphadenopathy , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation/genetics , Mycobacterium Infections/genetics , VaccinationABSTRACT
The proliferation of single-cell RNA-seq data has greatly enhanced our ability to comprehend the intricate nature of diverse tissues. However, accurately annotating cell types in such data, especially when handling multiple reference datasets and identifying novel cell types, remains a significant challenge. To address these issues, we introduce Single Cell annotation based on Distance metric learning and Optimal Transport (scDOT), an innovative cell-type annotation method adept at integrating multiple reference datasets and uncovering previously unseen cell types. scDOT introduces two key innovations. First, by incorporating distance metric learning and optimal transport, it presents a novel optimization framework. This framework effectively learns the predictive power of each reference dataset for new query data and simultaneously establishes a probabilistic mapping between cells in the query data and reference-defined cell types. Secondly, scDOT develops an interpretable scoring system based on the acquired probabilistic mapping, enabling the precise identification of previously unseen cell types within the data. To rigorously assess scDOT's capabilities, we systematically evaluate its performance using two diverse collections of benchmark datasets encompassing various tissues, sequencing technologies and diverse cell types. Our experimental results consistently affirm the superior performance of scDOT in cell-type annotation and the identification of previously unseen cell types. These advancements provide researchers with a potent tool for precise cell-type annotation, ultimately enriching our understanding of complex biological tissues.
Subject(s)
Data Curation , Single-Cell Gene Expression Analysis , Humans , Benchmarking , Learning , Research PersonnelABSTRACT
Sequencing-based spatial transcriptomics technologies have revolutionized our understanding of complex biological systems by enabling transcriptome profiling while preserving spatial context. However, spot-level expression measurements often amalgamate signals from diverse cells, obscuring potential heterogeneity. Existing methods aim to deconvolute spatial transcriptomics data into cell type proportions for each spot using single-cell RNA sequencing references but overlook cell-type-specific gene expression, essential for uncovering intra-type heterogeneity. We present PANDA (ProbAbilistic-based decoNvolution with spot-aDaptive cell type signAtures), a novel method that concurrently deciphers spot-level gene expression into both cell type proportions and cell-type-specific gene expression. PANDA integrates archetypal analysis to capture within-cell-type heterogeneity and dynamically learns cell type signatures for each spot during deconvolution. Simulations demonstrate PANDA's superior performance. Applied to real spatial transcriptomics data from diverse tissues, including tumor, brain, and developing heart, PANDA reconstructs spatial structures and reveals subtle transcriptional variations within specific cell types, offering a comprehensive understanding of tissue dynamics.
ABSTRACT
Chronic stress induces depression- and anxiety-related behaviors, which are common mental disorders accompanied not only by dysfunction of the brain but also of the intestine. Activating transcription factor 4 (ATF4) is a stress-induced gene, and we previously show that it is important for gut functions; however, the contribution of the intestinal ATF4 to stress-related behaviors is not known. Here, we show that chronic stress inhibits the expression of ATF4 in gut epithelial cells. ATF4 overexpression in the colon relieves stress-related behavioral alterations in male mice, as measured by open-field test, elevated plus-maze test, and tail suspension test, whereas intestine-specific ATF4 knockout induces stress-related behavioral alterations in male mice. Furthermore, glutamatergic neurons are inhibited in the paraventricular thalamus (PVT) of two strains of intestinal ATF4-deficient mice, and selective activation of these neurons alleviates stress-related behavioral alterations in intestinal ATF4-deficient mice. The highly expressed gut-secreted peptide trefoil factor 3 (TFF3) is chosen from RNA-Seq data from ATF4 deletion mice and demonstrated decreased in gut epithelial cells, which is directly regulated by ATF4. Injection of TFF3 reverses stress-related behaviors in ATF4 knockout mice, and the beneficial effects of TFF3 are blocked by inhibiting PVT glutamatergic neurons using DREADDs. In summary, this study demonstrates the function of ATF4 in the gut-brain regulation of stress-related behavioral alterations, via TFF3 modulating PVT neural activity. This research provides evidence of gut signals regulating stress-related behavioral alterations and identifies possible drug targets for the treatment of stress-related behavioral disorders.
Subject(s)
Activating Transcription Factor 4 , Thalamus , Male , Animals , Mice , Activating Transcription Factor 4/metabolism , Thalamus/metabolism , Neurons/metabolism , Mice, Knockout , Colon/metabolismABSTRACT
Microsomal glutathione transferase 3 (MGST3) regulates eicosanoid and glutathione metabolism. These processes are associated with oxidative stress and apoptosis, suggesting that MGST3 might play a role in the pathophysiology of Alzheimer's disease. Here, we report that knockdown (KD) of MGST3 in cell lines reduced the protein level of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) and the resulting amyloidogenesis. Interestingly, MGST3 KD did not alter intracellular reactive oxygen species level but selectively reduced the expression of apoptosis indicators which could be associated with the receptor of cysteinyl leukotrienes, the downstream metabolites of MGST3 in arachidonic acid pathway. We then showed that the effect of MGST3 on BACE1 was independent of cysteinyl leukotrienes but involved a translational mechanism. Further RNA-seq analysis identified that regulator of G-protein signaling 4 (RGS4) was a target gene of MGST3. Silencing of RGS4 inhibited BACE1 translation and prevented MGST3 KD-mediated reduction of BACE1. The potential mechanism was related to AKT activity, as the protein level of phosphorylated AKT was significantly reduced by silencing of MGST3 and RGS4, and the AKT inhibitor abolished the effect of MGST3/RGS4 on phosphorylated AKT and BACE1. Together, MGST3 regulated amyloidogenesis by controlling BACE1 protein expression, which was mediated by RGS4 and downstream AKT signaling pathway.
Subject(s)
Amyloid Precursor Protein Secretases , Aspartic Acid Endopeptidases , Glutathione Transferase , Protein Biosynthesis , Proto-Oncogene Proteins c-akt , RGS Proteins , Signal Transduction , RGS Proteins/metabolism , RGS Proteins/genetics , Humans , Aspartic Acid Endopeptidases/metabolism , Aspartic Acid Endopeptidases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/genetics , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Apoptosis , Amyloid beta-Peptides/metabolism , AnimalsABSTRACT
In the field, necrosis area induced by pathogens is usually surrounded by a red circle in apple fruits. However, the underlying molecular mechanism of this phenomenon remains unclear. In this study, we demonstrated that accumulated salicylic acid (SA) induced by fungal infection promoted anthocyanin biosynthesis through MdNPR1-MdTGA2.2 module in apple (Malus domestica). Inoculating apple fruits with Valsa mali or Botryosphaeria dothidea induced a red circle surrounding the necrosis area, which mimicked the phenotype observed in the field. The red circle accumulated a high level of anthocyanins, which was positively correlated with SA accumulation stimulated by fungal invasion. Further analysis showed that SA promoted anthocyanin biosynthesis in a dose-dependent manner in both apple calli and fruits. We next demonstrated that MdNPR1, a master regulator of SA signaling, positively regulated anthocyanin biosynthesis in both apple and Arabidopsis. Moreover, MdNPR1 functioned as a co-activator to interact with and enhance the transactivation activity of MdTGA2.2, which could directly bind to the promoters of anthocyanin biosynthetic and regulatory genes to promote their transcription. Suppressing expression of either MdNPR1 or MdTGA2.2 inhibited coloration of apple fruits, while overexpressing either of them significantly promoted fruit coloration. Finally, we revealed that silencing either MdNPR1 or MdTGA2.2 in apple fruits repressed SA-induced fruit coloration. Therefore, our data determined that fungal-induced SA promoted anthocyanin biosynthesis through MdNPR1-MdTGA2.2 module, resulting in a red circle surrounding the necrosis area in apple fruits.
Subject(s)
Anthocyanins , Ascomycota , Fruit , Gene Expression Regulation, Plant , Malus , Plant Diseases , Plant Proteins , Salicylic Acid , Malus/microbiology , Malus/genetics , Malus/metabolism , Salicylic Acid/metabolism , Anthocyanins/biosynthesis , Anthocyanins/metabolism , Ascomycota/physiology , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Fruit/microbiology , Fruit/metabolism , Fruit/genetics , Arabidopsis/microbiology , Arabidopsis/genetics , Arabidopsis/metabolism , Transcription Factors/metabolism , Transcription Factors/geneticsABSTRACT
YWHAZ encodes an adapter protein 14-3-3ζ, which is involved in many signaling pathways that control cellular proliferation, migration and differentiation. It has not been definitely correlated to any phenotype in OMIM. To investigate the role of YWHAZ gene in intellectual disability and global developmental delay, we conducted whole-exon sequencing in all of the available members from a large three-generation family and we discovered that a novel variant of the YWHAZ gene was associated with intellectual disability and global developmental delay. This variant is a missense mutation of YWHAZ, p.Lys49Asn/c.147A > T, which was found in all affected members but not found in other unaffected members. We also conducted computational modeling and knockdown/knockin with Drosophila to confirm the role of the YWHAZ variant in intellectual disability. Computational modeling showed that the binding energy was increased in the mutated protein combining with the ligand indicating that the c147A > T variation was a loss-of-function variant. Cognitive defects and mushroom body morphological abnormalities were observed in YWHAZ c.147A > T knockin flies. The YWHAZ knockdown flies also manifested serious cognitive defects with hyperactivity behaviors, which is consistent with the clinical features. Our clinical and experimental results consistently suggested that YWHAZ was a novel intellectual disability pathogenic gene.
Subject(s)
Intellectual Disability , Nervous System Malformations , Child , Humans , Intellectual Disability/genetics , Intellectual Disability/complications , 14-3-3 Proteins/genetics , Mutation, Missense , Brain , Developmental Disabilities/genetics , Developmental Disabilities/complicationsABSTRACT
The pathogenesis of COVID-19 is still elusive, which impedes disease progression prediction, differential diagnosis, and targeted therapy. Plasma cell-free RNAs (cfRNAs) carry unique information from human tissue and thus could point to resourceful solutions for pathogenesis and host-pathogen interactions. Here, we performed a comparative analysis of cfRNA profiles between COVID-19 patients and healthy donors using serial plasma. Analyses of the cfRNA landscape, potential gene regulatory mechanisms, dynamic changes in tRNA pools upon infection, and microbial communities were performed. A total of 380 cfRNA molecules were up-regulated in all COVID-19 patients, of which seven could serve as potential biomarkers (AUC > 0.85) with great sensitivity and specificity. Antiviral (NFKB1A, IFITM3, and IFI27) and neutrophil activation (S100A8, CD68, and CD63)-related genes exhibited decreased expression levels during treatment in COVID-19 patients, which is in accordance with the dynamically enhanced inflammatory response in COVID-19 patients. Noncoding RNAs, including some microRNAs (let 7 family) and long noncoding RNAs (GJA9-MYCBP) targeting interleukin (IL6/IL6R), were differentially expressed between COVID-19 patients and healthy donors, which accounts for the potential core mechanism of cytokine storm syndromes; the tRNA pools change significantly between the COVID-19 and healthy group, leading to the accumulation of SARS-CoV-2 biased codons, which facilitate SARS-CoV-2 replication. Finally, several pneumonia-related microorganisms were detected in the plasma of COVID-19 patients, raising the possibility of simultaneously monitoring immune response regulation and microbial communities using cfRNA analysis. This study fills the knowledge gap in the plasma cfRNA landscape of COVID-19 patients and offers insight into the potential mechanisms of cfRNAs to explain COVID-19 pathogenesis.
Subject(s)
COVID-19 , Cell-Free Nucleic Acids , RNA/blood , COVID-19/blood , COVID-19/genetics , Cell-Free Nucleic Acids/blood , Cytokine Release Syndrome , Humans , SARS-CoV-2ABSTRACT
Dwarfism is an important agronomic trait in fruit breeding programs. However, the germplasm resources required to generate dwarf pear (Pyrus spp.) varieties are limited. Moreover, the mechanisms underlying dwarfism remain unclear. In this study, "Yunnan" quince (Cydonia oblonga Mill.) had a dwarfing effect on "Zaosu" pear. Additionally, the dwarfism-related NAC transcription factor gene PbNAC71 was isolated from pear trees comprising "Zaosu" (scion) grafted onto "Yunnan" quince (rootstock). Transgenic Nicotiana benthamiana and pear OHF-333 (Pyrus communis) plants overexpressing PbNAC71 exhibited dwarfism, with a substantially smaller xylem and vessel area relative to the wild-type controls. Yeast one-hybrid, dual-luciferase, chromatin immunoprecipitation-qPCR, and electrophoretic mobility shift assays indicated that PbNAC71 downregulates PbWalls are thin 1 expression by binding to NAC-binding elements in its promoter. Yeast two-hybrid assays showed that PbNAC71 interacts with the E3 ubiquitin ligase PbRING finger protein 217 (PbRNF217). Furthermore, PbRNF217 promotes the ubiquitin-mediated degradation of PbNAC71 by the 26S proteasome, thereby regulating plant height as well as xylem and vessel development. Our findings reveal a mechanism underlying pear dwarfism and expand our understanding of the molecular basis of dwarfism in woody plants.
Subject(s)
Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Pyrus , Transcription Factors , Xylem , Xylem/metabolism , Xylem/genetics , Pyrus/genetics , Pyrus/metabolism , Pyrus/growth & development , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/growth & development , Promoter Regions, Genetic/genetics , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/geneticsABSTRACT
High soil salinity negatively affects plant growth and development, leading to a severe decrease in crop production worldwide. Here, we report that a secreted peptide, PAMP-INDUCED SECRETED PEPTIDE 3 (PIP3), plays an essential role in plant salt tolerance through RECEPTOR-LIKE KINASE 7 (RLK7) in Arabidopsis (Arabidopsis thaliana). The gene encoding the PIP3 precursor, prePIP3, was significantly induced by salt stress. Plants overexpressing prePIP3 exhibited enhanced salt tolerance, whereas a prePIP3 knockout mutant had a salt-sensitive phenotype. PIP3 physically interacted with RLK7, a leucine-rich repeat RLK, and salt stress enhanced PIP3-RLK7 complex formation. Functional analyses revealed that PIP3-mediated salt tolerance is dependent on RLK7. Exogenous application of synthetic PIP3 peptide activated RLK7, and salt treatment significantly induced RLK7 phosphorylation in a PIP3-dependent manner. Notably, MITOGEN-ACTIVATED PROTEIN KINASE3 (MPK3) and MPK6 were downstream of the PIP3-RLK7 module in salt response signaling. Activation of MPK3/6 was attenuated in pip3 or rlk7 mutants under saline conditions. Therefore, MPK3/6 might amplify salt stress response signaling in plants for salt tolerance. Collectively, our work characterized a novel ligand-receptor signaling cascade that modulates plant salt tolerance in Arabidopsis. This study contributes to our understanding of how plants respond to salt stress.
Subject(s)
Arabidopsis Proteins , Arabidopsis , Salt Tolerance , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation , Plants, Genetically Modified , Salt Stress/physiology , Salt Tolerance/physiologyABSTRACT
Hypoxia-induced inflammation and apoptosis are important pathophysiological features of heat stroke-induced acute kidney injury (HS-AKI). Hypoxia-inducible factor (HIF) is a key protein that regulates cell adaptation to hypoxia. HIF-prolyl hydroxylase inhibitor (HIF-PHI) stabilizes HIF to increase cell adaptation to hypoxia. Herein, we reported that HIF-PHI pretreatment significantly improved renal function, enhanced thermotolerance, and increased the survival rate of mice in the context of HS. Moreover, HIF-PHI could alleviate HS-induced mitochondrial damage, inflammation, and apoptosis in renal tubular epithelial cells (RTECs) by enhancing mitophagy in vitro and in vivo. By contrast, mitophagy inhibitors Mdivi-1, 3-MA, and Baf-A1 reversed the renoprotective effects of HIF-PHI. Mechanistically, HIF-PHI protects RTECs from inflammation and apoptosis by enhancing Bcl-2 adenovirus E18 19-kDa-interacting protein 3 (BNIP3)-mediated mitophagy, while genetic ablation of BNIP3 attenuated HIF-PHI-induced mitophagy and abolished HIF-PHI-mediated renal protection. Thus, our results indicated that HIF-PHI protects renal function by upregulating BNIP3-mediated mitophagy to improve HS-induced inflammation and apoptosis of RTECs, suggesting HIF-PHI as a promising therapeutic agent to treat HS-AKI.
Subject(s)
Acute Kidney Injury , Heat Stroke , Membrane Proteins , Mitophagy , Prolyl-Hydroxylase Inhibitors , Animals , Male , Mice , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/etiology , Apoptosis/drug effects , Heat Stroke/complications , Heat Stroke/drug therapy , Heat Stroke/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Inbred C57BL , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Mitophagy/drug effects , Prolyl-Hydroxylase Inhibitors/pharmacology , Prolyl-Hydroxylase Inhibitors/therapeutic useABSTRACT
ATPase family AAA domain-containing protein 1 (ATAD1) maintains mitochondrial homeostasis by removing mislocalized tail-anchored (TA) proteins from the mitochondrial outer membrane (MOM). Hepatitis C virus (HCV) infection induces mitochondrial fragmentation, and viral NS5B protein is a TA protein. Here, we investigate whether ATAD1 plays a role in regulating HCV infection. We find that HCV infection has no effect on ATAD1 expression, but knockout of ATAD1 significantly enhances HCV infection; this enhancement is suppressed by ATAD1 complementation. NS5B partially localizes to mitochondria, dependent on its transmembrane domain (TMD), and induces mitochondrial fragmentation, which is further enhanced by ATAD1 knockout. ATAD1 interacts with NS5B, dependent on its three internal domains (TMD, pore-loop 1, and pore-loop 2), and induces the proteasomal degradation of NS5B. In addition, we provide evidence that ATAD1 augments the antiviral function of MAVS upon HCV infection. Taken together, we show that the mitochondrial quality control exerted by ATAD1 can be extended to a novel antiviral function through the extraction of the viral TA-protein NS5B from the mitochondrial outer membrane.
Subject(s)
Hepacivirus , Hepatitis C , Humans , Hepacivirus/metabolism , Viral Proteins/metabolism , Hepatitis C/metabolism , Mitochondria/metabolism , Antiviral Agents , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolismABSTRACT
BACKGROUND: Vascular smooth muscle cells (VSMCs) are highly plastic. Vessel injury induces a phenotypic transformation from differentiated to dedifferentiated VSMCs, which involves reduced expression of contractile proteins and increased production of extracellular matrix and inflammatory cytokines. This transition plays an important role in several cardiovascular diseases such as atherosclerosis, hypertension, and aortic aneurysm. TGF-ß (transforming growth factor-ß) is critical for VSMC differentiation and to counterbalance the effect of dedifferentiating factors. However, the mechanisms controlling TGF-ß activity and VSMC phenotypic regulation under in vivo conditions are poorly understood. The extracellular matrix protein TN-X (tenascin-X) has recently been shown to bind TGF-ß and to prevent it from activating its receptor. METHODS: We studied the role of TN-X in VSMCs in various murine disease models using tamoxifen-inducible SMC-specific knockout and adeno-associated virus-mediated knockdown. RESULTS: In hypertensive and high-fat diet-fed mice, after carotid artery ligation as well as in human aneurysmal aortae, expression of Tnxb, the gene encoding TN-X, was increased in VSMCs. Mice with smooth muscle cell-specific loss of TN-X (SMC-Tnxb-KO) showed increased TGF-ß signaling in VSMCs, as well as upregulated expression of VSMC differentiation marker genes during vascular remodeling compared with controls. SMC-specific TN-X deficiency decreased neointima formation after carotid artery ligation and reduced vessel wall thickening during Ang II (angiotensin II)-induced hypertension. SMC-Tnxb-KO mice lacking ApoE showed reduced atherosclerosis and Ang II-induced aneurysm formation under high-fat diet. Adeno-associated virus-mediated SMC-specific expression of short hairpin RNA against Tnxb showed similar beneficial effects. Treatment with an anti-TGF-ß antibody or additional SMC-specific loss of the TGF-ß receptor reverted the effects of SMC-specific TN-X deficiency. CONCLUSIONS: In summary, TN-X critically regulates VSMC plasticity during vascular injury by inhibiting TGF-ß signaling. Our data indicate that inhibition of vascular smooth muscle TN-X may represent a strategy to prevent and treat pathological vascular remodeling.
Subject(s)
Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Signal Transduction , Tenascin , Vascular Remodeling , Animals , Humans , Male , Mice , Angiotensin II , Aortic Aneurysm/metabolism , Aortic Aneurysm/pathology , Aortic Aneurysm/genetics , Aortic Aneurysm/prevention & control , Carotid Artery Injuries/pathology , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/genetics , Cells, Cultured , Diet, High-Fat , Disease Models, Animal , Hypertension/metabolism , Hypertension/pathology , Hypertension/physiopathology , Hypertension/genetics , Mice, Inbred C57BL , Mice, Knockout , Mice, Knockout, ApoE , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Neointima , Phenotype , Tenascin/metabolism , Tenascin/genetics , Tenascin/deficiency , Transforming Growth Factor beta/metabolismABSTRACT
Classic strategies for circular RNA (circRNA) preparation always introduce large numbers of linear transcripts or extra nucleotides to the circularized product. In this study, we aimed to develop an efficient system for circRNA preparation based on a self-splicing ribozyme derived from an optimized Tetrahymena thermophila group â intron. The target RNA sequence was inserted downstream of the ribozyme and a complementary antisense region was added upstream of the ribozyme to assist cyclization. Then, we compared the circularization efficiency of ribozyme or flanking intronic complementary sequence (ICS)-mediated methods through the DNMT1, CDR1as, FOXO3, and HIPK3 genes and found that the efficiency of our system was remarkably higher than that of flanking ICS-mediated method. Consequently, the circularized products mediated by ribozyme are not introduced with additional nucleotides. Meanwhile, the overexpressed circFOXO3 maintained its biological functions in regulating cell proliferation, migration, and apoptosis. Finally, a ribozyme-based circular mRNA expression system was demonstrated with a split green fluorescent protein (GFP) using an optimized Coxsackievirus B3 (CVB3) internal ribosome entry site (IRES) sequence, and this system achieved successful translation of circularized mRNA. Therefore, this novel, convenient, and rapid engineering RNA circularization system can be applied for the functional study and large-scale preparation of circular RNA in the future.
Subject(s)
RNA, Catalytic , RNA, Circular , Tetrahymena thermophila , Base Sequence , Nucleotides/metabolism , RNA Splicing , RNA, Catalytic/genetics , RNA, Catalytic/metabolism , RNA, Circular/metabolism , RNA, Messenger/metabolism , Tetrahymena thermophila/genetics , Tetrahymena thermophila/metabolismABSTRACT
BACKGROUND: Pruning is an important cultivation management option that has important effects on peach yield and quality. However, the effects of pruning on the overall genetic and metabolic changes in peach leaves and fruits are poorly understood. RESULTS: The transcriptomic and metabolomic profiles of leaves and fruits from trees subjected to pruning and unpruning treatments were measured. A total of 20,633 genes and 622 metabolites were detected. Compared with those in the control, 1,127 differentially expressed genes (DEGs) and 77 differentially expressed metabolites (DEMs) were identified in leaves from pruned and unpruned trees (pdLvsupdL), whereas 423 DEGs and 29 DEMs were identified in fruits from the pairwise comparison pdFvsupdF. The content of three auxin analogues was upregulated in the leaves of pruned trees, the content of all flavonoids detected in the leaves decreased, and the expression of almost all genes involved in the flavonoid biosynthesis pathway decreased. The phenolic acid and amino acid metabolites detected in fruits from pruned trees were downregulated, and all terpenoids were upregulated. The correlation analysis revealed that DEGs and DEMs in leaves were enriched in tryptophan metabolism, auxin signal transduction, and flavonoid biosynthesis. DEGs and DEMs in fruits were enriched in flavonoid and phenylpropanoid biosynthesis, as well as L-glutamic acid biosynthesis. CONCLUSIONS: Pruning has different effects on the leaves and fruits of peach trees, affecting mainly the secondary metabolism and hormone signalling pathways in leaves and amino acid biosynthesis in fruits.
Subject(s)
Fruit , Gene Expression Profiling , Metabolomics , Plant Leaves , Prunus persica , Plant Leaves/metabolism , Plant Leaves/genetics , Prunus persica/genetics , Prunus persica/metabolism , Prunus persica/growth & development , Fruit/metabolism , Fruit/genetics , Fruit/growth & development , Gene Expression Regulation, Plant , Metabolome , Transcriptome , Flavonoids/metabolism , Indoleacetic Acids/metabolismABSTRACT
Amyotrophic lateral sclerosis (ALS) is one of the most common neurodegenerative diseases, yet effective treatment is lacking. Moreover, the underlying pathomechanisms of ALS remain unclear, with impaired mitophagy function being increasingly recognized as a contributing factor. FUN14 domain-containing protein 1 (FUNDC1) is an autophagy receptor localized to the outer mitochondrial membrane and a mitochondrial membrane protein that mediates mitophagy and therefore considered as important factor in neurodegenerative diseases. However, its specific role in ALS is not yet clear. Therefore, this study aimed to investigate the regulatory role of FUNDC1 in ALS and determine its regulatory mechanisms. ALS transgenic mice were obtained and maintained under standard conditions. Cell lines were generated by stable transfection with hSOD1G93A or control vectors. Mice received intrathecal injections of AAV9 vectors expressing FUNDC1 or EGFP. Motor function was assessed through behavioral tests, and histological and immunostaining analyses were performed. Colocalization analysis was conducted in transfected cells, and protein expression was evaluated via western blotting. We first observed that FUNDC1 was significantly downregulated in the spinal cord tissues of SOD1G93A mice. FUNDC1 overexpression considerably improved locomotor activity and prolonged survival time in SOD1G93A mice. Mechanistically, reduced expression of FUNDC1 resulted in decreased mitophagy, as indicated by decreased recruitment through LC3 in SOD1G93A mice and cellular models. Consequently, this led to increased mitochondrial accumulation and cell apoptosis, exacerbating the ALS phenotype. Furthermore, we identified transcription factor FOXD3 as an essential upstream factor of FUNDC1, resulting in reduced transcription of FUNDC1 in ALS lesions. This study suggests a novel strategy of targeting FUNDC1-mediated mitophagy for developing therapeutic interventions to mitigate disease progression and improve outcomes for ALS patients.
Subject(s)
Amyotrophic Lateral Sclerosis , Disease Models, Animal , Mice, Transgenic , Mitochondrial Proteins , Mitophagy , Motor Neurons , Animals , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/genetics , Mitophagy/physiology , Motor Neurons/metabolism , Motor Neurons/pathology , Mice , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Humans , Spinal Cord/metabolism , Spinal Cord/pathologyABSTRACT
We intended to update human papillomavirus (HPV) prevalence and p16INK4a positivity in oropharyngeal squamous cell carcinomars (SCC), and calculate HPV attributable fraction (AF) for oropharyngeal SCC by geographic region. We searched Medline, Embase, and the Cochrane Library to identify published studies of HPV prevalence and p16INK4a positivity alone or together in oropharyngeal SCC before December 28, 2021. Studies that reported type-specific HPV DNA prevalence using broad-spectrum PCR-based testing methods were included. We estimated pooled HPV prevalence, type-specific HPV prevalence, and p16INK4a positivity. AF of HPV was calculated by geographic region. One hundred and thirty-four studies including 12 139 cases were included in our analysis. The pooled HPV prevalence estimate for oropharyngeal SCC was 48.1% (95% confidence interval [CI] 43.2-53.0). HPV prevalence varied significantly by geographic region, and the highest HPV prevalence in oropharyngeal SCC was noted in North America (72.6%, 95% CI 63.8-80.6). Among HPV positive cases, HPV 16 was the most common type with a prevalence of 40.2% (95% CI 35.7-44.7). The pooled p16INK4a positivity in HPV positive and HPV16 positive oropharyngeal SCC cases was 87.2% (95% CI 81.6-91.2) and 91.7% (84.3-97.2). The highest AFs of HPV and HPV16 were noted in North America at 69.6% (95% CI 53.0-91.5) and 63.0% (48.0-82.7). [Correction added on 31 October 2023, after first online publication: the percentage symbol (%) was missing and has been added to 63.0% (48.0-82.7) in the Abstract and Conclusion.] A significant proportion of oropharyngeal SCC was attributable to HPV. HPV16 accounts for the majority of HPV positive oropharyngeal SCC cases. These findings highlight the importance of HPV vaccination in the prevention of a substantial proportion of oropharyngeal SCC cases.
Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Oropharyngeal Neoplasms , Papillomavirus Infections , Humans , Carcinoma, Squamous Cell/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , DNA, Viral/genetics , DNA, Viral/analysis , Human papillomavirus 16/genetics , Human papillomavirus 16/metabolism , Human Papillomavirus Viruses , Papillomaviridae/genetics , Papillomaviridae/metabolism , Papillomavirus Infections/complications , Papillomavirus Infections/epidemiology , Papillomavirus Infections/metabolism , Squamous Cell Carcinoma of Head and NeckABSTRACT
Disulfidptosis is a novel form of cell death that is distinguishable from established programmed cell death pathways such as apoptosis, pyroptosis, autophagy, ferroptosis, and oxeiptosis. This process is characterized by the rapid depletion of nicotinamide adenine dinucleotide phosphate (NADPH) in cells and high expression of solute carrier family 7 member 11 (SLC7A11) during glucose starvation, resulting in abnormal cystine accumulation, which subsequently induces andabnormal disulfide bond formation in actin cytoskeleton proteins, culminating in actin network collapse and disulfidptosis. This review aimed to summarize the underlying mechanisms, influencing factors, comparisons with traditional cell death pathways, associations with related diseases, application prospects, and future research directions related to disulfidptosis.
Subject(s)
Cell Death , Humans , Cell Death/genetics , Animals , Apoptosis/genetics , NADP/metabolism , Autophagy/genetics , Glucose/metabolism , Ferroptosis/geneticsABSTRACT
The clinical penetrance of infectious diseases varies considerably among patients with inborn errors of immunity (IEI), even for identical genetic defects. This variability is influenced by pathogen exposure, healthcare access and host-environment interactions. We describe here a patient in his thirties who presented with epidermodysplasia verruciformis (EV) due to infection with a weakly virulent beta-papillomavirus (HPV38) and CD4+ T-cell lymphopenia. The patient was born to consanguineous parents living in the United States. Exome sequencing identified a previously unknown biallelic STK4 stop-gain mutation (p.Trp425X). The patient had no relevant history of infectious disease during childhood other than mild wart-like lesion on the skin, but he developed diffuse large B-cell lymphoma (DLBCL) and EBV viremia with a low viral load in his thirties. Despite his low CD4+ T-cell count, the patient had normal counts of CD3+ cells, predominantly double-negative T cells (67.4%), which turned out to be Vδ2+ γδ T cells. γδ T-cell expansion has frequently been observed in the 33 reported cases with STK4 deficiency. The Vδ2 γδ T cells of this STK4-deficient patient are mostly CD45RA-CD27+CCR7+ central memory γδT cells, and their ability to proliferate in response to T-cell activation was impaired, as was that of CD4+ T cells. In conclusion, γδ T-cell expansion may act as a compensatory mechanism to combat viral infection, providing immune protection in immunocompromised individuals.
Subject(s)
Epidermodysplasia Verruciformis , Protein Serine-Threonine Kinases , Humans , Epidermodysplasia Verruciformis/genetics , Epidermodysplasia Verruciformis/diagnosis , Male , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/deficiency , Adult , Receptors, Antigen, T-Cell, gamma-delta/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/deficiency , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/etiology , Lymphoma, Large B-Cell, Diffuse/immunology , Lymphoma, Large B-Cell, Diffuse/diagnosis , Mutation/genetics , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/complications , Intraepithelial Lymphocytes/immunology , ConsanguinityABSTRACT
BACKGROUND: Double-negative T (DNT) cells comprise a distinct subset of T lymphocytes that have been implicated in immune responses. The aim of this study was to characterize the peripheral DNT population in breast cancer (BC) patients. METHODS: DNT cells were isolated from the peripheral blood samples of BC patients and healthy controls by flow cytometry. The sorted DNT cells were analyzed by the Smart-seq2 for single-cell full-length transcriptome profiling. The differentially expressed genes (DEGs) between the BC and control groups were screened and functionally annotated by Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses using R. The protein-protein interaction (PPI) network of the DEGs was constructed using the CytoHubba and MCODE plug-in of Cytoscape software to identify the core genes. Survival status, DNA methylation level, immune infiltration and immune checkpoint expression were analyzed using Kaplan-Meier Plotter, UALCAN, MethSeuvr, TIMER, and TISIDB respectively. The sequencing results were verified by RT-qPCR. RESULT: The percentage of DNT cells was higher in the BC patients compared to healthy controls. We identified 289 DEGs between the DNT populations of both groups. GO and KEGG pathway analyses revealed that the DEGs were mainly related to immunoglobulin mediated immune response, complement activation, and B cell receptor signaling. The PPI networks of the common DEGs were constructed using Cytoscape, and 10 core genes were identified, including TMEM176B, C1QB, C1QC, RASD2, and IFIT3. The expression levels of these genes correlated with the prognosis and immune infiltration in BC patients, and were validated by RT-qPCR (P < 0.05). CONCLUSIONS: DNT cells are abundant in patients with BC, and might exert anti-tumor immune responses by regulating genes such as TMEM176B and EGR1.